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Abstract: Fusion of high spatial resolution (HSR) multispectral (MS) and panchromatic (PAN) images
has become a research focus with the development of HSR remote sensing technology. In order to
reduce the spectral distortions of fused images, current image fusion methods focus on optimizing
the approach used to extract spatial details from the PAN band, or on the optimization of the models
employed during the injection of spatial details into the MS bands. Due to the resolution difference
between the MS and PAN images, there is a large amount of mixed pixels (MPs) existing in the
upsampled MS images. The fused versions of these MPs remain mixed, although they may correspond
to pure PAN pixels. This is one of the reasons for spectral distortions of fusion products. However,
few methods consider spectral distortions introduced by the mixed fused spectra of MPs. In this paper,
an image fusion method based on image segmentation was proposed to improve the fused spectra
of MPs. The MPs were identified and then fused to be as close as possible to the spectra of pure pixels,
in order to reduce spectral distortions caused by fused MPs and improve the quality of fused products.
A fusion experiment, using three HSR datasets recorded by WorldView-2, WorldView-3 and GeoEye-1,
respectively, was implemented to compare the proposed method with several other state-of-the-art
fusion methods, such as haze- and ratio-based (HR), adaptive Gram–Schmidt (GSA) and smoothing
filter-based intensity modulation (SFIM). Fused products generated at the original and degraded
scales were assessed using several widely-used quantitative quality indexes. Visual inspection
was also employed to compare the fused images produced using the original datasets. It was
demonstrated that the proposed method offers the lowest spectral distortions and more sharpened
boundaries between different image objects than other methods, especially for boundaries between
vegetation and non-vegetation objects.

Keywords: high resolution satellite image; pansharpening; mixed pixel; image segmentation

1. Introduction

In recent years, the spatial resolution of remote sensing images has increased greatly and a large
number of high-resolution satellites have been launched. High spatial resolution (HSR) remote sensing
images contain abundant texture and spatial detail information, which benefits a large amount of
remote sensing applications. Thus, the processing of HSR remote sensing images has become a popular
research area. Remote sensing image fusion techniques, which can be used to fuse several images
provided by one or more sensors covering the same regions to produce high-quality synthesized images,
are useful for improving image interpretation and automatic classification. Currently, most of the
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current HSR satellites provide both an HSR panchromatic (PAN) band and several low spatial
resolution (LSR) multispectral (MS) bands. An LSR MS band covers a narrower spectral bandwidth
than an HSR PAN band. It is desirable to integrate the geometric details of an HSR PAN band with
the LSR MS image to produce an HSR MS image. A large amount of algorithms for MS and PAN
image fusion, which is also called pansharpening, has been proposed in the past decades. Concerning
the categorization of existing pansharpening methods, it is widely accepted that a majority of current
methods can be classified into two major categories: the component substitution (CS) methods and the
methods based on multi-resolution analysis (MRA) [1–4]. Another special categorization is the methods
based on PAN-modulation (PM) [5], which provide outstanding fused products with constrained
spectral distortions. Some of these methods also belong to the MRA category, such as additive
wavelet luminance proportional (AWLP) [6] and additive à trous wavelet transform (ATWT) [7].
In recent years, some model-based methods have been developed [8], using the Bayesian approach [9],
sparse representation [10–12], compressed sensing [13,14] and the variational model [15,16]. In a
recent published book, current pansharpening methods were classified into five groups, including CS,
MRA, numerical methods, statistical methods and hybrid methods [17]. Despite most of the current
pansharpening methods showing significant differences, the implementation of these methods can be
generalized using two steps [18,19]. Firstly, spatial details are extracted from the original PAN band.
Then, the extracted spatial details are injected into the upsampled MS bands using different models.
Current pansharpening methods employ different approaches to extract spatial details from the
PAN band, or different models during the injection of spatial details into the upsampled MS bands.
For CS methods, the spatial details, which are obtained by subtracting an intensity component
generated by a linear combination of the MS bands from the PAN band, are injected into the upsampled
MS bands [18,20]. For MRA methods, spatial details obtained through multiscale decomposition of
the PAN band are injected into the upsampled MS bands through additive or multiplicative models.
Such models include global models, local models, and context-adaptive models [18,20]. The details of
these models can be found in [18,21]. In addition, interpolation approaches for generating upsampled
MS bands were discussed in several studies. It was suggested that the bi-cubic interpolation approach
should be used to obtain upsampled MS bands, in order to avoid misalignments between expanded
MS and PAN bands [22].

As is well known, the mixed pixel (MP) problem is one of the principal sources of errors in remote
sensing image interpretation. Generally, the occurrence of the MP problem is due to the fact that a
pixel in a remote sensing image covers multiple land cover objects. In the case of two images with
different spatial resolutions, the image with a lower spatial resolution contains a larger proportion
of MPs than the other [23]. Actually, the MP problem has a serious impact on the quality of fused
products. For the fusion of satellite images recorded by multiple sensors, such as Landsat TM/ETM+
and MODIS data fusion, unmixing techniques were employed to produce fusion products [24,25].
Generally, these methods dealt with the case that the HSR image has several spectral bands. For the
case where the image with relatively high spatial resolution contained only a single band, some studies
also have tried to use unmixing-based methods to produce HSR MS images. The work in [26]
discussed fusing a single PAN band with several MS bands with an adaptation of the multiresolution
multisensory technique, which is a general method used to fuse images recorded by different sensors
with different spatial resolutions. In this method, the HSR PAN image was firstly classified into
several classes, and the spectra of every class from the MS images were derived. Finally, the synthetic
HSR MS image was generated by assigning the spectra of the corresponding class to each PAN pixel.
Although this method proved to be effective for improving the resolution of some image objects,
it yielded a relatively poor performance in terms of texture feature enhancement.

