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Abstract: Drylands are the habitat and source of livelihood for about two fifths of the world’s
population and are highly susceptible to climate and anthropogenic change. To understand the
vulnerability of drylands to changing environmental conditions, land managers need to effectively
monitor rates of past change and remote sensing offers a cost-effective means to assess and manage
these vast landscapes. Here, we present a novel approach to accurately monitor land-surface
phenology in drylands of the Western United States using a regression tree modeling framework
that combined information collected by the Operational Land Imager (OLI) onboard Landsat 8
and the Multispectral Instrument (MSI) onboard Sentinel-2. This highly-automatable approach
allowed us to precisely characterize seasonal variations in spectral vegetation indices with substantial
agreement between observed and predicted values (R2 = 0.98; Mean Absolute Error = 0.01). Derived
phenology curves agreed with independent eMODIS phenological signatures of major land cover
types (average r-value = 0.86), cheatgrass cover (average r-value = 0.96), and growing season proxies
for vegetation productivity (R2 = 0.88), although a systematic bias towards earlier maturity and
senescence indicates enhanced monitoring capabilities associated with the use of harmonized
Landsat-8 Sentinel-2 data. Overall, our results demonstrate that observations made by the MSI
and OLI can be used in conjunction to accurately characterize land-surface phenology and exclusion
of imagery from either sensor drastically reduces our ability to monitor dryland environments.
Given the declines in MODIS performance and forthcoming decommission with no equivalent
replacement planned, data fusion approaches that integrate observations from multispectral sensors
will be needed to effectively monitor dryland ecosystems. While the synthetic image stacks are
expected to be locally useful, the technical approach can serve a wide variety of applications such
as invasive species and drought monitoring, habitat mapping, production of phenology metrics,
and land-cover change modeling.

Keywords: Landsat 8; Sentinel 2; Harmonized Landsat-8 Sentinel-2 (HLS); MODIS; time series
analysis; phenology; data mining

1. Introduction

Drylands occupy approximately 41% of Earth’s land surface and are currently home to over 38%
of the world’s population [1]. Consequently, drylands exert significant controls on socio-environmental
systems, including global energy, water, and carbon cycles [2]. Enhanced warming has promoted
dryland expansion throughout portions of the world [3], by increasing evaporative demand and
decreasing soil moisture, and strongly modifies the capacity of dryland ecosystems to sequester carbon
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through vegetation shifts and warming effects on photosynthesis and decomposition [4]. The spread
of cheatgrass (Bromus tectorum L.) has also negatively impacted biodiversity and productivity of
drylands in the western United States [5]. Because vegetation dynamics exert a strong control on water,
energy, and biogeochemical budgets in drylands [6], knowledge of land-surface phenology is vital for
effectively monitoring dryland ecosystems and is important for both the research community and the
policy community in the management of Earth’s landscapes. Here, land-surface phenology is defined
as the spatiotemporal development of vegetated land surfaces as imaged by spaceborne sensors.

Satellite data provide a cost-effective means for understanding land-surface phenology
and vegetation characteristics across large areas. For example, Moderate Resolution Image
Spectroradiometer (MODIS) data have been used to estimate vegetation type and biomass,
leaf area index, primary productivity, and biophysical variables that influence climate [7–9]. Likewise,
Landsat data have been used to characterize global-scale processes such as changes in forest cover [10]
and surface waters [11] at unprecedented scales. Free and open access of the Landsat archive has
resulted in a deluge of new methods and data products in phenological research [12,13]. However, the
low temporal availability of Landsat data, due in large part to cloud and shadow coverage, continues
to be a major barrier for monitoring phenology and land-cover change [14].

To overcome data availability issues, Landsat data have been fused with information collected
by satellites with higher temporal resolution (e.g., MODIS) to create high-temporal, cloud-free time
series [15–17]. Likewise, Landsat images from multiple years (and sensors) can be merged into a single
time series, but such methods need to consider inter-annual differences in phenology, land surface
changes, and different sensor characteristics [14,18]. More recently, data collected by the Operational
Landsat Imagery (OLI) onboard Landsat-8 have been fused with freely-available information collected
by the Multispectral Instrument (MSI) onboard Sentinel-2 [19]. The combination of MSI and OLI
data provides a global mean revisit interval of approximately five days [20], thereby substantially
increasing monitoring capabilities of the Earth’s surface, but few studies have proposed methodologies
for integrating these datasets to provide cloud-free surface observations and time series data needed
to monitor Earth’s surface.

