
 

Remote Sens. 2018, 10, 778; doi:10.3390/rs10050778                             www.mdpi.com/journal/remotesensing 

 

Article 

Assessing Texture Features to Classify Coastal 

Wetland Vegetation from High Spatial Resolution 

Imagery Using Completed Local Binary Patterns 

(CLBP) 

Minye Wang 1, Xianyun Fei 1,*, Yuanzhi Zhang 2,*, Zhou Chen 1, Xiaoxue Wang 1, Jin Yeu Tsou 3, 

Dawei Liu 2 and Xia Lu 1 

1 School of Geomatics and Marine Information, HuaiHai Institute of Technology, Lianyungang 222002, 

China; wmy@hhit.edu.cn (M.W.); chenzhou@hhit.edu.cn (Z.C.); wxx_hhit@163.com (X.W.); 

lux200800070@hhit.edu.cn (X.L.) 

2 National Astronomical Observatories, Key Lab of Lunar Science and Deep-space Exploration, Chinese 

Academy of Sciences, Beijing 100101, China; liudw@nao.cas.cn 
3 Center for Housing Innovations, The Chinese University of Hong Kong, Shatin, New Territories, Hong 

Kong, China; jinyeutsou@cuhk.edu.hk 

* Correspondence: feixy@hhit.edu.cn (X.F.); yuanzhizhang@hotmail.com (Y.Z.) 

Received: 21 March 2018; Accepted: 12 May 2018; Published: 17 May 2018 

Abstract: Coastal wetland vegetation is a vital component that plays an important role in 

environmental protection and the maintenance of the ecological balance. As such, the efficient 

classification of coastal wetland vegetation types is key to the preservation of wetlands. Based on 

its detailed spatial information, high spatial resolution imagery constitutes an important tool for 

extracting suitable texture features for improving the accuracy of classification. In this paper, a 

texture feature, Completed Local Binary Patterns (CLBP), which is highly suitable for face 

recognition, is presented and applied to vegetation classification using high spatial resolution 

Pléiades satellite imagery in the central zone of Yancheng National Natural Reservation (YNNR) 

in Jiangsu, China. To demonstrate the potential of CLBP texture features, Grey Level 

Co-occurrence Matrix (GLCM) texture features were used to compare the classification. Using 

spectral data alone and spectral data combined with texture features, the image was classified 

using a Support Vector Machine (SVM) based on vegetation types. The results show that CLBP 

and GLCM texture features yielded an accuracy 6.50% higher than that gained when using only 

spectral information for vegetation classification. However, CLBP showed greater improvement in 

terms of classification accuracy than GLCM for Spartina alterniflora. Furthermore, for the CLBP 

features, CLBP_magnitude (CLBP_m) was more effective than CLBP_sign (CLBP_s), CLBP_center 

(CLBP_c), and CLBP_s/m or CLBP_s/m/c. These findings suggest that the CLBP approach offers 

potential for vegetation classification in high spatial resolution images. 

Keywords: coastal wetland vegetation; feature extraction; completed local binary patterns (CLBP); 

object-based classification 

 

1. Introduction 

Wetlands, including of the coastal variety, are a vital part of the ecosystem and perform 

important related functions, including water quality protection, flood mitigation, water and soil 

conservation, and climate regulation [1–3]. Vegetation, as the main component of wetlands [4], 

plays a crucial role in carbon sequestration, shoreline protection, and wildlife habitats [5–7]. 
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Unfortunately, large areas of the natural vegetation community have been extensively degraded or 

even lost as a result of certain external factors, such as climate, exotic plant species invasion, and 

human activity [8,9]. In recent years, with the development of coastal areas in China, the latter has 

exerted increasing pressure on wetland vegetation and has brought about serious degradation. To 

manage and protect these wetlands, detailed vegetation mapping is required; accordingly, the 

study of approaches for the quick and accurate classification of coastal vegetation types is highly 

germane. However, most research involving coastal wetland mapping has been focused on the 

land-use/cover-type classification, while discussions on the wetlands’ interior vegetation patterns 

remain limited.  

Interest in wetland vegetation has been growing since the Ramsar Convention of 1971. 

