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Abstract: This paper proposes a synthetic aperture radar (SAR) automatic target recognition
(ATR) method via hierarchical fusion of two classification schemes, i.e., convolutional neural
networks (CNN) and attributed scattering center (ASC) matching. CNN can work with notably
high effectiveness under the standard operating condition (SOC). However, it can hardly cope
with various extended operating conditions (EOCs), which are not covered by the training samples.
In contrast, the ASC matching can handle many EOCs related to the local variations of the target by
building a one-to-one correspondence between two ASC sets. Therefore, it is promising that both
effectiveness and efficiency of the ATR method can be improved by combining the merits of the two
classification schemes. The test sample is first classified by CNN. A reliability level calculated based
on the outputs from CNN. Once there is a notably reliable decision, the whole recognition process
terminates. Otherwise, the test sample will be further identified by ASC matching. To evaluate
the performance of the proposed method, extensive experiments are conducted on the Moving
and Stationary Target Acquisition and Recognition (MSTAR) dataset under SOC and various EOCs.
The results demonstrate the superior effectiveness and robustness of the proposed method compared
with several state-of-the-art SAR ATR methods.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); hierarchical fusion;
convolutional neural networks (CNN); attributed scattering center (ASC)

1. Introduction

As a microwave sensor, synthetic aperture radar (SAR) has the capability to work under all-day
and all-weather conditions thus providing a powerful tool for the battlefield surveillance in modern
wars. A SAR system sends electromagnetic pulses from an airborne or spaceborne platform to the
interested area and records the returned signals [1,2]. The range resolution of SAR images is determined
by the bandwidth. In order to achieve high cross-range resolution, SAR collects data from multiple
observation points, and focuses the received information coherently. Afterwards, the acquired signals
are transformed into the image domain using some imaging algorithms, e.g., fast Fourier Transform
(FFT) [3]. However, the main drawback of SAR images is the presence of speckles, which visually
degrades the appearance of images [4]. As a result, it is difficult to interpret SAR images with high
performance. As one of the key steps in SAR image interpretation, automatic target recognition (ATR)
has been researched intensively since 1990s [5]. An ensemble SAR ATR system generally involves
three stages: target detection [6], target discrimination [7], and target recognition [5]. A large-scale
SAR image is first processed by target detection to find the potential regions of interest (ROIs),
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which possibly contain the interested targets. In this stage, the background clutters can be eliminated.
Afterwards, target discrimination is performed to reject the false alarms in the ROIs, which are possibly
caused by man-made obstacles. Finally, the selected ROIs are sent the target recognition module to
determine the target labels. In this study, we focus on the third stage of the SAR ATR system, i.e.,
target recognition algorithms.

A typical SAR ATR algorithm generally involves two parts: feature extraction and classifier.
Feature extraction aims to find low-dimensional representations for the original SAR images while
maintaining the discrimination information for distinguishing different targets. In the past decades,
many handcrafted features have been used for SAR ATR including the geometrical features, projection
features and scattering center features. The geometrical features depict the shape and physical sizes
of the target such as binary target region [8,9], target outline [10,11], shadow [12,13], etc. In [8],
a region matching scheme is proposed for SAR ATR. The binary target region of the test image is
directly compared with the corresponding regions from the template set. And a similarity measure is
designed based on the region residuals filtered by the morphological operations. Park et al. construct
12 features based on the target outline, which are used for target recognition. The target shadow is also
validated to be discriminative for SAR ATR in [10]. The projection features are obtained by projecting
the original image to some specially designed basis. Typical methods for extracting the projections
features are principal component analysis (PCA) [14], linear discriminant analysis (LDA) [14] and
other manifold learning methods [15-17]. Mishra applies PCA and LDA to feature extraction
of SAR images and compares their performances on target recognition [14]. The neighborhood
geometric center scaling embedding is proposed in [16] by exploiting the inner structure of the
training samples, which is demonstrated to be effective for SAR ATR. The scattering center features
reflect the electromagnetic scattering characteristics of the target such as attributed scattering centers
(ASCs) [18,19]. ASCs describe the local structures of the target by several physically relevant parameters,
which have been demonstrated notably effectively for SAR ATR especially under the extended
operating conditions (EOCs) [19-25]. In [21], an ASC-matching method is proposed based on Bayesian
theory with application to target recognition. Ding et al. propose several ways to apply ASCs to SAR
ATR, e.g., one-to-one ASC matching [22-24] and ASC-based target reconstruction [25]. Recently, the 3-D
scattering center model-based SAR ATR methods have drawn the researchers’ interests, where a 3-D
scattering center model is established to describe the target’s electromagnetic scatterings for feature
prediction [26,27]. In the classification stage, the extracted features are classified by the classifiers to
determine the target type of the test sample. With the fast development of pattern recognition and
machine learning techniques, many advanced classifiers have been successfully applied to SAR ATR
including adaptive boosting (AdaBoost) [28], discriminative graphical model [29], support vector
machines (SVM) [30,31] and sparse representation-based classification (SRC) [32,33]. Specially, for the
features without unified forms, e.g., the unordered scattering centers, a similarity or distance measure is
often first defined for these features. Afterwards, the target type is determined based on the maximum
similarity or minimum distance [19-24].