In the past few years, the effect of the MP problem on the fusion of MS and PAN images recorded
simultaneously by the same platform has been examined by several studies. It was revealed that fused
versions of MPs in upsampled MS images remain mixed in the majority of current fusion products,
despite some of these MPs perhaps corresponding to pure PAN pixels. This leads to significant
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differences between the fused spectra of these MPs and those of the corresponding real MS pixels of
PAN resolution, if they exist, and contributes to a great amount of spectral distortions and blurred
boundaries between different objects existing in fusion products [27]. The work in [28] indicates
that most existing fusion methods are based on a pure pixel assumption, and thus, the application
of these methods for mixed pixels can lead to incorrect fusion results. The mixed pixels should be
unmixed before the fusion process is performed. Two methods based on the linear mixing model and
spatial unmixing, respectively, are presented for pansharpening mixed pixels. Moreover, some studies
have tried to reduce spectral distortions of fusion products through the improvement of fused spectra
of the MPs corresponding to pure PAN pixels. The work in [29] introduced an image fusion method that
considers improving the fused spectra of the MPs that correspond to pure PAN pixels, with respect to a
classification map obtained by object-oriented classification. In this method, the PAN pixels are roughly
classified into several classes, which are mainly related to vegetation and soil, using object-based
classification. Then, the MPs are identified and fused to pure pixels, with respect to the class of the
corresponding PAN pixels. Although the method proved to be effective for reducing spectral distortion,
the performance of this method is highly dependent on classification accuracy. The work in [30]
presented an image fusion method based on fusing MPs to pure pixels, using an HSR digital surface
model (DSM) derived from airborne light detection and ranging as auxiliary data. Benefiting from the
inclusion of an HSR DSM, the PAN pixels were classified into a large number of classes with relatively
high classification accuracy. This contributes to the good performance of the method. However, an HSR
DSM is rarely available to be used as an auxiliary for the fusion of MS and PAN images, which restricts
the use of this method in practice. In addition, only MPs near boundaries between vegetation and
non-vegetation objects were considered in this work. The work in [31] proposed an improved fusion
method to fuse MPs to pure pixels based on the classification of PAN pixels. It was demonstrated
that the fusion products generated by the method can yield more sharpened boundaries and smaller
spectral distortions than other products. Similarly, only MPs related to vegetation were considered in
this work. Actually, there is also a large number of MPs near boundaries between other image objects.
Similarly, some of these MPs may correspond to pure PAN pixels. It is desirable to fuse these MPs
to be as close as possible to the spectra of corresponding pure pixels to obtain fusion products with
sharpened boundaries and reduced spectral distortions. Thus, an image fusion method based on image
segmentation is proposed in this paper to identify more MPs and then improve the fused spectra of
these MPs. In this method, MPs near boundaries between different objects are identified with respect
to the boundaries of image segments obtained by segmenting the PAN band. The fused spectra of
each of the identified MPs are improved with respect to the spectra of a selected pure pixel within the
same segment as the MP. A fusion experiment was implemented to evaluate the performance of the
proposed method.

This paper is organized as follows. A detailed introduction of the proposed fusion method is
presented in Section 2. A fusion experiment used to assess the performance of the proposed method
is introduced in Section 3. A discussion of the experimental results is reported in Section 4, and the
conclusions are summarized in Section 5.

2. Methodologies

Similar to the method introduced in our previous study [31], MPs are firstly identified, and the
fused spectra of each of these MPs are then improved to obtain a fused image with reduced
spectral distortions. There are two major differences between this work and the previous work.

Firstly, in the previous work, MPs were identified based on two edge maps obtained from the
PAN band and an NDVI map derived from the MS image, respectively. In this work, the MPs
are identified and fused with respect to image segments obtained by segmenting the PAN band.
Actually, the proposed method is developed under the assumption that pixels within the same segment
correspond to the same land cover class. The boundary pixels and their neighbors within the same
segment are MPs, whereas the other pixels within the same segment are pure.
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Additionally, in our previous studies, an identified MP was fused using the spectra of a pure
pixel with the same class as the corresponding PAN pixel, with respect to a classification map for
PAN pixels. Although this solution is effective in reducing spectral distortions, it can be observed from
the fusion products that these improved MPs are spectrally incontinuous with their neighbors visually.
Consequently, a new solution for improving fused spectra of the identified MPs was proposed.
In this solution, spectral values of each identified MP were firstly modified according to spectral values
of a pure pixel within the same segment as the MP. The fused spectra of each MP were obtained using
the modified spectra, to reduce spectral distortions of fusion products.

The flowchart of the proposed method is presented in Figure 1. Image segmentation was firstly
applied to the PAN band to obtain image segments. The over- and under-segmented segments were
then identified and excluded from the following steps. After that, the boundaries of each segment
were identified, and pixels near these boundaries were considered as MPs. Then, for each MP,
pure pixels within the same segment were located in the neighborhood of the MP, and spectral values
of each MP were modified with respect to spectral values of these pure pixels. This yields a modified
version of the upsampled MS image. Finally, the original PAN and the modified version of the
upsampled MS image were fused to obtain fusion products. The details of each step are introduced in
the following sections.
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2.1. Image Segmentation

A marker-controlled watershed segmentation method named the edge, mark and fill (EMF)
algorithm [32,33] was employed in this work. As MPs are identified and fused regarding segments
obtained by segmenting the original PAN band, the accuracy of the employed segmentation algorithm
is critical for the proposed fusion method. In order to obtain segments with accurate boundaries,
the EMF algorithm, an edge-based watershed segmentation algorithm, was employed. The EMF
algorithm performs watershed segmentation with fully-automatic markers generated by applying a
series of morphological operations on an edge map [33]. The flow diagram of the EMF algorithms
is presented in Figure 2. An edge map E was firstly generated using the Canny edge detector [34],
which is well known for its good performance. The Euclidean distance transform was then applied to
E to yield a distance map D. After that, a morphological maker M, which is the marker used in the
final watershed transform, was yielded based on D, through a marker generation procedure. This
procedure consisted of four steps. Firstly, the reciprocal of the distance map D was calculated to
generate a distance map -D. Then, the pixels corresponding to local minimums of -D were considered
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as region seeds. After that, each of these region seeds was dilated with a circular structuring element
to generate a basic marker. Finally, all the basic markers were unioned together to generate the
final marker map M. Compared with the initial region seeds generated from -D, the marker map M
comprised just a few extended markers. This is useful for reducing over-segmented regions, compared
with conventional watershed segmentation.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 21 

 

marker map M comprised just a few extended markers. This is useful for reducing over-segmented 

regions, compared with conventional watershed segmentation. 