Traditionally, fieldwork has been the most commonly used method of investigating vegetation 

types; however, this requires a great deal of manpower, material resources, and time. Remote 

sensing, in contrast, offers a simple and efficient means of obtaining data. Initially, most studies 

focused on wetland changes in terms of land use/cover type did not include appraisals of 

alterations to the vegetation, but a gradual shift to incorporating them has been seen in recent years. 

For example, Tan et al. [10] studied the classification of wetland vegetation types using the 

Normalized Difference Vegetation Index (NDVI) in Yancheng, China, based on Landsat7 TM 

images. Liu and Xu, meanwhile, studied vegetation’s ecological character using the NDVI in the 

north Jiangsu shoal of east China [11]. In these studies, however, spectral data was applied in order 

to classify individual vegetation communities without considering mixed vegetation communities. 

In reality, such communities may exist within the boundaries of different types of vegetation. In 

moderate spatial resolution satellite images, various vegetation communities may be presented in 

the mixture of pixels, complicating their differentiation from their neighboring vegetation types 

using only spectral information. With the advent of high spatial resolution satellites, more spatial 

information can be obtained, especially regarding texture, which is closely related to object internal 

construction. Some studies have demonstrated the efficiency of texture for improving vegetation 

classification accuracy [12,13]. The Grey Level Co-occurrence Matrix (GLCM) is a commonly used 

method of analyzing texture and has proven an effective approach when applied to vegetation 

classification [14,15]. Based on GLCM’s popularity in vegetation classification, some researchers 

[16,17] have attempted to classify wetland vegetation using texture obtained from the approach. 

Berberoğlu et al. [18] studied the land-use/cover change dynamics of a Mediterranean coastal 

wetland based on extraction of vegetation from Landsat TM images using GLCM. Elsewhere, 

Arzandeh and Wang [19] used GLCM texture measurements to classify wetland and other types of 

land cover. Their results showed that GLCM texture analysis of Radarsat images improved the 

wetland classification’s accuracy. Thus, we are interested in whether wetland vegetation types, 

including mixed vegetation, can be classified to a high degree of accuracy based on spectral and 

texture features of high spatial resolution images. At the beginning of the research, we extracted 

texture features using GLCM; however, this approach can only be sensitive to changes in greyscale 

values in specific directions. The results are affected by the setting of parameters (distance and 

angle) and texture feature selection. Without extensive and complicated analysis, the best setting 

and texture feature, leading to optimal performance parameters, cannot be selected [20]. Because 

researchers have not achieved a better understanding of wetland vegetation, the texture’s ancillary 

effect on classification may not be satisfactory when using the GLCM algorithm only, and further 

texture analysis methods are required to improve the coastal wetland vegetation classification. 

Local Binary Pattern (LBP) is a simple and effective texture operator that is widely used in the 

field of computer vision, especially face recognition and target detection. LBP is a neighborhood 

operation that analyzes the grey value changes between a pixel and its neighbors, rather than 

following one pixel in a particular direction. The greyscale invariance, a characteristic of LBP, can 

effectively reduce the influence of illumination. Chowdhury et al. [21] used Co-occurrence of Binary 

Pattern, an improved version of LBP, to classify dense and sparse grasses, obtaining 92.72% 

classification accuracy. Musci et al. [22], for their part, evaluated LBP performance in 

land-use/cover object-based classification of IKONOS-2 and Quickbird-2 satellite images, with the 
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results showing that the LBP Kappa index was higher than GLCM. Since the advent of LBP, many 

LBP improvement algorithms have been proposed, one of which, Completed Local Binary Patterns 

(CLBP), takes two aspects of signs and magnitudes into account. These differences are broken down 

into two basic constituents, named CLBP_sign (CLBP_s) and CLBP_magnitude (CLBP_m). CLBP_s 

and LBP are, in fact, the same thing, just under different names. Basic constituent features can be 

combined through joint distributions to improve classification results. Singh et al. [23] compared 

CLBP to LBP in facial expression recognition, their results showing that CLBP outperformed LBP. 

Some other studies have also shown that the average recognition efficiency of the proposed method, 

using CLBP, is better than with LBP. Thus far, CLBP has not been applied in coastal wetland 

vegetation classification using high spatial resolution satellite images.  