Here, we integrate OLI and MSI data into a novel, regression tree modeling framework to
develop spatially-explicit estimates of Landsat-like Normalized Difference Vegetation Index (NDVI)
throughout an arid and semi-arid environment in the Western United States. Model results were
compared to observations of land and cheatgrass cover and independent data collected by the MODIS
onboard Aqua. In doing so, we address the following questions: (1) Are surface reflectance data
from Landsat-8 OLI and Sentinel-2 MSI data comparable in this region? (2) Can Landsat-8 OLI
and Sentinel-2 MSI data be used in conjunction to accurately characterize seasonal vegetation index
signatures within dryland environments? (3) To what extent does excluding MSI data impact our
ability to effectively monitor land-surface phenology in drylands? This research fills a critical gap
in the understanding of current monitoring capabilities of arid and semi-arid environments that
cover a substantial portion of the globe. Findings are relevant to future land imaging missions
(e.g., Landsat 10) and are useful for understanding key requirements and attributes needed to
effectively monitor water-limited ecosystems.

2. Data and Study area

2.1. Study Area

Our analysis considers a single Harmonized Landsat-8 Sentinel-2 (HLS) tile (11SQD; https:
//hls.gsfc.nasa.gov/) located in Utah and Nevada, USA representing approximately 12,000 km2 or
14M pixels (30-m spatial resolution) (Figure 1). The study area is dominated by shrub/scrubs (68%),
followed by evergreen forests (19%), bare ground (5%), grassland/herbaceous (5%), and pasture/hay
(1%) land cover according to the 2011 National Land Cover Database (NLCD; [21]). PRISM climate
normals (1981–2010) indicate that the average temperature and total precipitation range from −2 to

https://hls.gsfc.nasa.gov/
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11 ◦C and from 160 to 810 mm, respectively, largely reflecting local elevation differences (1339–3781 m).
Cheatgrass is relatively common in the lowlands of the study area [22].

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 15 

 

11 °C and from 160 to 810 mm, respectively, largely reflecting local elevation differences (1339–3781 
m). Cheatgrass is relatively common in the lowlands of the study area [22]. 

 
Figure 1. Land cover information from the National Land Cover Database 2011 (NLCD; [21]) overlain 
by our study area (i.e., Harmonized Landsat-8 Sentinel-2 tile (11SQD)). 

2.2. Harmonized Landsat-8 Sentinel-2 Data 

Harmonized Landsat-Sentinel-2 (HLS) data were used in this study and are consistent surface 
reflectance products derived from observations made by the Multispectral Instrument (MSI) onboard 
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generated using orthorectified top-of-atmosphere (TOA) reflectance data and have undergone 
atmospheric correction, geometric resampling (e.g., 30 m spatial resolution), geographic registration, 
BRDF normalization, and band-pass adjustments have been made to MSI data. Readers are referred 
to the product user’s guide for a full description of the HLS data processing [23]. Only data from 
Weeks 9 (start date 6 March 2016) to 47 (end date 24 November 2016) were considered in our analysis 
to avoid periods of snow cover and to capture the entire growing season. 

2.3. eMODIS Data 

The 250 m expedited MODIS (eMODIS) weekly NDVI composites [24] were used in this study 
to facilitate comparisons with derived growing season phenology. The eMODIS NDVI composites 
used data quality information to minimize errors associated with clouds, view angles and snow 
observation for each weekly NDVI composite. Reference [7] found degradation in MODIS Collect 5 
Terra NDVI after about 2007 so MODIS Aqua Collect 6 data were used in this study. Instability in the 
Collect 6 surface reflectance, often associated with low red reflectance, caused sporadic ephemeral 
spikes in NDVI. We developed an algorithm to identify these erroneous NDVI spikes and treat them 
as cloud contaminated pixels. The de-spike algorithm flagged weekly NDVI values as cloud 
contaminated if the current week NDVI was at least ten percent greater than the maximum NDVI 
from the prior and post two weeks, and the difference from the current NDVI and both the prior and 
post weekly NDVI values was greater than 20%. The weekly NDVI time series data were temporally 
smoothed (five-week) to interpolate NDVI values across ephemeral drops typically associated with 
cloudy weeks [25], but the raw data and associated quality masks were used within cross-correlation 
analysis because smoothing and different data observation densities can shift resulting phenocurves. 

Figure 1. Land cover information from the National Land Cover Database 2011 (NLCD; [21]) overlain
by our study area (i.e., Harmonized Landsat-8 Sentinel-2 tile (11SQD)).