Recently, deep learning has been shown to provide a powerful classification scheme for image
interpretation, i.e., convolutional neural networks (CNN). CNN considers the feature extraction
and classification in a unified framework. As validated in several studies [34-36], the learned deep
features by convolution operations tend to have better discrimination capability to distinguish different
classes of targets. However, it should be noted that the performance of CNN is closely related to the
completeness and coverage of the training samples. In the case of SAR ATR, the training samples are
quite scarce due to the limited accesses to the resources [37,38]. Moreover, the operating conditions
in SAR ATR are also complicated. There are many EOCs in the real-world environment including
the variations of the target itself, background environments, SAR sensors, etc., which can hardly be
covered by the training samples [5]. As reported in several CNN-based SAR ATR methods [39-42],
they could achieve notably high recognition accuracies under the stand operating condition (SOC).
However, the performances degrade ungracefully under various EOCs even with different types of
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data augmentations. With little prior information about the operating conditions of the test samples,
it is hard to evaluate whether the decisions from CNN are reliable or not.

In this study, a SAR ATR method is proposed via hierarchical fusion of CNN and ASC matching.
For each test sample, it is first classified by CNN. Based on the outputs of CNN, e.g., the pseudo
posterior probabilities from softmax, a reliability level is calculated to evaluate the reliability of the
decision. A preset threshold is used to judge whether the decision should be adopted. When the
decision is justified to be invalidated, the test sample is passed to the classifier based on ASC matching.
ASCs are local descriptors with rich, physically relevant information. It is demonstrated that ASCs
can be handle various EOCs with good performances [20-24]. For the test samples, which cannot be
reliably classified by CNN, they are possibly from EOCs. Therefore, ASC matching tends to achieve
more reliable decisions for these samples. In this study, a one-to-one correspondence between the
ASC set from the test image and those from the corresponding template is built using the Hungarian
algorithm [22,43]. Afterwards, a similarity measure is defined, which comprehensively considers
the possible outliers. Finally, the target type of the test sample is decided to be the class with the
maximum similarity. Therefore, the hierarchical fusion of CNN and ASC matching can enhance both
the effectiveness and robustness of the ATR method. In addition, via the hierarchical fusion, the strict
demand on a single classifier is relieved. Although CNN and ASC matching may not achieve very
good performances individually, they can complement each other to achieve a much better result.
The main advantages of the proposed method are as follows. First, the excellent performance of CNN
for SOC recognition can be inherited in the proposed method. When a reliable decision is obtained
by CNN, no further classification by ASC matching is necessary. Second, the robustness of ASCs to
various EOCs can be maintained in the proposed method. By building a one-to-one correspondence
between two ASC sets, the local variations of the target caused by EOCs can be sensed.

The remainder of this paper is organized as follows. Section 2 describes the basic theory of
CNN and the architecture of our networks. In Section 3, the classification scheme based on ASC
matching is introduced. The detailed implementation of the proposed target recognition method is
explained in Section 4. Extensive experiments on the Moving and Stationary Target Acquisition and
Recognition (MSTAR) dataset are conducted in Section 5. Discussions are made in Section 6 to explain
the reasonability of the proposed method and some future directions are stated. Conclusions are
summarized in Section 7 based on the experimental results.

2. CNN

2.1. Basic Theory

Owing to the fast development of deep learning techniques, CNN has become the most prevalent
tool for image interpretation [34-36]. CNN combines the feature learning and classification in a
unified framework thus avoiding the design of hand-crafted features. In detail, the convolution layers
learn hierarchical features via the convolutional operations. In the classification stage, a multilayer
perceptron classifier is used for decision making.

In the convolutional layer, the previous layer’s input feature maps oY (m=1,---,M) are
connected to all the output feature maps O,(f) (n=1,---,N). Denote O,(é*l) (x,y) and O,(ll) (x,y) as the
unit of the mth input feature map and the nth output feature map at the position (x, y), respectively,
then each unit in the output feature map is calculated as:

M F-1
o () =o(L Y Kn(p,a)0% V(x—py—q) +b) (1)
m=1p,q=0

where k,ﬁ’,L (p,q) denotes the convolutional kernel; o(-) represents the nonlinear activation function
and b,(ql) is the bias.
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After the convolution layer, the pooling operation is usually performed, which cannot only
effectively reduce the computational load but also make networks robust to some nuisance conditions
like translation, distortion, etc. Different types of pooling operations are used in CNNs by either
choosing the average or maximum in a preset window with the sizes of & x w. For example, the max
pooling is defined as follow.

ol ™My = max OV (x+iy+j) ()
1<i<h1<j<r
In the classification stage, the softmax nonlinearity is applied to the output layer to determine
the target label. It will output the posterior probabilities over each class and the target label will be
decided as the class with the maximum probability.

2.2. Architecture of the Proposed CNN

Actually, there is no consensus on how to design CNNs for the specific application of SAR
ATR. In the previous works, several different kinds of CNNs have been applied to SAR ATR and
they all achieved very good performances [39—42]. Based on these works, this paper designs the
architecture of CNN as Figure 1, which is composed of three convolution layers, three max pooling
layers, and two fully-connected layers. The convolution stride is fixed to 1 pixel with no spatial zero
padding. After each convolution layer, a max pooling is performed with a kernel size of 2 x 2 and
a stride of 2 pixels. The rectified linear units (ReLU) activation function is applied to every hidden
convolution layer.