 

Figure 2. Flowchart of the edge, mark and fill (EMF) segmentation. 

2.2. Elimination of Over- and Under-Segmented Regions 

Both under- and over-segmentation have a great effect on the performance of the proposed 

method. If a segment is over-segmented, some pure pixels may be mistaken as MPs. The modification 

of spectral values of these pixels may lead to the increase of spectral distortions and the amount of 

calculation. In contrast, some MPs may be mistaken as pure pixels employed to modify spectral 

values of identified MPs if some segments are under-segmented. Consequently, both over- and 

under-segmented segments were identified in this step and then excluded in the following steps. 

With respect to some literature about segments’ refinement, such as [35], local intra- and  

inter-segment heterogeneity statistics were employed in this study to identify over- and  

under-segmented regions, respectively. For a segment that is under-segmented, it contains two or 

more types of land cover objects. Normally, this leads to a relatively high variance value of the 

segment. Thus, under-segmented regions can be identified according to the variances of segments. 

In this work, a heterogeneity indicator of each segment I, denoted as VRi, was defined with respect 

to the variance, Vi, and the mean, ui, of the spectral values of segment i, as shown in Equation (1):  

𝑉𝑅𝑖 =
𝑉𝑖

𝑢𝑖
⁄  (1) 

This indicator was used as the measure of the intra-segment heterogeneity to identify  

under-segmented regions. For an over-segmented segment, it should show a high internal 

homogeneity, as well as a high similarity to its neighbors. As a reliable indicator employed to measure 

the similarity between a segment and its neighbors, the local Moran’s I (MI) was chosen as the  

inter-segment heterogeneity indicator to identify over-segmented regions. Local MI, which measures 

spatial autocorrelation for each segment, was calculated using Equation (2): 

𝑀𝐼𝑖 = 𝑧𝑖 ∑ 𝑤𝑖𝑗𝑧𝑗

𝑗≠𝑖

 (2) 

where zi, zj are deviations of segments i and j from their mean values, respectively. During the 

calculation of local MI of each segment, only its neighboring segments were considered. Thus, for the 

neighbors of segment i, the values of w were one, while for all the other segments, the values of w 

were zero. In the proposed method, two thresholds were determined to identify under-segmented 

Figure 2. Flowchart of the edge, mark and fill (EMF) segmentation.

2.2. Elimination of Over- and Under-Segmented Regions

Both under- and over-segmentation have a great effect on the performance of the proposed method.
If a segment is over-segmented, some pure pixels may be mistaken as MPs. The modification of spectral
values of these pixels may lead to the increase of spectral distortions and the amount of calculation.
In contrast, some MPs may be mistaken as pure pixels employed to modify spectral values of identified
MPs if some segments are under-segmented. Consequently, both over- and under-segmented segments
were identified in this step and then excluded in the following steps.

With respect to some literature about segments’ refinement, such as [35], local intra-
and inter-segment heterogeneity statistics were employed in this study to identify over- and
under-segmented regions, respectively. For a segment that is under-segmented, it contains two or more
types of land cover objects. Normally, this leads to a relatively high variance value of the segment.
Thus, under-segmented regions can be identified according to the variances of segments. In this work,
a heterogeneity indicator of each segment I, denoted as VRi, was defined with respect to the variance,
Vi, and the mean, ui, of the spectral values of segment i, as shown in Equation (1):

VRi =
Vi
ui

(1)

This indicator was used as the measure of the intra-segment heterogeneity to identify
under-segmented regions. For an over-segmented segment, it should show a high internal homogeneity,
as well as a high similarity to its neighbors. As a reliable indicator employed to measure the similarity
between a segment and its neighbors, the local Moran’s I (MI) was chosen as the inter-segment
heterogeneity indicator to identify over-segmented regions. Local MI, which measures spatial
autocorrelation for each segment, was calculated using Equation (2):

MIi = zi ∑
j 6=i

wijzj (2)
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where zi, zj are deviations of segments i and j from their mean values, respectively. During the
calculation of local MI of each segment, only its neighboring segments were considered. Thus, for the
neighbors of segment i, the values of w were one, while for all the other segments, the values of w
were zero. In the proposed method, two thresholds were determined to identify under-segmented
segments with relative high variances and over-segmented segments with relatively high local
MI values, respectively.