2.2. Harmonized Landsat-8 Sentinel-2 Data

Harmonized Landsat-Sentinel-2 (HLS) data were used in this study and are consistent surface
reflectance products derived from observations made by the Multispectral Instrument (MSI) onboard
Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8. The HLS products were
generated using orthorectified top-of-atmosphere (TOA) reflectance data and have undergone
atmospheric correction, geometric resampling (e.g., 30 m spatial resolution), geographic registration,
BRDF normalization, and band-pass adjustments have been made to MSI data. Readers are referred to
the product user’s guide for a full description of the HLS data processing [23]. Only data from Weeks
9 (start date 6 March 2016) to 47 (end date 24 November 2016) were considered in our analysis to avoid
periods of snow cover and to capture the entire growing season.

2.3. eMODIS Data

The 250 m expedited MODIS (eMODIS) weekly NDVI composites [24] were used in this study to
facilitate comparisons with derived growing season phenology. The eMODIS NDVI composites used
data quality information to minimize errors associated with clouds, view angles and snow observation
for each weekly NDVI composite. Reference [7] found degradation in MODIS Collect 5 Terra NDVI
after about 2007 so MODIS Aqua Collect 6 data were used in this study. Instability in the Collect
6 surface reflectance, often associated with low red reflectance, caused sporadic ephemeral spikes
in NDVI. We developed an algorithm to identify these erroneous NDVI spikes and treat them as cloud
contaminated pixels. The de-spike algorithm flagged weekly NDVI values as cloud contaminated if
the current week NDVI was at least ten percent greater than the maximum NDVI from the prior and
post two weeks, and the difference from the current NDVI and both the prior and post weekly NDVI
values was greater than 20%. The weekly NDVI time series data were temporally smoothed (five-week)
to interpolate NDVI values across ephemeral drops typically associated with cloudy weeks [25],
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but the raw data and associated quality masks were used within cross-correlation analysis because
smoothing and different data observation densities can shift resulting phenocurves. To facilitate
eMODIS comparisons with modeled NDVI (see Section 3.3.2), weekly eMODIS NDVI values were
downscaled to 30-m using approaches based on regression tree models that are developed at a 250 m
resolution (Landsat NDVI is averaged up to 250 m resolution) to predict eMODIS 250-m NDVI from
Landsat imagery [17,26]. Regression tree models are then applied to the original 30 m Landsat spectral
band data to produce an eMODIS equivalent NDVI image at the 30 m resolution.

3. Methods

The overall workflow for our analysis consisted of ten different steps (Figure 2) with two major
components (i.e., pre-processing and time-series analysis). Pre-processing consisted of filtering imagery
using standard quality metrics (i.e., cloud and shadow cover ≤ 80%, and data quality > 30%) and date
of year (May–September 2016), applying image masks created by decision tree models, and cross-sensor
comparisons. Time series analysis consisted of regression tree model calibration and validation for
the interpolation of multi-spectral indices calculated from HLS data. Time-series predictions were
compared to independent information derived from eMODIS data and estimates of cheatgrass cover
to ensure phenology curves were logical. Specific details for each processing step are discussed below.
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Figure 2. Schematic diagram of overall workflow.

3.1. Data Masks

The mask layers distributed with the HLS data, as created using the FMask algorithm [27] and
the Landsat 8 Surface Reflectance Code (LaSRC) cloud masking algorithm [28], were of insufficient
quality for our time series analysis due to their inability to differentiate common features from
others (i.e., playas from clouds and shadows from evergreen trees; Figure 3). This was particularly
apparent for Landsat masks despite the use of the cirrus and thermal bands in the LaSRC cloud
masking algorithm [29]. Subsequently, we developed separate decision tree models for MSI and
OLI data trained on about two million data points (distributed through space and time) to develop
robust masks for clouds, shadows, water, and snow/ice pixels. Decision tree models were developed
using a commercial version of the See5 software (See5: An Informal Tutorial, 27 December 2017,
http://rulequest.com/see5-win.html) and validated using random hold-out samples (20%). Calibrated
models were then applied to each image to mask irrelevant data. The accuracies of the masks were
assessed using a random-hold out sample of interpretations of cloud, shadows, water, snow/ice that
were distributed through space and time. Independent interpretations and masking layers were used
to construct confusion matrices to compute overall and class specific accuracies.

http://rulequest.com/see5-win.html
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3.2. Cross-Sensor Calibration

We compared the radiometric characteristics of HLS bands using one-day-apart images acquired
over the study area, to ensure HLS band-pass adjustments were of sufficient quality for our analysis.
Small time differences reduce uncertainties related to radiometric bias caused by external factors.
The selected MSI and OLI image pairs (Table 1) were generally unaffected by clouds and were further
screened using masks developed for this study. We sampled approximately 50,000 different pixels
across the site and compared surface reflectance data from equivalent bands (i.e., blue, green, red,
near-infrared (NIR), and short-wave infrared (SWIR) 2) and the normalized difference vegetation
index (NDVI) calculated using Equation (1) and bands B8A and B04 for MSI imagery as suggested by
others [30].