Specifically for the MSTAR dataset used in this study, all the images are first cropped to be 88 x 88
patches from the centroid. The detailed layout of our network is displayed in Table 1. The input image
is filtered by 16 convolution filters with the size of 5 x 5 in the first convolution layer, producing 16
feature maps with the size of 84 x 84. After the first pooling layer, their sizes become 42 x 42. After
the second convolution layer, there are 32 feature maps with size of 38 x 38, which become 19 x 19
after pooling. After the third convolution layer and pooling layer, 64 feature maps with the size of 7 x 7
are obtained. In the first fully-connected layer, a 1024-dimensionality vector is produced, where the
dropout regularization technique is used. The output layer is also a fully-connected layer with the
softmax function to ensure the final output size tobe 1 x 1 x 10, corresponding to the probabilities of
the 10 classes of MSTAR targets.

During the training of the designed networks, the weights are initialized from Gaussian
distributions with zero mean and a standard deviation of 0.01, and biases are initialized with a
small constant value of 0.1. The learning rate is initially 0.001, which decreases by a factor of 0.1
after 100 epochs. The batch size is set to be 100. To train the proposed CNN, the deep learning
toolbox in Tensorflow is used. The cropped MSTAR training images (the detailed descriptions of the
MSTAR dataset are presented in Section 5) are fed to the networks in Figure 1. The hierarchical features
are learned during the training process. According to the target label of each training sample, the
parameters of the whole networks are obtained. As shown in Figure 2, the total loss decreases sharply
and converges after about 1500 epochs during the training. Figure 3 illustrates the original image and
internal state of the trained CNN. In the first convolution layer, the convolution kernels and 16 feature
maps are shown in Figure 3b,c, respectively. It is clearly that the global properties of the original image
in Figure 3a can be maintained in the feature maps. Afterwards, in the classification stage, the cropped
test image is input to the trained CNN to decide its target type.
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Figure 1. Architecture of the proposed CNN.

Cross Loss

Figure 2. The training loss versus epoch.
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(b) Convolution kernel of the first (c) Feature maps from the first
convolutional layer convolutional layer

(a) Original image

Figure 3. Illustration of the trained CNN.

Table 1. Layout of the proposed CNN.

Layer Type Image Size Feature Maps  Kernel Size
Input 88 x 88 1 -
Convolution 84 x 84 16 5x5
Pooling 42 x 42 16 2x2
Convolution 38 x 38 32 5x5
Pooling 19 x 19 32 2x2
Convolution 14 x 14 64 6 X6
Pooling 7x7 64 2x2
Full Connected 1x1 1024 -
Output 1x1 10 -

3. ASC Matching

3.1. ASC Model

The high-frequency scattering of an electrically large target can be well approximated as a sum of
the responses from individual scattering centers as Equation (3) [18].

K
E(f, ¢:0) ;Ez fr9:6i ®)

where f denotes the frequency and ¢ represents the aspect angle. The backscattering field of a single
scattering center can be described by the ASC model as follows.

E(f, 000 = A )" ep( (xicosg + yising)) W
. sinc(@Li sin(¢ — a)) -exp(—27 fy;sin¢)

In Equation (4), 0 = {6;} = [A;, ai, x;,vi, Li, i, vi](i = 1,2,---,K) is the parameter set of the
ASCs. In detail, A; denotes the complex amplitude; (x;, y;) are the spatial positions; «; represents the
frequency dependence; L; and ¢; are the length and orientation of the distributed ASC, respectively
and v; is the aspect dependence of the localized ASC. The ASC attributes provide rich physically
relevant descriptions for the local structures of the target. (x;,y;) denotes the scattering center location
in the image domain. g; is a discrete parameter, which takes on integer or half-integer values. Some
typical values of «; are 1, 1/2, 0, —1, —2. The combination of the length and frequency dependency can
effectively reveal the geometrical structure of the ASC. For example, when «; is 1 and L; is nonzero,
the ASC is assumed to have a dihedral shape. More explanations can be referred to [18].
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3.2. Sparse Representation for ASC Extraction

For a single SAR image, there are only a few ASCs in the target. When the parameter space is
gridded to form an over-complete dictionary, the parameter estimation of ASCs can be formulated as a
sparse representation problem [44,45]. Firstly, Equation (3) is rewritten as

s=D(0) xo (5)

In Equation (5), s is the vector form of the measurements E(f,¢;6); D(0) is modeled as a
parameterized redundant dictionary, in which each column is the vectorization of the measurements
corresponding to one element in parameter set §; ¢ is a complex sparse vector whose element
represents the relative amplitude A. Considering the possible noises during the data acquisition,
the real measurements should be expressed as

s=D(0) xo+mn (6)

where 7 is modeled as the additive white Gaussian noise with zero mean. Then, the ASCs can be
extracted by solving the following problem:

0 = argmin||c|y,s.t. ||[s —D(8) x o, <e (7)
g

where ¢ = ||n||, represents the noise level, which can be estimated from the original measurements;
||®||, denotes lp-norm and ¢ is the complex-valued amplitude estimator with respect to dictionary
D(8). The optimization problem in Equation (7) is nondeterministic polynomial time hard (NP-hard),
which is computationally difficult to solve. However, an approximation solution can be obtained
by some greedy algorithms, such as the orthogonal matching pursuit (OMP) [45]. The detailed
implementation of ASC extraction using OMP is described in Algorithm 1, which is used in this study.