Although CLBP has been demonstrated to be superior to LBP in terms of texture analysis 

capabilities, our aim was to examine its performance on the classification of wetland vegetation in 

high spatial resolution images; accordingly, such classification was first applied based on spectrum 

and texture features, extracted by CLBP, via a case study of the largest tidal flat wetland in Jiangsu 

Province, China. The accuracy of CLBP classification was also evaluated by comparing it with 

GLCM.  

2. Study Area and Data 

2.1. Study Area 

Yancheng National Natural Reservation (YNNR), the largest tidal flat wetland in China, is 

located in Jiangsu Province of China and stretches for 582 km along the coast of the Yellow Sea [24]. 

In 1992, it was approved as a National Nature Reserve by the China State Council; and in 2002, it 

was designated as “Ramsar Wetlands of International Importance” with the main aim of protecting 

shoal wetland ecosystems and rare wild animals and plants. Lying in the transition belt between the 

warm temperate and northern subtropical zones, YNNR is characterized by a monsoon climate. The 

mean annual precipitation is 980–1070 mm, while the average annual temperature is 13.7–14.6 °C 

[25]. The altitude in the YNNR is 0–4 m, and the terrain is dominated by a gentle slope of less than 

5° [26,27]. The region has plentiful water resources and a broad marshland, which offers a natural 

habitat for various species of vegetation and animals. Each year, more than 300 species of migratory 

birds, in addition to the red-crowned crane (Grus japonensis), come here from cold northern China 

or other countries to stay for the long winter [26,27]. 

Our study was conducted in the central core zone of YNNR (Figure 1), ranging from 120°29′ E 

to 120°37′ E, 33°33′ N to 33°38′ N, and covering an area of 75 km2. This region comprises typical 

coastal salt marsh wetlands that have been well protected and managed, except for minimal human 

interference represented by some ditches, which are less than 20 m in width and were constructed 

for drainage. In addition, based on observation of Google Earth as well as field surveys, we were 

certain that, in the central core zone, the vegetation types are more diversified and vegetation cover 

is higher compared to other parts of YNNR. Thanks to its well-preserved and pristine coastal 

wetland vegetation, it has now been approved as one of the most important sanctuaries for the 

endangered red-crowned crane in China. In the area from sea to land, the stripe distribution pattern 

of vegetation communities is obviously caused by the plants’ succession. The main vegetation types 

include Spartina alterniflora, the Phragmites community, the Suaeda glauca community, and their 

mixture zones. A small number of trees, as well as some arable lands, are distributed throughout 

the study area; however, these are of negligible quantity and were not considered vegetation types. 

Vegetation classification, based on high spatial resolution images, is of great benefit to coastal 

wetland vegetation study and conservation work [28]. 
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Figure 1. The location of the study area. 

2.2. Data 

A high spatial resolution Pléiades satellite image, acquired from Airbus Defence and Space 

(https://www.intelligence-airbusds.com/pleiades/), was used in this study. The cloudless, 

terrain-corrected images were acquired on 13 July 2015, which was a highly suitable date for 

vegetation identification. The images were composed of a four-band multispectral image (2 m 

spatial resolution) and a panchromatic band image (0.5 m spatial resolution). The wavelength 

characteristics of all bands are shown in Table 1. The images were registered to a Universal 

Transverse Mercator (UTM) projection using the World Geodetic System 1984, Zone 51. The 

atmosphere correction was accomplished using the FLAASH (Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes) algorithm in the Exelis Envi5.2 software [29,30].  

Table 1. Pléiades Band Descriptions. 

Band Wavelength (nm) Spectral Region 

1 430–550 Blue 

2 490–610 Green 

3 600–720 Red 

4 750–950 Near Infrared 

The four-band multispectral image was fused with the panchromatic band image using the 

Gram-Schmit algorithm. The 0.5 m color image was obtained using the image fusion procedure. 

According to our previous studies [31], when it comes to vegetation classification, 0.5 m fused 

multispectral bands could yield a higher accuracy compared with original 2 m four bands of 

multispectral image and are thus more suitable. In the context of this study, fused multispectral 

bands were used to supply the spectrum information, and the first layer of the fused images was 

chosen to extract the texture features. 