2.3. Identification of MPs

After excluding the under- and over-segmented objects, boundary pixels of each of the remaining
segments were identified. These boundary pixels and their neighboring pixels within a certain
neighborhood can be taken as MPs. A given segment labeled as i is denoted as Oi, an example for
identifying MPs within the segment O2, which is shown in Figure 3. The pixels labeled as zero are edge
pixels in the edge map D, as we used an implementation of watershed segmentation as in [36], which
does not generate a separate label for edge pixels. The identified boundary pixels of O2 are shown in
gray in Figure 3a. Pixels shown in yellow in Figure 3b are the neighboring pixels of each identified
boundary pixel within the segment O2. These neighboring pixels of each MP were located using a
4-neighborhood. Finally, the union of the identified boundary pixels and their neighbors, shown in
blue in Figure 3c, were taken as MPs in the upsampled MS image.
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2.4. Fusion of MPs Using Improved Spectral Values

In order to reduce spectral distortion caused by the fused spectra of MPs, the identified MPs
were fused using modified spectral values, which were approximate to the spectra of pure pixels
within the same segment. Such pure pixels were identified within the same segment as each of the
identified MPs, based on the assumption that the pixels within the same segment corresponded to the
same land cover class. In addition, these pure pixels were located within a certain neighborhood of
each MP. The modified spectra of each MP were then determined with respect to the spectra of these
pure pixels. As an example, the location of pure pixels for an identified MP p within the segment O2 is
shown in Figure 4. The pixels shown in red in Figure 4 are pure pixels identified within a 5 × 5 local
window centered at p. A collection of all these identified pure pixels is denoted as T. The spectra of
pixels belonging to T were used to modify the spectra of p. It is obvious that it is hard to find a pure
pixel within a segment if the segment is too small. Consequently, only segments with pixels more than
a given threshold were considered in this step. For the case using a 5 × 5 neighborhood window to
identify a pure pixel, the threshold should be higher than 25 pixels.
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Figure 4. Identification of pure pixels in the neighborhood of an MP p within the segment O2.

Similar to our previous studies, the haze- and ratio-based (HR) fusion method proposed in [37]
was employed to produce the final fusion products. The HR method is a PM-based fusion method
considering the effect of image haze [38–40]. Given that the upsampled MS image is denoted as M̃S
and the original PAN band is denoted as P, the fused i-th MS band M̂Si generated by the HR method
can be calculated using Equation (3):

M̂Si = (M̃Si − Hi)
P− Hp

PS − Hp
+ Hi (3)

where PS is an assumed low-resolution PAN image, M̃Si is the i-th upsampled MS band and Hp and
Hi are the haze values in the PAN and i-th MS bands, respectively. According to [37], the synthetized
low-resolution PAN band PS was obtained by averaging operation and followed by bi-cubical
interpolation to PAN scale. The values of Hi and Hp can be determined using the band minimums
of MSi and P, respectively [38–40]. It can be demonstrated that the fused spectral vector of a pixel is
parallel to the corresponding spectral vector in the upsampled MS image [5]. This constrains spectral
distortions of fused pixels, especially for pure MS pixels. However, it also leads to the fact that the fused
spectral vector of an MP remains mixed, which greatly contributes to spectral distortions occurring in
the fusion products.
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In order to reduce spectral distortions caused by the mixed fused spectra of MPs, spectral values
of each MP in both the upsampled MS image and the synthetized low-resolution PAN band were
firstly modified to be more approximate to the spectra of pure pixels within the same segment as
the MP. The modified spectra were then used to calculate the fused spectra of an MP. For the MP p

shown in Figure 4, the modified spectra of p in the i-th MS band M̃S
R
i (p) and in the synthetized PAN

band PR
S (p) can be obtained using Equations (4) and (5), respectively:

M̃S
R
i (p) = α·sT

i + (1− α)·M̃Si(p) (4)

PR
S (p) = α·sT

P + (1− α)·PS(p) (5)

In Equation (5), sT
i and sT

P are the spectra of pure pixels in the i-th MS band and the PAN band,

respectively; and α is a weight coefficient. A modified version of the upsampled MS image M̃S
R

was
produced through the modification of the spectra of each identified MP while retaining the original
spectra for the other pixels. Similarity, a modified version of the synthetic low-resolution PAN image
PR

S was yielded. Finally, the fused i-th MS band M̂Si was calculated using Equation (6).

M̂Si = (M̃S
R
i − Hi)

P− Hp

PR
S − Hp

+ Hi (6)

The values of sT
i and sT

P are determined with respect to the spectra of the nearest pure pixel within
T from boundary pixels of each segment. A distance map D generated by computing the Euclidean
distance transform of a binary image obtained from the segmentation map of the PAN band was
employed to find the nearest pure pixels. In the binary image, pixels corresponding to edge pixels in
the segmented map were one, whereas the other pixels were zero. For each pixel in the binary image,
the distance transform assigned a number that was the distance between the pixel and the nearest
nonzero pixel in the binary image. For the MP p, the pure pixel offering the lowest value in D, denoted
as q, was identified from the pure pixels in T, i.e., D(q) = min

t∈T
D(t). The values of sT

i and sT
P were

assigned using the spectra of the nearest pure pixel q using Equations (7) and (8), respectively:

sT
i = M̃Si(q) (7)

sT
P = PS(q) (8)

The value of α is adaptively determined with respect to D(q) and the distance from p to the nearest
boundary pixel within the same segment, i.e., D(p), using Equation (9).

α = 1− D(p)/min
t∈T

D(t) (9)

3. Experiments

3.1. Datasets

The performance of the proposed method was assessed by a fusion experiment using three
datasets acquired by WorldView-2 (WV-2), WorldView-3 (WV-3) and GeoEye-1 (GE-1) satellites,
respectively. The WV-2 scene covering Washington DC, USA, was recorded in August 2016. The WV-3
scene covering Dallas, USA, was collected in October 2014. The GE-1 dataset covering Izmir, Turkey,
was recorded in September 2014. The MS and PAN images of the WV-2 and WV-3 datasets had
resolutions of 1.6 m and 0.4 m, respectively. The PAN image of the GE-1 dataset had a resolution
of 0.5 m, whereas the MS image of GE-1 had a resolution of 2 m. For all three datasets, the MS images
had a size of 512 × 512 pixels, whereas the PAN images had a size of 2048 × 2048 pixels. The MS
images of the WV-2 and WV-3 datasets had eight bands, whereas that of GE-1 had four bands. The
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MS images for the three datasets are shown in Figure 5. The WV-2 and WV-3 images are shown in
compositions of Bands 5, 7 and 2, whereas the GE-1 image is shown in compositions of Bands 3, 4
and 1. It can be seen that typical land cover types, including water-bodies, grasses, trees, buildings,
roads and shadows, can be observed in the three images.
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Figure 5. The MS images of the three datasets used in the experiment; (a) WV-2 dataset; (b) WV-3
dataset; and (c) GE-1 dataset.