Algorithm 1 OMP for ASC Extraction

Input: The measurements s, estimated noise level ¢, and redundant parameterized dictionary D(6).
Initialization: The initial parameter set of the ASCs § = @, reconstruction residual ¥ = s, and iteration counter
t=1.
1. while ||r|3 > e do
2. Calculate correlation: C(8) = D' (8) x r, where ()H denotes conjugate transpose.
3. Estimate parameters: §; = argminC(6), § = §Ué;.

0

4. Estimate amplitudes: ¢ = DY() x s, where ()" denotes the Moore-Penrose pseudo-inverse, D(8)
represents the dictionary constructed by the parameter set 6.

5. Update residual: r = s — D(0) x 0.

6.t=1t+1

Output: The estimated parameters set 8.

3.3. ASC Matching

The ASCs contain rich physically relevant descriptions for the local structures of the target such
as the relative amplitude, spatial positions, length, etc. Therefore, the ASCs can be effectively used to
sense the local variations of the target caused by various EOCs like configuration variance, depression
angle variance, partial occlusion, etc. In this study, an ASC matching method is proposed for target
recognition. A one-to-one correspondence between two ASC sets is first established. Then, the matched
ASC pairs are evaluated to form a similarity measure for target recognition.

3.3.1. One-To-One Matching between ASC Sets

(1) Distance measure for two individual ASCs
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An essential prerequisite to build the one-to-one correspondence is properly evaluation the
distance between two individual ASCs. This paper uses four attributes, i.e., [A, x,y, L], for distance
evaluation because of their clearly physical meanings and stability during the ASC extraction. For the
test ASC set P = [p1, p2, - .., pm| and template ASC set Q = [41,92, - - -, qn], the distance between two
individual ASCs is defined as follow:

(pi — q;1)’ Pia — qjA
d(pi ;) = | (pix — 43)” + (piy — 33)” + % *exp ’12]‘ ®)

According to Equation (8), the distance is explained as three components. The first is the Euclidean
distance between the spatial positions, i.e., [(pix — q]-x)2 + (piy — q]-y)z]. The second is the difference
L \2
between the lengths, i.e., M The attribute L is assumed to have twofold uncertainty than
the spatial positions because it is more difficult to obtain a better estimation of the parameter.
For the amplitude A, it is first normalized based on its absolute and the distance is measured by

an exponential function.
(2) ASC matching using the Hungarian algorithm

Based on the designed distance measure, this study uses the Hungarian algorithm to build
the one-to-one correspondence between two ASC sets. As a bipartite graph matching problem,
the Hungarian algorithm can find the best one-to-one correspondence between two point sets with the
lowest total distance [43].

The cost matrix for Hungarian matching is displayed in Table 2, where C;; = d(p;, q;). In this study,
the absolute amplitudes of different ASCs are subject to amplitude normalization in both ASC sets.
The cost of assigning p; to g; is the defined distance in Equation (8). In practical applications, the test
ASC set may contain some false ASCs caused by the background noises. In addition, the template ASC
set may have some missing ASCs due to the deformation of the test target such as partial occlusion.
Therefore, the false ASCs (false alarms, FAs) and missing ASCs (missing alarms, MAs) should be
considered during the Hungarian matching. The costs for the FAs and MAs contained in Table 2 are

defined as follows. N

1 4 1
fi:MXCjirmi:NXCij ©)
j=1 j=1

The cost of assigning an test ASC to be a FA is the average of assigning ittoall g;(i =1,2,--- ,N)
and a template ASC to a MA is the average of assigning it toall p;(j = 1,2, - - , M). To form a complete
bipartite graph for Hungarian matching, some costs in Table 2 are assigned as “oo” (i.e., infinity).
The “c0” costs can effectively constraint unsuitable matched pairs. For example, the MAs will not be
matched with the FAs.

Table 2. Cost matrix for Hungarian matching.

g1 92 - - 4N FA
p1 Ci1Cr2-+ Ciy froo-- 00
p2 Cy1 Cpp -+ Con 00 fp -+
pPm Cmi Cmz - Cun 0000 fiy
My oo-- 0000 - 00
o0 My - 00 0000 - 00

MA

000 - My 0000 -+ 00
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3.3.2. Similarity Evaluation

Based on the one-to-one correspondence built by Hungarian matching, both the matched ASC pairs
and possible outliers are considered to define the similarity measure for two ASC sets as Equation (10).

Km

S(P,Q) = o exp (—Z(wk *d@) (10)

k=1

where K;; denotes the number of matched ASC pairs; dy represents the distance between the kth
matched pairs, which can be referred from the cost matrix, and wy is the corresponding weight defined

as follow.
Ag
Km

Y Ax
k=1

In Equation (11), Ay denotes the absolute amplitude of the matched test ASC. The test ASCs are
taken as the baseline because they are compared with different types of template ASC sets. The weights
are defined based on the relative amplitudes for the following considerations. On one hand, the strong
ASCs with higher amplitudes tend to be more stable during the ASC extraction. On the other hand,
the ASCs with higher amplitudes will keep more stable under noise corruption or other interferences.
With the deterioration of noise corruption, the ASCs with lower amplitudes are more probable to be
submerged. Therefore, by assigning higher weights to the stronger ASCs, the similarity measure will
be more robust to the possible uncertainties during ASC extraction and noise corruption.

wy = (11)

4. Hierarchical Fusion of CNN and ASC Matching for SAR ATR

As reported in relevant literatures [39-42], CNN can achieve notably high accuracies under
SOC or the conditions similar to SOC. The ASC matching is more robust to those conditions with
local variations caused by EOCs like noise corruption, configuration variance, partial occlusion, etc.
To combine their merits in a unified ATR system, a hierarchical fusion framework is proposed in
this study.