2.3. Field Data Collection and Sample Dataset Construction 

https://www.intelligence-airbusds.com/pleiades/
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In the previous inventory conducted by the Sheyang County Forestry Bureau, some samples 

were collected to provide information that was used for classification training and validation. 

However, further samples were collected in a field survey done in collaboration with said bureau 

from June to July 2017. 

Because of wetland protection, the central coastal wetland is unreachable, and therefore, field 

surveys can only be carried out along the periphery or certain narrow roads. The surveying location 

on the image was recorded using GPS (Global Positioning System). Due to the limitation of 

segmentation objects used for training, it is hard to distinguish in the image, the homogeneous 

vegetation quadrant areas (e.g., more than 10 m × 10 m) were plotted on the image via visual 

interpretation, and thus these central points of the vegetation quadrants were sampled as field data 

points. As a result, 150 points were used for training samples, while 200 points were used for 

validation. Figure 2 shows the five vegetation classes in the visual interpretation images, as well as 

the photographs with their characteristics. 

 

Figure 2. The vegetation types for classification and their image characteristics. 

2.4. Texture Feature Extraction 
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LBP was proposed by Ojala et al. [32] for the purpose of texture classification. It works by 

setting a neighborhood threshold with the grey level of the central pixel as below: 
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where gc represents the grey value of the center pixel and gp (p = 0, 1, …, P − 1) corresponds to the 

neighboring pixels selected on the circle of radius R (R > 1) and the total number of the neighbors P 

(P > 1). The LBPP,R value can be calculated by assigning a binomial factor 2p for each gp reassigned to 

the value. The LBP encoding process is illustrated in Figure 3. 

 

Figure 3. An example of encoding process of LBP (P = 8, R = 1). 

As LBP is popularized, researchers have been working on the improvement of this method, for 

example, CLBP as proposed by Guo et al. [33]. The difference between CLBP and LBP is that CLBP 

does not simply assign 0 or 1 to gp, depending on gp − gc. CLBP calculates the difference between gc 

and gp as dp = gp − gc, which is the same as LBP. However, CLBP can further decompose dp into two 

components Sp and Mp: 
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 is the sign of dp and mp is the magnitude of dp. CLBP_s can be calculated 

by assigning a binomial factor 2p for each sp reassigned to the value. CLBP_m operator is defined as 

follows: 
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where c is the mean value of mp for the whole image. 

CLBP_c is defined by converting the center pixels into a binary code using the threshold value: 

1_ ( , )cCLBP C t g c=  (4) 

where gc is set as the center pixel and c1 is the average of the whole pixels’ values.  

The CLBP_m, CLBP_s, and CLBP_c represent the original image, which is combined to form the 

CLBP feature map (Figure 4). CLBP_m and CLBP_s could be combined to CLBP_m/s by joint 

histogram. Similar to the CLBP_m/s, others CLBP texture features can be setup. In this study, we 

chose the two CLBP texture features, CLBP_m/s and CLBP_m/s/c, which were the best results in Guo 

et al. [33]. 
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Figure 4. An example of encoding process of CLBP_s and CLBP_m (P = 8, R = 1). 

GLCM was first proposed by Haralick, and is one of the best-known tools for texture analysis 

and extraction of spatial features in the image processing of remotely sensed data. GLCM calculates 

the co-occurrence matrix and obtains characteristic parameters that can reflect the changing extent 

of uniformity, variation, and similarity degree, with regard to directions and intervals. Before the 

calculation, the number of grey levels needs to be specified to simplify the calculation. The pixel of 

interest and its neighbor intervals of a certain distance and angle were then observed. Finally, 

GLCM is constructed by counting the numbers of instances of all possible neighborhoods.  

2.5. Texture Feature Parameters 

To compare the efficacy of the two methods, we attempted to find the most appropriate 

parameters for classification to enhance the results’ accuracy. We tested texture parameters using 

different vegetation types of sample points’ separability based on Jeffries-Matusita distance (J-M 

distance). The J-M distance is considered more suitable for expressing the separability 

characteristics of categories than other separation indicators [34]. The value of J-M distance is 

between 0 and 2; the larger the value, the better the separability obtained.  