NDVI =
NIR − Red
NIR + Red

(1)
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Figure 4. Comparison of surface reflectance data from Harmonized Landsat-Sentinel-2 (HLS) products
for one-day-apart acquisitions. Darker regions represent larger numbers of points (n = 50,000).
Dashed-green line is 1-to-1 and the red line is the ordinary least squares (OLS) regression fit showing
proportional bias.
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Table 1. Harmonized Landsat-8 OLI and Sentinel-2 MSI images (n = 30) acquired in 2016 and used within the study.

Product Name Sensor Day of Year Acquisition Time Quality (%) †† Cloud + Shadow (%)

HLS.L30.T11SQD.2016064.v1.3.hdf Landsat OLI 64 18:14:27 0.82 0.18
HLS.S30.T11SQD.2016077.v1.3.hdf Sentinel-2A 77 18:30:21 0.71 0.22
HLS.L30.T11SQD.2016080.v1.3.hdf Landsat OLI 80 18:14:21 0.8 0.24

HLS.L30.T11SQD.2016096.v1.3.hdf † Landsat OLI 96 18:14:13 0.82 0.2
HLS.S30.T11SQD.2016097.v1.3.hdf † Sentinel-2A 97 18:33:06 0.93 0
HLS.S30.T11SQD.2016107.v1.3.hdf Sentinel-2A 107 18:24:11 0.71 0.27
HLS.L30.T11SQD.2016112.v1.3.hdf Landsat OLI 112 18:14:06 0.8 0.22
HLS.L30.T11SQD.2016128.v1.3.hdf Landsat OLI 128 18:14:09 0.47 0.80
HLS.L30.T11SQD.2016144.v1.3.hdf Landsat OLI 144 18:14:11 0.7 0.48
HLS.S30.T11SQD.2016157.v1.3.hdf Sentinel-2A 157 18:27:42 0.99 0
HLS.L30.T11SQD.2016160.v1.3.hdf Landsat OLI 160 18:14:15 0.8 0.31

HLS.L30.T11SQD.2016176.v1.3.hdf † Landsat OLI 176 18:14:21 0.98 0.02
HLS.S30.T11SQD.2016177.v1.3.hdf † Sentinel-2A 177 18:22:31 0.99 0
HLS.S30.T11SQD.2016187.v1.3.hdf Sentinel-2A 187 18:33:12 0.98 0.02
HLS.L30.T11SQD.2016192.v1.3.hdf Landsat OLI 192 18:14:30 0.95 0.07
HLS.S30.T11SQD.2016197.v1.3.hdf Sentinel-2A 197 18:30:13 0.89 0.1

HLS.S30.T11SQD.2016207.v1.3.hdf † Sentinel-2A 207 18:33:13 0.98 0.01
HLS.L30.T11SQD.2016208.v1.3.hdf † Landsat OLI 208 18:14:34 0.97 0.03
HLS.S30.T11SQD.2016217.v1.3.hdf Sentinel-2A 217 18:21:55 0.75 0.25
HLS.L30.T11SQD.2016224.v1.3.hdf Landsat OLI 224 18:14:36 0.98 0.02
HLS.S30.T11SQD.2016227.v1.3.hdf Sentinel-2A 227 18:33:12 0.94 0.06
HLS.S30.T11SQD.2016237.v1.3.hdf Sentinel-2A 237 18:21:50 0.96 0.04
HLS.L30.T11SQD.2016240.v1.3.hdf Landsat OLI 240 18:14:44 0.93 0.11
HLS.S30.T11SQD.2016247.v1.3.hdf Sentinel-2A 247 18:33:09 0.93 0.07

HLS.L30.T11SQD.2016256.v1.3.hdf † Landsat OLI 256 18:14:48 0.82 0.27
HLS.S30.T11SQD.2016257.v1.3.hdf † Sentinel-2A 257 18:22:13 0.83 0.17
HLS.L30.T11SQD.2016272.v1.3.hdf Landsat OLI 272 18:14:48 0.76 0.38
HLS.S30.T11SQD.2016307.v1.3.hdf Sentinel-2A 307 18:33:07 0.91 0.08
HLS.L30.T11SQD.2016320.v1.3.hdf Landsat OLI 320 18:14:54 0.92 0.08
HLS.S30.T11SQD.2016327.v1.3.hdf Sentinel-2A 327 18:28:02 0.78 0.17