Figure 4 shows the general procedure of the proposed target recognition method. First, the test
sample is classified by the designed CNN. The pseudo posterior probabilities from the softmax are
used to define a reliability level as follow:

Pk = max([P1 Pz te Pc])
AW (12)
{ r—mm(?i)(l £ k)

where P;(i = 1,2,---,C) denotes the probability corresponding to the ith class; r represents the
reliability of the decision with a value larger than 1, which reflects the difference between the highest
probability with the second highest one. A larger r indicates a more reliable decision.

A threshold T is used to judge whether the decision from CNN should be adopted. With a
reliability level higher than the threshold, the decision is assumed to be highly reliable. Then, the target
type is directly decided by CNN. Otherwise, the test sample is passed to the ASC matching for further
identification. The template samples are selected based on the estimated azimuth of the test image [19].
Then, the target type is decided to be the class with the maximum similarity. The ASC matching
makes detailed analysis about the local structures of the targets thus more robust to various EOCs.
By hierarchically fusing the two classification schemes, both the efficiency and robustness of the ATR
method can be enhanced.
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Figure 4. General procedure of the proposed target recognition method.

5. Experiment

5.1. Data Preparation and Experimental Setup

To experimentally evaluate the proposed method, the MSTAR dataset is used in this study;,
which is the benchmark dataset for SAR ATR. There are 10 military targets included in the dataset,
which share similar appearances as shown in Figure 5. Their SAR images are captured by the X-band
SAR sensors with the resolution of 0.3 m x 0.3 m. The training and test samples used for experiments
are showcased in Table 3, which are collected at 17° and 15° depression angles, respectively.

For performance comparison, several state-of-the-art SAR ATR methods are used including
SVM [30], SRC [32] and A-ConvNet [39], as briefly described in Table 4. SVM and SRC are performed
on 80-dimension PCA feature vectors extracted from the original images. A-ConvNet in [29] is chosen
as the representative of the CNN-based SAR ATR methods. The ASC matching method proposed
in [22] is also compared, where a one-to-one correspondence between two ASC sets is built for similarity
evaluation. In the followings, the experiment is first conducted under SOC on the 10 classes of targets.
Afterwards, several typical EOCs are used to comprehensively evaluate the robustness of the proposed
method including configuration variance, large depression angle variance, noise corruption and partial
occlusion. Finally, the performance is evaluated under limited training samples to further examine
it robustness.

Table 3. Training and test sets used in the experiments.

Training Set Test Set

Cl Serial No.
ass enal o Depression No. Images Depression No. Images

9563 17° 233 15° 195

BMP2 9566 17° 232 15° 196
21 17° 233 15° 196

BTR70 71 17° 233 15° 196
132 17° 232 15° 196

T72 812 17° 231 15° 195
57 17° 228 15° 191

ZSU23/4 D08 17° 299 15° 274
ZIL131 E12 17° 299 15° 274
T62 A51 17° 299 15° 273
BTR60 k10yt7532 17° 256 15° 195
D7 92v13015 17° 299 15° 274
BDRM2 E71 17° 298 15° 274

251 BO1 17° 299 15° 274
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Table 4. Reference methods for comparison.

Abbre. Feature Classifier Ref.
SVM PCA features SVM [30]
SRC PCA features SRC [32]

A-ConvNet Original image intensities CNN [39]
ASC ASCs ASC matching method [22]

(6)BTRG0 (7)Z8U23/4 (9) ZIL131 (10)281

Figure 5. Optical images of the ten military targets.

5.2. Recognition under SOC

5.2.1. Preliminary Verification

The recognition problem is first considered under SOC. The 10-class training and test samples in
Table 3 are used. The threshold T for the reliability level is first set to be 1.1. Table 5 displays the detailed
recognition results of the proposed method. Each of the 10 targets can be classified with a percentage of
correct classification (PCC) over 98%. Table 6 compares the average PCCs of different methods under
SOC. With the highest PCC of 99.41%, the proposed method outperforms the others with notable
margins. A-ConvNet ranks second in all the methods, indicating the excellent classification capability
of CNN. Under SOC, the training and test samples are quite similar with only a small depression angle
variance (2°) in this case. Therefore, most test samples can be correctly classified by CNN because of its
powerful classification capability. Due to the unpredictable factors during data acquisition, a few test
samples may have many differences with the training samples. As a result, they may not be reliably
determined by the designed CNN. Then, they are passed to ASC matching for further determination.
By combining the advantages of the two classification schemes, the final recognition performance of
the proposed method is largely enhanced.

Table 5. Confusion matrix of the proposed method under SOC.