Both the degraded and original versions of the three datasets were employed in the experiment.
As the quality of fused images is sensitive to misregistration between the MS and PAN bands, we firstly
checked the alignments between the original PAN and MS images, using a similar method to the one
used in [41]. The degraded MS and PAN images were generated by averaging the pixels within a local
window with a size of 4 × 4, as the spatial resolution ratio is for all three datasets [42]. In addition,
the upsampled MS bands were produced using a bi-cubic interpolation approach in order to avoid
misregistration between the MS and PAN bands [22]. In addition, the alignment between PAN and
upsampled MS bands was checked before the fusion experiments.

3.2. Fusion Methods for Comparison and Evaluation Criteria

The proposed method was compared with the original HR method, as well as some outstanding
fusion methods widely used in previous studies [43–45]. These methods include the adaptive
Gram–Schmidt (GSA) method [46], the smoothing filter-based intensity modulation (SFIM) [47,48],
the generalized Laplacian pyramid with spectral distortion minimizing model (GLP-SDM) [49],
AWLP [6] and ATWT [7]. The GSA and SFIM methods belong to the CS category, whereas the
other three methods belong to the MRA category.

The evaluation of these fusion algorithms was performed by both quantitative assessment and
visual inspection of the quality of the fusion products. Several commonly-used quality indexes
were employed to evaluate the quality of the fusion products of the degraded scale. These indexes
include the relative average spectral error (RASE) [50], dimensionless global relative error of synthesis
(ERGAS) [51], spectral angle mapper (SAM) [52], a generalization of universal image quality index
for monoband images (Q2n) [53–55] and the spatial correlation coefficient (SCC) [6]. The quality with
no reference (QNR) index was chosen to assess the quality of fused images generated at the original
scale [56]. The QNR index is mainly dependent on two separate values, Dλ and DS, which quantify
spectral and spatial distortions, respectively [56]. The values of Dλ and DS were reported along with
QNR in this work. In terms of visual inspection, subsets of fused images produced at the original scale
were presented.

3.3. Results and Analysis

As introduced in Section 2, there are several thresholds that need to be determined during the
application of the proposed method. These parameters include a sensitivity threshold for Canny
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edge detector TC, a threshold for judging under-segmentation based on the relative variances of
segments TV, a threshold for judging over-segmentation based on local MI values of segments TM and
a threshold used to eliminate small segments TA. The value of TM was set to 0.6 for all the datasets.
The values of TA were set to 100 and 30, for the original and degraded datasets, respectively, with
respect to the spatial resolutions of the images. The values assigned to the other thresholds TC

and TV for each dataset are shown in Table 1, as well as the number of modified MPs, denoted
as NMP, by the proposed method. Additionally, NMP values for the case without excluding over-
and under-segmented regions and the case that used a TC value automatic determined by the Canny
detector are also reported in Table 1. In addition, the proposed method used the same haze values
as those used by the HR method. It can be observed that a larger number of MPs are improved in
the case that does not exclude under- and over-segmented regions. In contrast, in the case of using
automatically determined TC, generally, a smaller number of MPs are improved during the fusion.
This is very significant for the GE-1 dataset.

Table 1. The thresholds used by the proposed method to produce fused images of the three datasets.

Dataset Scale TC TV NMP
NMP (without Excluding

Some Regions)
NMP (Using Automatic

Determined TC)

WV-2
degraded 0.07 0.1 25,700 90,286 10,709
original 0.07 0.2 895,243 954,407 881,755

WV-3
degraded 0.08 0.07 10,740 92,320 5110
original 0.08 0.18 825,574 980,506 834,269

GE-1
degraded 0.09 0.07 21,152 76,162 16,686
original 0.06 0.065 748,213 1,063,620 482,849

The quality indexes for fused images for the three datasets produced at the two scales are reported
in Table 2, in which an expanded MS image generated by upsampling to the PAN scale, without fusion
with a PAN band, is denoted as EXP. As the proposed method used the HR method to produce fused
images and considered edge information of PAN bands, it is denoted as HR-E in Table 2. The proposed
method without excluding over- and under-segmented regions is denoted as HR-E-NE, whereas the
proposed method using automatically determined Tc by the Canny detector is denoted as and HR-E-A
in Table 2. Additionally, the computation time for each fusion method is also reported in Table 2.

Table 2. Quality indices of fused images for the datasets used in the experiment. RASE, relative
average spectral error; ERGAS, global relative error of synthesis; SAM, spectral angle mapper; Q2n,
a generalization of universal image quality index for monoband images; SCC, spatial correlation
coefficient; QNR, quality with no reference; GSA, adaptive Gram–Schmidt; SFIM, smoothing
filter-based intensity modulation; GLP-SDM, generalized Laplacian pyramid with spectral distortion
minimizing model; AWLP, additive wavelet luminance proportional; ATWT, à trous wavelet transform;
HR-E, the proposed method; HR-E-A, the proposed method using automatic Canny threshold;
HR-E-NE, the proposed method without excluding over- and under-segmented regions; EXP, expanded.