† Imagery used in one-day-apart comparisons; †† Refers to percentage of pixels where quality assessment band equals zero.
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3.3. Time-Series Analysis

3.3.1. Database Development and Modeling

Model development and testing databases were constructed by equally sampling the range of
observed, mean NDVI values throughout the study period, where approximately 50,000 pixels were
randomly selected and repeatedly sampled for each acquisition date. Spatial coordinates, Julian Day,
and HLS-NDVI data served as explanatory variables within our modeling framework. Masked pixels
were flagged as missing values in the modeling databases and retained their raw values within the
imagery. Likewise, NDVI data calculated from OLI imagery were assumed missing for time steps
when the values were used as the dependent variable, to avoid circularity that would result in a perfect
prediction. The inclusion of spatial coordinates and day of year (Julian Day) information insured that
spatial and temporal autocorrelation effects were minimized. The functional form of the model, for one
case or period, can be written as:

NDVIt64 (OLI) = f (Location, Julian Day, NDVIt77...t327) (2)

where t is time or Julian Day.
Two sets of models were developed to predict NDVI throughout the study period, one including

and excluding MSI data as an independent variable (ModelLS and ModelL), using a boosted regression
tree ensemble approach and the commercial version of the C4.5 algorithm ([31]). Regression
trees are nonparametric models that hierarchically subdivide data using a set of conditional rules,
while minimizing an objective function (e.g., Mean Absolute Error (MAE)), and fit linear regression
models in each subspace. Regression tree models can approximate any function of a continuous
variable, can handle missing data, and have been used for time series prediction [32]. Model calibration
and testing was done using cross-validation procedures and a random-hold out sample (20%),
respectively. After model calibration, the rules and associated linear equations were applied to the
environmental covariates to develop spatially-explicit estimates (30-m spatial resolution) of Landsat
equivalent, or modeled, NDVI at weekly intervals throughout the study period.

3.3.2. Product Comparisons

Weekly normalized difference vegetation index (NDVI) data, as predicted from the regression
tree models, were compared to: (1) the weekly 250-m time series of masked eMODIS data
using cross-correlation analysis (i.e., 1-to-1 mapping and lagged); (2) average growing season
(April–September) NDVI (250-m) calculated from the smoothed eMODIS time series; and (3)
downscaled (30-m) eMODIS products (NDVI at Weeks 22 and 23) using weighted least square
regression analysis. Weekly eMODIS and predicted NDVI data were summarized and compared for
major land cover types ([21]; resampled to 250-m using nearest neighbor interpolation) and percentage
cheatgrass cover prediction (250-m) made throughout the study area [22], to determine if the modeled
data could logically capture land-surface dynamics throughout the growing season. The average
growing season NDVI was computed from each dataset and compared at the native spatial resolution
of the reference datasets (i.e., 250-m) using weighted (by the inverse of the coefficient of variation
calculated using 3 × 3 moving window approach on the reference dataset) least squares regression
analysis for about 10,000 pixels distributed throughout the study area. These comparisons were
conducted using weekly interpolations by models with and without Sentinel-2A data, to assess
the added benefits of including Sentinel data in the modeling framework. Statistical metrics
(i.e., Adjusted R2, MAE, relative MAE, and Root Mean Square Error (RMSE)) were used to determine
agreement and assess model performance.



Remote Sens. 2018, 10, 791 8 of 15

4. Results

4.1. Data Masks

The overall accuracy for both decision tree masking models (i.e., OLI and MSI) was above 99%,
with similar commission and omission error rates, despite that lack of cirrus and thermal bands in
MSI data (Table 2). These accuracy metrics far exceed those of the HLS mask layers, as calculated from
a subset of these interpretations made on three dates of imagery for each sensor, where OLI and MSI
masks (converted to binary) had an overall accuracy of 76% and 89%, respectively (Table S1).

Table 2. Confusion matrices constructed from random hold-out samples of observed versus mapped
values for binary (i.e., cloud, shadow, snow/ice, water (yes), or clear (no)) decision tree masking models
developed for (top) Landsat-8 OLI and (bottom) Sentinel-2 MSI data throughout the study period.