Class BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7  ZIL131 2S1 PCC (%)
BMP2 194 0 0 0 0 0 1 0 0 0 99.49
BTR70 0 196 0 0 0 0 0 0 0 0 100
172 0 1 194 0 0 0 1 0 0 0 98.98
T62 0 0 0 271 0 0 2 0 0 0 99.27
BDRM2 0 0 1 0 271 1 1 0 0 0 98.91
BTR60 0 1 0 1 0 193 0 0 0 0 98.97
ZSU23/4 0 0 0 0 0 0 274 0 0 0 100
D7 0 0 0 1 1 0 0 272 0 0 99.27
ZIL131 0 0 0 0 0 0 1 0 274 0 100
251 0 0 0 1 0 0 0 0 1 272 99.27

Nel
\O
N
Jury

Average (%)
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Table 6. Comparison of different methods under SOC.

Method  Proposed SVM SRC A-ConvNet ASC
PCC (%) 99.41 98.42 97.66 99.12 97.30

5.2.2. Performance under Different Thresholds

The threshold T directly determines whether the decision from CNN is reliable. Therefore, it has
important influences on the final recognition performance. By varying the threshold, the PCCs of the
proposed method are plotted in Figure 6. The PCC tops at T = 1.1 and the detailed results can be
found in the former experiment. The PCC varies in the threshold interval. However, the average PCC
of all the thresholds is still calculated to be 98.91%, indicating the robustness of the proposed method.
When the threshold is lower than 1, all the test samples are directly classified by the designed CNN.
Will a threshold slightly higher than 1, most of the test samples are determined by CNN and only a
few are passed to ASC matching. Due to the excellent classification capability of CNN under SOC,
the performance maintains at a high level. In contrast, when the threshold is notably high, almost all
the decisions are made by ASC matching. Actually, the ASC matching is also an effective SAR ATR
method. Therefore, the PCC will not fall too much. In the following experiments, the threshold is fixed
tobe T = 1.1 in order to achieve better recognition performance.
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Figure 6. Performance of the proposed method under different thresholds.

5.3. Recognition under EOCs

As a reliable SAR ATR system, it must be robust to various EOCs in the real-world scenarios
caused by the variations of the target itself, background environments, sensors, etc. To comprehensively
evaluate the proposed method, the following experiments are conducted under different types of EOCs,
i.e., configuration variance, large depression angle variance, noise corruption and partial occlusion.

5.3.1. Configuration Variance

A certain military target may be modified to have several different configurations for different
applications. The different configurations share similar target shapes with some local variations.
Table 7 showcases the training and test sets for this experiment. The configurations of BMP2 and T72
for testing are not included in the training set. Figure 7 shows the optical images of four different
configurations of T72. Several local differences can be found at the turret, fuel drums, etc. Table 8
lists the detailed recognition results of the proposed method under configuration variance. All the
configurations of BMP2 and T72 can be classified with PCCs over 96%, resulting in an average of
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98.64%. The performances of different methods are compared in Table 9. With the highest PCC,
the proposed method is validated to be the most robust to configuration variance. It is also notable that
the ASC method outperforms the remaining ones. In the ASC method, the one-to-one correspondence
between the test and template ASC sets is built, which is beneficial to sense the local variations of
the target caused by configuration variance. In the proposed method, some test samples can still be
reliably classified using the designed CNN. The remaining ones can obtain more accurate decisions
by ASC matching. Therefore, the final recognition performance of the proposed method can be
effectively enhanced.

Table 7. Training and test sets with configuration variance.

Depression BMP2 BDRM2 BTR70 T72
Training set 17° 233 (Sn_9563) 298 233 232(Sn_132)

426(Sn_812)
573(Sn_A04)
0 0 573(Sn_A05)
573(Sn_A07)
567(Sn_A10)

428(Sn_9566)

Test set 15°,17 429(Sn_c21)

Table 8. Recognition results of the proposed method under configuration variance.

Class Serial No. BMP2 BRDM?2 BTR-70 T-72 PCC (%)
Sn_9566 410 13 4 1 95.79
BMP2 Sn_c21 417 5 4 3 97.20
Sn_812 13 1 1 411 96.48
Sn_A04 15 8 0 550 95.99
T72 Sn_A05 12 2 2 557 97.21
Sn_A07 8 2 10 553 97.21
Sn_A10 12 5 0 550 97.00
Average (%) 96.61

Table 9. Comparison of different methods under configuration variance.

Method  Proposed SVM SRC A-ConvNet ASC
PCC (%) 98.64 95.88 95.64 98.18 97.82

Figure 7. Four configurations of T72 tank.

5.3.2. Large Depression Angle Variance

The test SAR images may be collected at different depression angles with the training samples.
Figure 8 shows the SAR images of 251 at three depression angles, i.e., 17°, 30° and 45°. It is visible
that images with large depression angle variances have quite different appearances like the target
shape and scattering patterns [46,47]. The training and test sets for this experiment are showcased in
Table 10, where three targets are included, i.e., 251, BRDM2 and ZSU23/4. Table 11 presents the detailed
recognition results of the proposed method at different depression angles. At 30° depression angle,
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the proposed method can still achieve a very high PCC of 97.80%. However, when the depression
angle changes to 45°, the performance decreases significantly to 76.16%. The main reason is that
the notably large depression angle variance causes much discrepancy between the training and test
samples. Table 12 compares the performances of different methods under large depression angle
variance. With the highest PCCs at both depression angles, the proposed method is demonstrated to
be the most robust. The ASC method ranks second in all the methods and the superiority becomes
more remarkable at 45° depression angle. Although the global appearance changes greatly under large
depression angle variance, some local characteristics can still maintain stable. Therefore, the ASCs can
better serve for target recognition in this situation. By combing the merits of CNN and ASC matching,
the proposed method achieves the best performance.