Image Method
Degraded Scale Original Scale

RASE ERGAS SAM Q2n SCC Dλ DS QNR Time(s)

WV-2

HR-E 14.31 3.16 4.54 0.9316 0.8815 0.0082 0.0233 0.9688 34.08
HR-E-A 14.37 3.17 4.57 0.9314 0.8798 0.0081 0.0232 0.9689 32.94
HR-E-NE 14.45 3.18 4.57 0.930 0.880 0.0082 0.0230 0.9690 29.21

HR 14.41 3.18 4.59 0.931 0.878 0.0078 0.026 0.966 0.61
GSA 14.60 3.36 5.22 0.927 0.8819 0.014 0.045 0.942 4.59
SFIM 14.97 3.48 5.06 0.908 0.865 0.026 0.050 0.925 0.68

GLP-SDM 15.01 3.45 5.06 0.910 0.871 0.035 0.058 0.909 1.73
AWLP 14.88 3.44 5.06 0.916 0.866 0.031 0.052 0.918 3.04
ATWT 15.12 3.59 5.35 0.911 0.857 0.040 0.060 0.902 2.37

EXP 21.53 5.26 5.06 0.790 0.617 0.000 0.036 0.964 -
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Table 2. Cont.

Image Method
Degraded Scale Original Scale

RASE ERGAS SAM Q2n SCC Dλ DS QNR Time(s)

WV-3

HR-E 15.35 3.244 4.91 0.9187 0.874 0.0085 0.0427 0.9491 36.32
HR-E-A 15.36 3.247 4.92 0.9185 0.873 0.0086 0.0427 0.9491 38.34
HR-E-NE 15.80 3.330 5.00 0.9147 0.867 0.0091 0.0423 0.9490 31.53

HR 15.38 3.249 4.93 0.9182 0.873 0.0088 0.045 0.946 0.61
GSA 17.03 3.79 6.42 0.900 0.807 0.026 0.063 0.912 4.71
SFIM 16.03 3.58 5.58 0.872 0.839 0.053 0.075 0.876 0.67

GLP-SDM 16.00 3.57 5.58 0.872 0.847 0.067 0.089 0.850 1.80
AWLP 17.26 3.92 5.58 0.847 0.838 0.086 0.101 0.821 3.19
ATWT 17.79 4.31 6.45 0.792 0.810 0.107 0.113 0.792 2.40

EXP 21.34 4.92 5.58 0.769 0.616 0.000 0.071 0.929 -

GE-1

HR-E 9.25 1.96 3.15 0.9126 0.864 0.0160 0.029 0.9551 42.24
HR-E-A 9.26 1.96 3.16 0.9126 0.864 0.0157 0.030 0.9552 27.70
HR-E-NE 9.31 1.97 3.16 0.911 0.863 0.0178 0.028 0.9547 31.73

HR 9.29 1.97 3.18 0.9122 0.863 0.0164 0.031 0.953 0.34
GSA 9.25 2.26 3.21 0.902 0.868 0.023 0.054 0.924 3.17
SFIM 9.75 2.21 3.16 0.898 0.849 0.024 0.051 0.925 0.35

GLP-SDM 10.90 2.38 3.16 0.897 0.854 0.028 0.059 0.915 1.16
AWLP 9.25 2.12 3.16 0.911 0.862 0.022 0.052 0.927 2.78
ATWT 8.62 1.98 2.99 0.915 0.874 0.025 0.054 0.922 2.31

EXP 12.84 3.43 3.16 0.788 0.669 0.000 0.038 0.962 -

It can be seen that HR-E, HR-E-A and HR-E-NE give similar performances at the original scale,
although they offer different values for NMP, as shown in Table 1. Moreover, they offer higher
QNR values than the original HR method. For the degraded scale, HR-E and HR-E-A also provide
very close Q2n values that are higher than those provided by HR. This indicates that using a Tc
value automatically determined by the Canny algorithm is a good choice for the proposed method.
In contrast, in the degraded scale, HR-E-NE offers lower Q2n values than HR. This is mainly due to
the fact that the fused spectra of some MPs, which are identified from some under-segmented regions
obtained using the degraded images, show spectral distortions. Consequently, it can be concluded
that under-segmented regions should be excluded from identifying MPs, especially for the fusion of
images at the degraded scale, in order to reduce spectral distortion of fused images.

It can be seen from Table 2 that HR-E and HR-E-A offer the highest Q2n values for the degraded
WV-2 and WV-3 datasets, followed by the original HR method. The ATWT method provides the highest
Q2n values for the degraded GE-1 dataset, followed by the proposed method and HR. The proposed
method yields the highest QNR values for the three original datasets, followed by HR. The proposed
method provides higher Q2n, SCC and QNR values and lower RASE, ERGAS, SAM and DS values,
than the original HR method, for all the three datasets. This indicates that the proposed method, which
considers improving the fusion of MPs, is effective at reducing spectral distortions.

Besides HR-E, HR-E-A and HR, the other methods yield slightly different performances for
different datasets. For the WV-2 and WV-3 datasets, the GSA method offers higher Q2n and QNR
values than SFIM and the three MRA methods, including GLP-SDM, AWLP and ATWT, due to its
robustness to aliasing and misregistration errors. The eight bands of WV-2 and WV-3 systems are
arranged in two arrays. This acquisition modality can lead to a small temporal misalignment between
MS bands [43,57]. The AWLP method gives better performances than ATWT, for the two eight-band
datasets and the original GE-1 dataset. This is because AWLP uses the multiplicative injection model,
which is proven to be better than the additive injection model used by ATWT [43]. However, for the
degraded GE-1 dataset, as an exception, ATWT yields higher Q2n and SCC values and lower SAM and
RASE values than the proposed method. This is mainly caused by a very low correlation coefficient
(CC) between the PAN and NIR bands of this dataset, resulting in the fact that some vegetation regions
are over-enhanced in the fused images generated by the methods using the SDM model, such as
HR, AWLP and SFIM. The low CC value between the PAN and NIR bands of this dataset is due to
the physics of the satellite, as well as a large amount of vegetation included in this image. For the
WV-3 dataset, GLP-SDM offers higher Q2n and QNR values than AWLP and ATWT. For the WV-2 and
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GE-1 datasets, in contrast, AWLP and ATWT give better performances than GLP-SDM. In addition,
it can be observed from Table 2 that the proposed method shows more significant improvements at
the original scale than at the degraded scale. This is mainly due to more MPs that are identified and
improved by the proposed method at the original scale than at the degraded scale, as shown in Table 1.
The computation times for each method used to fuse the original images are also listed in Table 2.
All the methods were implemented using MATLAB R2018a. The proposed method uses about 27–43 s
to generate a fused product at the original scale. We think the time costs are acceptable as the total
times are less than 1 min. The computation time of the proposed method is mainly related to the
number of modified MPs, NMP. The image segmentation process requires about 3 s, which is a very
short time, whereas a very large percentage of the time is used for identifying MPs and improving
their fused spectra.