Reference
Row Total User’s Accuracy

No Yes

Map No 182,582 264 182,846 99.9
Yes 184 26,684 26,868 99.3

Column Total 182,766 26,948 - -
Producer’s Accuracy 99.9 99 - -

Overall Accuracy - - - 99.8

Reference
Row Total User’s Accuracy

No Yes

Map No 292,913 879 293,792 99.7
Yes 364 47,335 47,699 99.2

Column Total 293,277 48,214 - -
Producer’s Accuracy 99.9 98.2 - -

Overall Accuracy - - - 99.6

4.2. Cross-Sensor Calibration

Analysis of one-day-apart acquisitions (Figure 4) showed strong 1:1 agreement for NDVI, blue,
green, red, and near-infrared bands (R2 from 0.89 to 0.98), with minor bias only observed in short-wave
infrared 2 spectrum (R2 = 0.95), after accounting for contaminated pixels (i.e., cloud, shadow, snow,
and water). This suggests that Sentinel-2 MSI data can be used in conjunction with Landsat-8
OLI data, without further band-pass adjustments, with minimal impacts on NDVI time series analysis
discussed below.

4.3. Time-Series Analysis

Overall, there was a very strong correlation (R2 = 0.99) between ModelLS predictions and
randomly-withheld Landsat-NDVI observations, with little difference in error metrics for each
acquisition date (Table 3). Correlations between observed and predicted values were lowest (R2 > 0.92)
for the first time step (model not constrained by data prior to Day of Year 64) and for three
consecutive acquisitions dates (i.e., Day of Year 112–144) with high cloud and shadow cover (R2 = 0.96).
There was little to no decrease in predictive performance when Sentinel-2 MSI data were excluded
as an explanatory variable during ModelL development (Table S2). While ModelL performs well
on withheld Landsat observation throughout the year, this does not necessarily mean it accurately
characterizes greenness curves throughout the entire year, as is demonstrated below.

We found strong correlations between modeled NDVI and coarser eMODIS observations for
major land cover types in the study area (Figure 5), with substantially higher agreement between
ModelLS and eMODIS time series, as compared to estimates made by ModelL. The poorest agreement
between ModelLS and eMODIS NDVI (r-value of 0.67) correspond to time series in barren land
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cover types that are subject to water impoundment, as was identified from the time series data.
The highest agreements occurred in Shrub/Scrub and Evergreen Forests (r-value = 0.94), followed
by Pasture/Hay (0.92), and Grassland/Herbaceous (0.83) land cover types. Interestingly, ModelLS

NDVI values peaked earlier (~2 weeks) than eMODIS values for grasslands and shrubs, although the
maximum correlation was obtained using 1-to-1 mapping. Agreement between eMODIS and ModelL
estimates were highest for Evergreen Forests (r-value = 0.63), followed by Barren (0.59), Pasture/Hay
(0.55), Grassland/Herbaceous (0.49), and Shrub/Scrub (0.19).
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Figure 5. Time series of Harmonized Landsat-8 Sentinel-2 (HLS), predicted, and eMODIS Normalized
Difference Vegetation Index (NDVI × 100) separated by major land cover classes [21]. ModelLS was
generated using both Landsat-8 and Sentinel-2A inputs, while ModelL was generated using only
Landsat-8 inputs. Each time series is calculated from all pixels (excluding masked pixels in the original
HLS time series) representing largely homogenous areas (coefficient of variation < 40%) and smoothed
using a three-week sliding window approach. Timesteps where HLS data coverage was less than 70%
are not shown.

When estimates are stratified by percentage cheatgrass cover across the entire study area, we find
good agreement between ModelLS and eMODIS time series data, where peak NDVI and similarity
metrics vary as a function of percentage cheatgrass cover (Figure 6). That is, maximum correlations
were found for sites with low (r-value = 0.95), moderate (0.96), and high cheatgrass cover (0.98)
assuming no lag. Conversely, there was very poor agreement between ModelL and eMODIS time
series data within low (r-value = 0.10), moderate (0.14), and high cheatgrass cover (0.33) (Figure 6).

When estimates are averaged across growing season months, we find substantially higher
agreement between ModelLS and eMODIS values, as compared to ModelL estimates (R2 = 0.88 versus
R2 = 0.72; Figure 7). We also found much higher agreement between weekly eMODIS and interpolated
data (ModelLS) for two weeks (Weeks 22 and 23) during peak-growing season, as compared to
downscaled eMODIS products (Figure 8). The slight lag between eMODIS and modeled NDVI data are
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manifested in this comparison as a systematically low bias for modeled NDVI during these growing
season weeks.
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Difference Vegetation Index (NDVI × 100) separated by percentage cheatgrass cover [22]. ModelLS