Table 10. Training and test sets with large depression angle variance.

Depression 251 BDRM2 Z5U23/4
Training set 17° 299 298 299
T 30° 288 287 288
est set 45° 303 303 303

Table 11. Recognition results of the proposed method under depression variance.

Results %
Depression 1 PCC (% Average (%
P Class 251 BDRM2  ZSU23/4 %) &
251 280 5 3 97.22
30° BDRM2 2 283 2 98.26 97.80
ZSU23/4 2 5 281 97.57
251 219 53 31 72.28
45° BDRM2 12 245 46 80.96 76.16
ZSU23/4 34 41 228 75.25

Table 12. Comparison of different methods under large depression angle variance.

Method PCC (%)
30° 45°
Proposed 97.80 76.16
SVM 96.57 61.05
SRC 96.32 65.35
A-ConvNet 96.94 63.24
ASC 96.26 71.65

Range (m)
Range (m)

CrossRange (m) CrossRange (m) CrossRange (m)

(@ (b) (c)

Figure 8. SAR images of 251 at different depression angles being. (a) 17°; (b) 30°; (c) 45°.
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5.3.3. Noise Corruption

The test images collected in the real-world scenarios are often contaminated by the noises from
the background environment or radar systems. Hence, it is crucial that the recognition algorithms can
maintain robust under possible noise corruption. To test the performance of the proposed method
under noise corruption, the noisy SAR images are first simulated by adding additive Gaussian noises
to the original images according to the predefined signal-to-noise ratio (SNR) [48]. Figure 9 shows
the noisy images at different SNRs. With the deterioration of noise contamination, more and more
target characteristics are submerged in the noises, which will definitely increase the difficulty of correct
target recognition.

Figure 10 plots the average PCCs of different methods under noise corruption. In comparison,
the proposed method has the best robustness to noise corruption with the highest PCCs at each SNR.
The ASC method outperforms SVM, SRC, and CNN at SNRs lower than 5 dB. The reasons can be
analyzed from two aspects. On one hand, the ASCs are noise-robust features. Then, the ASCs of
noisy images can still be extracted with good precision to match well with those from the template
samples. On the other hand, the local variations caused by noise corruption can be better handled via
the one-to-one correspondence between two ASC sets. In the proposed method, the ASC matching
method can effectively complement the designed CNN to cope with those severely corrupted samples.
Therefore, the final performance is significantly improved.

-4 -2 0 2 4 6 -4 -2 0 2 4 6
CrossRange (m) CrossRange (m) CrossRange (m)

(b) (©

-4 -2 0 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
CrossRange (m) CrossRange (m) CrossRange (m)

(d) (e) ()

Figure 9. Noisy images at different SNRs. (a) original image (b) 10 dB (c) 5 dB (d) 0 dB (e) —5 dB
(f) —10 dB.
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Figure 10. Comparison of different methods under noise corruption.
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5.3.4. Partial Occlusion

The target may be occluded by the obstacles or camouflaged intentionally. In this case, a part of
the target may not be presented in the captured SAR image. According to the SAR occlusion model
in [20,49], the partially occluded image is simulated by removing a certain proportion of the target
region of the original image from eight directions. Figure 11 shows the 20% occluded SAR images from
four different directions whereas the remaining ones are in the symmetrical directions. Figure 12 plots
the average PCCs of the eight directions of different methods. With the highest PCC at each occlusion
level, the proposed method is validated to be the most robust to partial occlusion. The ASC method
outperforms the remaining ones when the occlusion level goes higher than 30%. The main reason is
that the stable ASCs in occluded images can still be matched well. For the proposed method, the ASC
matching works cooperatively with the CNN to cope with the severely occluded images. Therefore,
the fused performance is much better than others.

-2 0 2 4 6 6 -4 -2 0 2 4 6
CrossRange (m) CrossRange (m) CrossRange (m)

(a) (b) (c)

6 -4

Range (m)
= DO (=] l\")
Range (m)

|
4o

-4 -2 0 2 6
CrossRange (m) CrossRange (m)

(d) (e)

Figure 11. 20% occluded images from different directions. (a) Original image; (b) direction 1;
(c) direction 3; (d) direction 5; (e) direction 7.
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Figure 12. Comparison of different methods under partial occlusion.
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5.4. Limited Training Samples

Actually, the available training resource for SAR ATR is quite limited [37,38]. As a result,
the training samples may only cover a certain proportion of the full 360° azimuth range.
For experimental evaluation, we randomly select 1/2,1/3,1/4,1/5 and 1/6 from each of the 10-class
samples and then perform target recognition based on the reduced training set. As shown in Figure 13,
the proposed method keeps the highest PCC at each reduction level, validating its best robustness to
limited training samples. In addition, ASC method shares an approaching performance to the proposal
and outperforms the remaining ones significantly. For SVM, SRC and CNN, their performances are
closely related to the completeness of the training set. When the training samples are reduced severely,
their PCCs experience sharp decreases. In the ASC method, the corresponding templates are selected
based on the azimuth of the test image. In fact, the ASCs can maintain stable in a certain azimuth
interval (e.g., [-5°, 5°]) [50]. Then, the ASC matching can still be performed with good effectiveness.
As a combination of CNN and ASC matching, the proposed method achieves the best performance
mainly by inheriting the robustness of ASC matching.