Subsets of the original and fused images of the three datasets at the original scale are shown
in Figures 6–8, respectively. All the fused MS images are shown after being stretched to the same
histogram as the corresponding original MS bands. Each of the subsets has a size of 512 × 512 pixels.
The subsets of the WV-2 and WV-3 images are shown in compositions of Bands 5, 7 and 2, whereas
those of the GE-1 images are shown in compositions of Bands 3, 4 and 1.

Generally, these fused products show similar visual quality. However, the fused images produced
by the improved method show significantly more sharpened boundaries than the others. This is
obvious for the fused subsets in red rectangles shown in Figures 6–8. It can be observed from Figure 6
that the fused subset produced by the proposed method shows more sharpened boundaries between
vegetation areas and roads than the other fused subsets. Similarly, it can be seen that the fused subset
generated by the proposed method yields more sharpened boundaries between shadows and roads,
as shown in Figure 7, and boundaries between vegetation and buildings, as shown in Figure 8,
than the other fusion products. This is also because some MPs near boundaries between different
image objects were recognized and fused by the proposed method to be as close as possible to the
spectra of corresponding pure pixels. This leads to the fact that the improved fused versions of these
MPs show less spectral distortion than the original ones. Actually, there are a large number of MPs
near boundaries between different image objects that were recognized, and their fused spectra were
improved by the proposed method. The fused spectra of some of these MPs do not show visually
noticeable improvements due to the nonsignificant spectral differences between these MPs and the
corresponding pure pixels.
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Figure 6. The original and fused images for a 512 × 512 subset of the original WV-2 dataset; (a) 0.4-m
PAN; (b) the upsampled version of 1.6-m MS; and fused images generated by the (c) HR-E, (d) HR,
(e) GSA, (f) SFIM, (g) GLP-SDM, (h) AWLP and (i) ATWT methods.

Consequently, it can be summarized that the improved approach can reduce spectral distortions
of fusion products and sharpen boundaries between different image objects, especially for boundaries
between vegetation and other non-vegetation objects.
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Figure 7. The original and fused images for a 512 × 512 subset of the original WV-3 dataset; (a) 0.4-m
PAN; (b) the upsampled version of 1.6-m MS; and fused images generated by the (c) HR-E, (d) HR,
(e) GSA, (f) SFIM, (g) GLP-SDM, (h) AWLP and (i) ATWT methods.
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Figure 8. The original and fused images for a 512 × 512 subset of the original GE-1 dataset; (a) 0.5-m
PAN; (b) the upsampled version of 2-m MS; and fused images generated by the (c) HR-E, (d) HR,
(e) GSA, (f) SFIM, (g) GLP-SDM, (h) AWLP and (i) ATWT methods.

3.4. Analysis of the Determination of the Thresholds Involved

In this section, experiments were performed to evaluate the robustness of the performance of
the proposed method to different thresholds and to provide a reference for selecting the best values
for the thresholds involved. A series of fused images was firstly produced by the proposed method
using different values assigned to TV, TM and TA, respectively. Then, the quality of these products
was evaluated. The three original datasets were used in the experiments.

The values assigned to TV, TM and TA are listed in Table 3. In the experiment using different values
for TV, the values for TM and TA were set to be the same values as listed in Table 1. Similar approaches
were employed during the experiments using different values for TM and TA. The quality of fused
images of the three original datasets was assessed using QNR, as shown in Figure 9. The number of
modified MPs, NMP, for each product is also shown in Figure 9.
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Table 3. The ranges of the values assigned to the three parameters TV, TM and TA.

Parameter Range Step

TV [0.1, 0.5] 0.5
TM [0.2, 0.9] 0.1
TA [10, 100] 10
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Figure 9. The QNR and NMP of fused images for the three original datasets generated by the proposed
method using different TV, TM and TA values. (a) QNR and (b) NMP of fused images of the proposed
method using TV values ranging between 0.1 and 0.5 with a step of 0.05; (c) QNR and (d) NMP of
fused images of the proposed method using TM values ranging between 0.2 and 0.9 with a step of 0.1;
(e) QNR and (f) NMP of fused images of the proposed method using TA values ranging from 10–100
with a step of 10.

The QNR and NMP for the fused images generated from the three datasets by the proposed
method using different values for TV are shown in Figure 9a,b, respectively. Generally, the proposed
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method offers very close QNR values for each dataset when using TV values higher than 0.2. It can be
seen from Figure 9a,b that the proposed method provides the best performances when using TV values
between 0.2 and 0.5 for WV-2, between 0.20 and 0.35 for WV-3 and between 0.10 and 0.15 for GE-1.
Actually, it is reasonable that the best selection for TV varies from image to image, as relative variances
of segments generated from different test images may have different value ranges. A possible solution
for selecting an appropriate TV value for a dataset is to determine the value according to the mean and
deviation of the relative variances of all the segments.