was generated using both Landsat-8 and Sentinel-2A inputs, while ModelL was generated using only
Landsat-8 inputs. Each time series was from all pixels (excluding masked areas in the original HLS
time series) and smoothed using a three-week sliding window approach. Timesteps where HLS data
coverage was less than 70% are not shown.
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Figure 7. eMODIS versus predicted (upscaled to 250-m spatial resolution using bilinear interpolation)
growing season (April–September) Normalized Difference Vegetation Index (NDVI × 100) for
randomly selected pixels (n ~10,000). ModelLS was generated using both harmonized Landsat-8
and Sentinel-2A inputs, while ModelL was generated using only harmonized Landsat-8 inputs.
Darker regions represent larger numbers of sampled pixels. Dashed-green line is 1-to-1 and the
red line is the ordinary-least squares regression fit weighted by the inverse of the coefficient of variation
(CV) determined from a focal scan of the eMODIS Growing Season NDVI product (e.g., more weight to
homogenous areas [larger points]).
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Table 3. Statistical metrics derived from observed and predicted (ModelLS) normalized difference vegetation index (NDVI × 100) values for a random hold-out sample.

Day of Year 064 080 096 112 128 144 160 176 192 208 224 240 256 272 320 All

R2 0.92 0.97 0.98 0.96 0.96 0.96 0.98 0.99 0.98 0.99 0.99 0.99 0.98 0.96 0.98 0.98
MAE 1.41 0.75 0.94 0.97 1.68 1.37 1.14 0.92 1.09 0.86 0.87 0.87 1.12 1.54 1.37 1.09
rMAE 0.08 0.08 0.04 0.04 0.07 0.05 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.06 0.06 0.04
RMSE 2.80 1.35 1.74 1.84 2.16 2.66 2.12 1.64 2.08 1.53 1.71 1.53 2.30 3.01 2.25 2.09

n 7329 6165 8172 6066 6165 6503 9280 10,894 10,732 10,758 10,942 9964 8619 7274 9321 125,453

MAE = Mean Absolute Error; rMAE = relative Mean Absolute Error; RMSE = Root-mean Squared Error.
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Figure 8. eMODIS versus predicted (upscaled to 250-m spatial resolution using bilinear interpolation) normalized difference vegetation index (NDVI × 100) for
randomly selected pixels (n ~10,000) during Weeks 22 and 23. ModelLS was generated using both harmonized Landsat-8 and Sentinel-2A inputs, while downscaled
NDVI was generated using regression tree models with harmonized Landsat-8 and eMODIS inputs. Darker regions represent larger numbers of sampled points.
Dashed-green line is 1-to-1 and the red line is the ordinary-least squares regression fit weighted by the inverse of the coefficient of variation (CV) determined from a
focal scan of the eMODIS growing season NDVI product (e.g., more weight to homogenous areas [larger points]).
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5. Discussion

In this research, we presented a novel approach to accurately monitor land-surface phenology
and generate spatially-explicit estimates of surface reflectance data using a regression tree modeling
framework that combined information collected by Landsat OLI and Sentinel MSI. Overall, we found
that data collected from these sensors were largely compatible, but the extent to which HLS
pre-processing ensured compatibility is outside the scope of this study. To effectively characterize
seasonal vegetation index curves, we developed robust cloud masks because HLS masking products
were of insufficient quality. For a thorough review of operational cloud masking algorithms and
their associated performance, we refer readers to reference [29]. We demonstrate that the inclusion
of Sentinel MSI data into our modeling framework substantially improves our ability to track and
represent land-surface dynamics in water-limited environments, due in large part to the fact that
additional observations allow us to seamlessly fill observational gaps due to clouds and shadows.

Our methodology has advantages over previously published approaches and is highly
automatable. First, our approach explicitly mitigates spatial and temporal autocorrelation effects,
by integrating spatial and temporal covariates (i.e., latitude, longitude, Julian date, and spectral
reflectance from other dates) directly into the global model, which per-pixel approaches typically
ignore (e.g., [14,33]). This is particularly import for monitoring semi-arid environments because
vegetation growth can vary widely in response to heterogeneous, precipitation effects. Second,
this model does not make use of eMODIS data, as we rely solely on observations collected by OLI and
MSI sensors, and it outperformed Landsat-eMODIS downscaling approaches even though eMODIS
data are used in the data fusion framework [17,26]. Third, this modeling framework is very flexible
and can easily integrate other covariates where needed (e.g., climatic data, spectral and temporal
information (e.g., Year)). Finally, disturbances (e.g., wildfires) are also captured by this modeling
approach, which simpler interpolation techniques may not adequately resolve.