2.6. Image Segmentation 

After analysis of the appropriate parameters, the image is segmented for classification; this is a 

fundamental and crucial step. In this study, a method of multi-resolution segmentation (MRS) was 

applied. It is a bottom-up image segmentation approach, beginning with pixel-sized objects, in 

which individual pixels are merged into objects based on parameters such as scale, color, shape and 

so on by iteration [35]. These parameters are then weighted together to define a non-overlapping 

homogeneity criterion, which is equivalent to a threshold, to stop object mergence. The user can 

control the weighting and influence the result of the image segmentation. 

Scale parameter defines the maximum standard of controlling the object size. The higher the 

value, the larger the resulting image objects are. Scale parameter is thought as the most important 

parameter because the scale value influences the results of classification accuracy directly. An 

appropriate scale value can clearly distinguish the different objects. Smaller scale parameter values 

result in smaller and more image objects, increasing the classification complexity, while larger 

values lead to increase error classification of pixels.  

In theory, the optimum scale could be determined based on internal heterogeneity threshold of 

the segmented object. In practice, it is suggested that the scale could be obtained by the visual 

inspection or quantified analysis through comparing with actual characteristics of sampling objects, 

for example, shape, size or the homogeneity [36]. In our study, due to the small difference of 

vegetation texture features in the image, it is hard to plot some sample objects for the optimum 

scale quantified analysis. Therefore, the optimum scale was obtained by the visual inspection of the 

segmented objects. In the study area, wetland vegetation types are simple, and their locations are 
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obvious stripe distribution patterns from sea to land. As a result, the larger size scale is more 

suitable for systematic trial comparison. As shown in Table 2, water could be well segmented with 

other classes at scale 600, Phragmites at scale 300, and Spartina alterniflora, Suaeda glauca, mixed areas 

of vegetation and ground at scale 200. When the scales were smaller than these values in Table 2, the 

objects would be over-segmented [37]. For example, if the image were segmented at scale 190, the 

simple objects would be over-segmented into a greater number of smaller fragments. If compared 

with urban vegetation classification, the size of the segmentation scale is much larger than the 

simple vegetation spatial distribution pattern [37].  

Color and shape parameters control the spectral homogeneity and texture homogeneity of the 

resulting image objects, respectively. Shape parameter is made up of compactness parameter and 

smoothness parameter [36]. The two parameters are considered as the overall compactness and 

smooth border, respectively. In this study, the appropriate values for individual parameters were 

selected in image segmentation by trial and previous experiences [31]. Table 2 shows the values of 

segmentation parameters used in study. 

Table 2. Segmentation parameters and optimum segmented images used in this study. 

Objects (Scale) 
Optimum Segmented 

Images 

Color/ 

Shape 

Smoothness/ 

Compactness 
Features 

Water (600) 

 

0.9/0.1 0.5/0.5 

The features used to 

perform image 

segmentation 

correspond to each 

procedure of 

classification 

Phragmites (300) 

 

Mixed Spartina 

alterniflora and Suaeda 

glauca (200) 

 

2.7. Object-Based Classification 

Two kinds of sampling points were selected through fieldwork and imagery interpretation, of 

which 150 points were used as training points for classification, while 200 points were used as 

validating points for accuracy evaluation. Support Vector Machine (SVM) algorithm [37] was 

applied to classify the image based on the vegetation types. 

SVM is a supervised classification method that overcomes the limitation of insufficient samples 

and reduces the effect of noisy ones. This method is a convex quadratic optimization problem, by 

which the global optimal solution for solving the whole equation is transformed into finding the 

local solution that could be accomplished by solving kennel function. The central issue for SVM is 

to determine hyperplane by solving the kennel function. Training data pixels closest to the 

hyperplane are called support vectors, which are the critical for the pixels value gap between the 
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classes. SVM separates the image with the hyperplane that could maximize the gap between the 

classes. The kennel function could be linear, Polynomial, Radial Basis Function, or Sigmoid [37].  

In this study, Radial Basis Function was used to determine the hyperplane, and the c 

parameter was set to 2. All the classifications were classified in three levels based on image 

segmentation, and the details for each classification are shown in Table 3. 

Table 3. Vegetation separability in the window size of GLCM 7 × 7. 