It can be seen from the QNR and NMP plots shown in Figure 9c,d that neither QNR nor NMP

show significant changes when the values for TM vary. Considering the fact that all the segments have
values ranging from 0–1, the best selection for TM used by the proposed method may be the median of
this range, such as 0.5 and 0.6.

The QNR and NMP for the fused images generated using different values for TA are shown in
Figure 9e,f, respectively. Although the value of NMP has an apparent decline along with the increase of
TV, the values for QNR are relatively stable. For the WV-2/3 datasets, the values of QNR decrease
slowly along with the increase of TA. Generally, TA values ranging from 30–80 are slightly better than
the others, for the two datasets. For the GE-1 dataset, QNR yields the highest values when using TA

values ranging from 40–50. As introduced in Section 2.4, the value of TA should be higher than 25.
It may be concluded that the values ranging from 30–80 are good choices for TA.

Another experiment was performed to produce fused images by the proposed method using
different TV values, with a TA value of 30. The QNR and NMP for the fused images generated from the
three datasets using different values for TV are shown in Figure 10a,b, respectively. It can be seen that
the curves for the three datasets are very similar to those presented in Figure 9a,b. This indicates that a
TA value of 30 is also appropriate for the three datasets.
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4. Discussion

The impact of MPs on the quality of fused products of MS and PAN bands simultaneously
recorded by the same sensor is rarely considered in current fusion methods. The fused versions of
some MPs, which correspond to pure PAN pixels, remain mixed in fused images. We think this is one
of the main reasons for the spectral distortions of fusion products, as well as the blurred boundaries
between different image objects observed in fused images. The fused spectra of MPs near boundaries
between vegetation and non-vegetation objects were improved in previous work. It was demonstrated
that reducing spectral distortions that occur in fused versions of MPs is effective in improving the
quality of fused products. Different from our previous works, which considered only MPs near
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boundaries between vegetation and non-vegetation objects, the proposed method in this work takes
into account MPs near boundaries between different objects, benefitting from the employment of
image segmentation. The proposed method was demonstrated to be effective for reducing spectral
distortion and sharpening boundaries between different objects, which is especially noticeable visually
for boundaries between vegetation, shadows, water bodies and other image objects.

In the proposed method, MPs are identified based on segments obtained by segmenting the
original PAN band. This leads to the fact that the boundary accuracy of each segment has a great
impact on the performance of the proposed method. To ensure good and stable performances,
image segmentation methods considering edge information are more suitable for the proposed method
than other methods not considering edge information, such as the multiresolution image segmentation
method in the Ecognition software. In addition, the computing efficiency of the employed image
segmentation algorithm is another factor that should be considered. In order to obtain segments
with accurate boundaries and ensure a relatively high computational efficiency, the EMF method
was employed. It was chosen because it is fast and can obtain segments with accurate boundaries.
However, other outstanding image segmentation methods that take into account edge information
can also be considered by the proposed method to improve its performance. In addition, boundary
pixels in over- and under-segmented regions are not considered in order to avoid introducing spectral
distortion and to improve computational efficiency. However, this strategy may limit the number
of identified MPs, the fused spectra of which are improved by the proposed method. Further work
can also be conducted through refining the over- and under-segmented regions and then including
these regions in the following steps to improve the fused spectra of MPs in these regions. Although
the proposed method employed the HR method to generate fusion products, similar solutions can
be designed and applied to other fusion methods to reduce the spectral distortions caused by MPs.
In addition, as MPs are identified and fused according to segments obtained by segmenting the
PAN band, the proposed method is sensitive to misalignments between the MS and PAN bands.
The alignments between the MS and PAN bands should be checked before the fusion.

The proposed method gave slightly different performances for the three datasets employed in
the experiments. This is mainly related to the number of MPs for which the fused spectra are improved,
as well as the spatial resolutions and image contexts of the employed datasets. However, the proposed
method shows consistent improvements in the experiments using three datasets. Additionally,
this solution may be improved in further research. We hold the opinion that the main contribution
of this work is that we have provided a novel solution based on image segmentation for reducing
spectral distortions existing in pansharpened HSR MS images and sharpening boundaries between
different image objects. As boundaries between vegetation, shadows, water bodies and other image
objects are significantly sharpened in the fusion products, these kinds of solutions are very useful for
generating fusion products used in applications related to vegetation and water bodies.

5. Conclusions

An improved image fusion method based on image segmentation was proposed to reduce spectral
distortions of fused images, through the improvement of fused spectra of MPs. In this method, the PAN
image was firstly segmented using an edge-based image segmentation method to obtain a large number
of image segments. Then, segments that were over- or under-segmented were recognized and excluded
in the following steps. After that, boundary pixels of each of the remaining segments were identified,
and pixels near these boundaries were then identified as MPs. Next, spectra values of each identified
MP were modified according to the spectra of a selected pure pixel within the same segment as the MP.
Finally, the identified MPs were fused using the modified spectra, and the other pixels were fused
using the original spectra, using the HR method. Using three high-resolution satellite images recorded
by WV-2, WV-3 and GE-1, respectively, the proposed method was compared with the GSA, SFIM, GLP,
AWLP and ATWT methods. The experimental results show that the fusion products generated by
the proposed method yield the smallest spectral distortion, as well as sharpened boundaries between
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different objects. There are several thresholds that needed to be determined during the application of
the proposed method. Experiments were performed to evaluate the robustness of the proposed method
and discuss the selection of optimal values for each threshold. It is shown that the performances of the
proposed method is relatively stable for different thresholds. Other outstanding image segmentation
methods taking into account edge information can be used to take the place of the EMF segmentation
used by the proposed method. Although the proposed method employed the HR method to generate
fusion products, some other fusion methods can also be used by the proposed method to obtain fused
images with less spectral distortions.
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