10

95F - - - -~ ST T - e
: 'u..
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Proportion

Figure 13. Comparison of different methods under limited training samples.

6. Discussion

The experimental results based on the MSTAR dataset validate the superior effectiveness
and robustness of the proposed method under SOC and several EOCs compared with several
state-of-the-art SAR ATR methods including SVM, SRC, A-ConvNet and ASC matching method.
In detail, the reasonability lay behind the experimental results is discussed as follows.

(i) Experiment under SOC. Under SOC, the training and test samples are notably similar with
only a 2° depression angle difference. Consequently, all the methods achieve very high PCCs.
Due to the powerful classification capability of CNN under SOC, most test samples are actually
classified by CNN in the proposed method. The remaining ones can also be effectively classified
by ASC matching because of its goof performance. Hence, the hierarchical fusion of the two
classification schemes can maintain the excellent performance under SOC, which is demonstrated
to outperform the others. In this case, the excellent performance of the proposed method mainly
benefits from CNN. Meanwhile, ASC matching further improves the recognition performance by
handling a few test samples, which possibly have many differences with the training ones.

(ii) Experiment under EOCs. The EOCs like configuration variance, depression angle variance, noise
corruption and partial occlusion probably cause some local variations of the target in the test
SAR images. Therefore, the one-to-one correspondence between the local descriptors, i.e., ASCs,
can better handle these situations. For the classifiers like SVM, SRC and CNN, the training
samples only include SAR images of intact targets with high SNRs. In addition, only a specific
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configuration is bracketed. Therefore, their performances degrade greatly under these EOCs.
In the proposed method, when a test sample cannot be reliably classified by CNN, ASC matching
can probably provide a correct decision. Therefore, via hierarchically fusing CNN and ASC
matching, the robustness of the proposed method can be enhanced. In this case, the superior
robustness of the proposed method mainly benefits from the merits of ASC matching. However,
for those EOCs which are not severely different from the training set (e.g., small amount of noise
additions), CNN is probable to make correct decisions on them. Therefore, CNN can complement
ASC matching to further improve ATR performance.

(iii) Experiment under limited training samples. With limited training samples, the classification
capabilities of SVM, SRC and CNN will be impaired greatly. For the ASC matching method,
the template ASCs still share a high correlation with the test ASCs because the stability of ASCs
can be maintained in a certain azimuth interval. Therefore, once the CNN cannot form a reliable
decision for the test image, the ASC matching can better cope with the situation.

All in all, in this study, CNN is adopted as the basic classifier, which can operate with high
effectiveness and efficiency when the test sample is covered by the training set. As a complement to
CNN, the test samples that are severely corrupted by EOCs and can hardly be determined by CNN are
further identified by ASC matching. The detailed analysis between two ASC sets helps make correction
decisions for various EOCs. Therefore, the hierarchical fusion of the two classification schemes notably
promotes the final ATR performance.

The future works can be conducted from two aspects. On one hand, the specific architecture of
CNN for SAR ATR should be studied to further improve the recognition performance. At present
stage, the CNNs for SAR ATR are mainly introduced from the field of optical image processing.
The specific network for SAR image interpretation should be further researched. On the other hand,
more efficient and robust classier can be incorporated into the proposed framework to further enhance
the robustness of the ATR system. ASC matching is a representative of local classifier, which performs
target recognition by analyzing the local variations of the target. It may exist other similar classification
schemes, which can further improve the robustness of SAR ATR.

7. Conclusions

A SAR ATR method by hierarchically fusing CNN and ASC matching is proposed in this study.
A test sample is first classified by CNN. When there is no reliable decision, it will be further recognized
by ASC matching. CNN can achieve notably high classification accuracy under SOC, when the test
samples are covered by the training set. ASC matching can better cope with various EOCs related to
the local variations of the target such as configuration variance, noise corruption, partial occlusion,
etc. Therefore, the hierarchical fusion effectively inherits the high effectiveness of CNN under SOC
and good robustness of ASC matching to various EOCs. Extensive experiments are conducted on
the MSTAR dataset under SOC and typical EOCs including configuration variance, depression angle
variance, noise corruption and partial occlusion. Based on the experimental results, several conclusions
can be drawn as follows.

(i) CNN has powerful classification capability under SOC. Thus, it is a reasonable choice to use is as
the basic classifier. In addition, ASC matching can also work very well under SOC because of the
good discrimination of ASCs. Therefore, the hierarchical fusion of the two classification schemes
can maintain excellent performance under SOC.

(i) ASC matching can achieve very good robustness under different types of EOCs. The one-to-one
correspondence between two ASC sets can sense the local variations of the target thus the resulted
similarity measure can better handle these situations. Therefore, those samples which cannot be
reliably classified by CNN are probably to obtain correct decisions by ASC matching.

(iii) The proposed method achieves the best performance under both SOC and EOCs compared with
other state-of-the-art methods by combining the merits of the two classification schemes.
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In conclusion, the proposed method has much potential to improve the ATR performance in

practical applications.
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