Separability of Mean Texture Feature 

Classes PC SA SG PC & SG SA & SG 

PC      

SA 2.000     

SG 1.985 2.000    

PC & SG 1.999 1.945 1.992   

SA & SG 1.905 1.936 0.811 1.564  

Separability of ASM Texture Feature 

PC      

SA 2.000     

SG 1.980 2.000    

PC & SG 1.999 1.957 1.992   

SA & SG 1.946 1.921 0.866 1.134  

Separability of Entropy Texture Feature 

PC      

SA 2.000     

SG 1.980 2.000    

PC & SG 1.999 1.953 1.992   

SA & SG 1.965 1.921 0.941 1.136  

The evaluation of classification accuracy will be carried out by a confusion matrix. The 

validation samples were produced based on the validation points. When more than one point was 

located in the same object, only one of them would be retained for the evaluation calculator. 

3. Experimental Results and Discussion 

3.1. Texture Parameter Selection 

In this study, we calculated GLCM parameters based on two factors: texture features and 

window sizes. Texture features, such as Mean, Variance, Angular Second Moment (ASM), Entropy, 

and Contrast, were tested in the same window size. It was found that Mean ASM and Entropy were 

superior to the vegetation classification. Our results show that the 7*7 window size obtained the 

highest separability of vegetation types if compared with those of the texture features of Mean ASM 

and Entropy in 3 × 3, 5 × 5, and 9 × 9 window sizes. 

Similarly, we selected the CLBP size and used three sizes (e.g., CLBP8,1, CLBP16,2, and CLBP24,3) 

to calculate the vegetation separability of CLBP’s basic elements: CLBP_m and CLBP_s. Our results 

show that CLBP achieved the highest separability when P = 24 and R = 3. Tables 3 and 4 display the 

separability results for GLCM 7 × 7 and CLBP24,3. 

Table 4. Vegetation separability in the window size of CLBP24,3. 

Separability of CLBP_M 

Classes PC SA SG PC & SG SA & SG 

PC      

SA 2.000     

SG 1.992 1.999    

PC & SG 1.995 1.937 1.985   

SA & SG 1.896 1.893 1.209 1.571  

Separability of CLBP_S 

PC      

SA 2.000     

SG 1.821 1.991    
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PC & SG 1.981 1.309 1.987   

SA & SG 1.899 1.917 1.118 1.562  

Note: PC represents Phragmites communis. SA is Spartina alterniflora and SG means Suaeda glauca 

community. PC & SG indicates the mixed vegetation of Phragmites communis and Suaeda glauca, 

While SA & SG is the mixed vegetation of Spartina alterniflora and Suaeda glauca. 

3.2. Classification Results and Discussion 

Object-based classification was adopted to classify spectrum alone, spectrum plus GLCM 

texture features, and spectrum plus CLBP texture features. Figure 5 shows classification results, 

with the differences of classification results between the six applied methods. The figure also shows 

that similar classified results were obtained for most parts of the wetland using the six methods, 

while some difference existed at the mixed areas of two vegetation types. Compared with the field 

work in Section 2.3, some areas in Figure 5 were misclassified as Suaeda glauca. It was found that the 

distribution of Phragmites communis was similar in different methods (see Figure 5), because this 

type of vegetation occupied a large area and there were no other plants interfered. 

 

Figure 5. Classification results: (a) Spectral textures; (b) Spectral and GLCM textures; (c) Spectral 

and CLBP_S textures; (d) Spectral and CLBP_M textures; (e) Spectral and CLBP_M/S textures; and (f) 

Spectral and CLBP_M/S/C textures. 
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In addition, it is noted that there is an obvious stripe distribution pattern of vegetation 

communities, which indicates different characteristics between different types of vegetation. 

However, there were misclassified pixels in some small areas marked in white circles in Figure 5, 

which may imply that the areas are a mixture of complex vegetation or of vegetation in different 

growing stages. The results also show that there are some differences in the mixed vegetation 

communities using different texture features. These differences still need to be further studied in 

the future. 

3.2.1. Classification Results Using Spectral Data Alone  

Table 5 shows a confusion matrix for accuracy assessment using spectral information alone. 

Table 5. Confusion matrix of classification by spectral data. 