Future directions for the modeling component of this work include: (1) integration of other
Landsat and Sentinel data (e.g., Landsat ETM+, Sentinel-2B) to better constrain models; (2) generating
spatially-explicit estimates of other surface reflectance data (e.g., red-edge) and uncertainties from
an ensemble of model realizations; (3) normalization of model training distributions as a function of
time, to account for differences in observation density throughout the time series; and (4) assimilation
of leave-one-image-out validation procedures within model calibration to independently assess model
interpolation precision rather than relying on MODIS time series. We also recognize ongoing efforts by
the HLS project and others to improve cloud masking algorithms for MSI data, which should be useful
for expediting processing time within our overall workflow.

On average, we found that agreement between modeled and eMODIS temporal profiles of NDVI
was highest for shrub/scrub and evergreen forests. Evergreen forests typically have little change in
greenness from season to season and, thus, abrupt increases in NDVI within the earlier portion of
the time series (Figure 5) may reflect snowmelt effects that could impact similarity metrics. Modeled
estimates of NDVI were systematically lower than those of the eMODIS dataset across most land
cover types, which has been previously attributed to different sensor characteristics (e.g., spatial
resolution) [34,35]. The use of cross-calibrated Sentinel data as a dependent variable within our
modeling framework could enhance our ability depict seasonal vegetation dynamics, particularly
when a paucity of Landsat data exists. While our methodology was applied to only one year of growing
season imagery, we believe that it will likely be of great value for understanding large, inter-annual
variations in land-surface phenology that are commonly associated with dryland ecosystems.

Our results also hint at a systematic bias toward earlier timing of maturity and senescence of
grass and shrub/scrub cover types (Figures 5 and 6), which is not caused by inadequate density
of observations in either time series but rather the enhanced capacity for tracking phenology using
moderate resolution data than has been previously possible with coarser resolution data (e.g., MODIS).
This finding agrees with those of references [18,36], where phenological transition dates (i.e., green-up,
start-of-season, and maturity) extracted from Landsat time series were generally earlier than those from
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derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) phenocurves. Others have
also found a two-week lag when comparing MODIS NDVI to flux tower gross photosynthesis in
rangeland ecosystems [37]. This has enormous implications for both the research community and the
policy community for the management of dryland ecosystems. For example, these data allow us to
detect abrupt increases in vegetation greenness associated with cheatgrass growth at fine spatial and
temporal resolutions, which will allow land-use managers to take proactive steps in mitigating its
impact on ecosystems and human communities.

As is demonstrated in this research, remote sensing is a cost-effective tool to describe vegetation
dynamics at broad scales. Time series of vegetation indices provide the foundation from which
land-surface phenology metrics (e.g., greenup, leaf-out, start of spring) are constructed [38,39].
Thus, it is vital that phenological products are derived from high quality time series data, such as
those described in in this manuscript. While phenology metrics have been routinely generated from
coarse-resolution data [40], data derived solely from moderate-resolution imagery (e.g., Landsat
and Sentinel-2) are beginning to emerge [41]. Given the declines in MODIS performance and
forthcoming decommission with no equivalent replacement planned, data fusion approaches that
integrate observations from multispectral sensors (e.g., Landsat, Sentinel-2A and -2B) will be needed
to effectively monitor dryland ecosystems.

6. Conclusions

In this study, we presented an innovative methodology to accurately monitor land-surface
phenology in drylands of the Western United States. Our data fusion approach combined information
collected by the Operational Land Imager (OLI) onboard Landsat 8 and the Multispectral Instrument
(MSI) onboard Sentinel-2 using a regression tree modeling framework. This highly-automatable work
flow allowed us to precisely characterize seasonal dynamics in vegetation indices with considerable
agreement between spatially-explicit estimates and independent observations. We provide evidence
for enhanced monitoring capabilities associated with the fusion of OLI and MSI time series, as opposed
to solely using coarser resolution data or downscaling techniques that rely on a combination of Landsat
and MODIS, where higher-resolution imagery allowed for early detection of plant maturity and
senescence. We demonstrate that observations made by MSI and OLI can be used in amalgamation
and exclusion of imagery from either sensor impairs our ability to precisely characterize vegetation
dynamics in dryland environments. Other environmental applications, such as habitat and land cover
mapping, will likely benefit from our time series products because they accurately capture the state
of the vegetation at a spatial resolution that is meaningful to local resource managers. This research
fills a critical gap in the understanding of current monitoring capabilities of arid and semi-arid
environments that cover a substantial portion of the globe.
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