 Water Ground PC SA SG 
PC & 

SG 

SA & 

SG 
Sum 

User 

Accuracy 

Water 17 3 0 0 0 0 1 21 80.95% 

Ground 0 26 0 1 2 2 0 31 83.87% 

Pc 0 1 30 3 0 1 0 35 85.71% 

SA 0 1 0 14 0 2 3 20 70.00% 

SG 0 2 3 0 18 2 3 28 78.57% 

PC & SG 0 1 6 0 1 15 1 24 79.17% 

SA & SG 0 1 0 1 1 0 15 18 83.33% 

Sum 17 35 39 19 22 22 23 177  

Producer 

Accuracy 
100.00% 74.29% 76.92% 73.68% 81.82% 68.18% 65.22%   

Overall Accuracy = 76.27% 

Note: PC represents Phragmites communis. SA is Spartina alterniflora and SG means Suaeda glauca 

community. PC & SG indicates the mixed vegetation of Phragmites communis and Suaeda glauca, 

While SA & SG represents the mixed vegetation of Spartina alterniflora and Suaeda glauca. 

Table 5 shows that the overall 76.27% accuracy of vegetation classification is acceptable 

without the assistance of texture features. The error classification mainly occurred in places where 

the vegetation composition is complicated, such as the Phragmites communis in different growing 

stages or mixed with ground, or Suaeda glauca community mixed with other types. This 

complication leads to the misclassification of Phragmites communis to Spartina alterniflora or of Suaeda 

glauca with vegetation mixture areas (PC & SG or SA & SG). 

As water has distinctive reflection features compared with classes, it could be discriminated 

from vegetation and ground in high accuracy except for some shallow water areas. Most ground 

areas mixed with Suaeda glauca were misclassified as vegetation. The wrong classification of ground 

as Suaeda glauca is the main reason of overall accuracy reduced in the study.  

3.2.2. Classification Results by GLCM Texture Features 

Table 6 is the confusion matrix for accuracy evaluation of vegetation classification by 

combining GLCM texture features with spectral information. 

Table 6. Confusion matrix of classification by spectral data and GLCM. 

 Water Ground P SA SG 
PC & 

SG 

SA & 

SG 
Sum 

User 

Accuracy 

Water 24 3 0 0 0 0 1 28 85.71% 

Ground 1 25 0 1 2 0 2 31 80.65% 

P 0 1 27 2 0 2 0 32 84.38% 

SA 0 2 0 22 0 2 2 28 78.57% 

SG 0 0 1 0 26 1 2 30 81.25% 

PC & SG 0 1 0 1 1 13 0 16 73.33% 

SA & SG 0 1 0 2 0 0 13 16 81.25% 

Sum 25 33 28 28 29 18 20 181  

Producer 96.00% 75.76% 96.43% 78.57% 89.66% 72.22% 65.00%   
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Accuracy 

Overall Accuracy = 82.87% 

Note: PC represents Phragmites communis. SA is Spartina alterniflora and SG means Suaeda glauca 

community. PC & SG indicates the mixed vegetation of Phragmites communis and Suaeda glauca, 

While SA & SG represents the mixed vegetation of Spartina alterniflora and Suaeda glauca. 

Table 6 shows that the overall accuracy of vegetation classification improved about 6.50% from 

76.27% to 82.87% with the additional use of GLCM texture features.  

Phragmites communis was managed by human activities in the study area and was distributed 

in aggregation. The texture of most Phragmites communis on the Pléiades satellite image is finer than 

any other vegetation. If Phragmites communis is mixed with Suaeda glauca, the texture will become 

coarser. Most mixture areas of PC & SG appear graininess features, which is helpful for improving 

the accuracy of vegetation classification. In the growing stage of Suaeda glauca, the image textures of 

Suaeda glauca or SA & SG mixture areas are coarse and chaotic. 

It is obvious that the GLCM method could extract these texture characteristics at certain degree 

and increased about 6.50% the classification accuracy of vegetation types. The result is similar to 

those of previous studies in other areas [18,19]. 

3.2.3. Classification Results by Combining CLBP Texture Features 

Table 7 is the accuracy evaluation results of vegetation classification using spectral data 

combined with CLBP texture features. From Table 7, it is clear that the combination of CLBP 

measures with spectral information improved the overall accuracy to 84.27% for CLBP_s, 85.00% 

for CLBP_m, 85.31% for CLBP_s/m, and 85.38% for CLBP_s/m/c, respectively, from 76.27% for 

spectral information alone (see Table 5). The results also indicate that additional use of CLBP 

texture features increased the vegetation classification accuracy of more than 8.00% in this case 

study.  

Table 7. Confusion matrix of classification by spectral data and CLBP. 

  Water Ground P SA SG PC & SG SA & SG Sum 
User 

Accuracy 

S 

Water 19 2 0 0 0 0 1 22 86.36% 

Ground 0 21 0 0 2 2 2 27 77.77% 

P 0 0 36 1 0 2 0 39 89.74% 

SA 0 1 0 21 0 1 3 26 80.77% 

SG 0 0 1 0 25 2 2 30 86.67% 

PC & SG 0 0 1 0 1 12 1 15 85.71% 

SA & SG 0 1 0 1 1 0 16 19 84.21% 

Sum 19 25 38 23 29 19 25 178  

Producer 

Accuracy 
100.00% 84.00% 94.74% 91.30% 86.21% 63.16% 64.00%   

 Overall Accuracy = 84.27% 

  Water Ground P SA SG 
PC & 

SG 
SA & SG Sum 

User 

Accuracy 

M 

Water 16 2 0 0 0 0 1 19 84.21% 

Ground 0 26 0 0 3 1 0 30 86.67% 

P 0 0 30 2 0 0 2 34 88.24% 

SA 0 0 0 28 0 1 2 31 90.32% 

SG 0 3 1 0 23 2 1 30 76.67% 

PC & SG 0 1 1 0 1 13 0 16 81.25% 

SA & SG 0 1 0 1 1 0 17 20 85.00% 

Sum 16 33 32 31 28 17 23 180  

Producer 

Accuracy 
100.00% 78.79% 93.75% 90.32% 82.14% 76.47% 73.91%   

 Overall Accuracy = 85.00% 

  Water Ground P SA SG 
PC & 

SG 
SA & SG Sum 

User 

Accuracy 

M/S 

Water 19 3 0 0 0 0 1 23 82.61% 

Ground 1 24 0 1 1 1 2 30 80.00% 

P 0 1 33 1 0 3 0 38 86.41% 

SA 0 1 0 27 0 1 2 31 87.10% 
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SG 0 0 1 0 23 0 2 26 88.46% 

PC & SG 0 0 1 1 0 13 0 15 86.67% 

SA & SG 0 0 0 0 0 2 12 14 85.71% 

Sum 20 29 35 30 24 18 21 177  

Producer 

Accuracy 
95.00% 82.76% 94.29% 90.00% 95.83% 72.22% 57.14%   

 Overall Accuracy = 85.31% 

  Water Ground P SA SG 
PC & 

SG 
SA & SG Sum 

User 

Accuracy 

S/M/

C 

Water 18 2 0 0 0 0 1 21 85.71% 

Ground 1 22 0 0 1 1 2 27 81.48% 

P 0 1 29 1 0 3 0 34 85.29% 

SA 0 1 0 24 0 1 2 28 85.71% 

SG 0 0 0 0 24 1 1 26 92.37% 

PC & SG 0 0 3 0 1 15 1 20 75.00% 

SA & SG 0 0 0 1 0 0 14 15 93.33% 

Sum 19 26 32 26 26 22 21 171  

Producer 

Accuracy 
94.74% 84.62% 90.63% 92.31% 92.31% 68.18% 66.67%   

 Overall Accuracy = 85.38% 

Note: PC represents Phragmites communis. SA is Spartina alterniflora and SG means Suaeda glauca 

community. PC & SG indicates the mixed vegetation of Phragmites communis and Suaeda glauca, 

While SA & SG represents the mixed vegetation of Spartina alterniflora and Suaeda glauca. 

Spartina alterniflora is another type for which the classification accuracy was highly improved 

by adding CLBP texture features. Spartina alterniflora is always located along the seaside, with a 

coarser texture on the image than Phragmites communis and Suaeda glauca. CLBP, especially CLBP_m, 

was better for discriminating SG than SA&SG. It improved producer accuracy by about 16.64% 

from 73.68% to 90.32% and user accuracy by about 20.32% from 70.00% to 90.32% (see Tables 5 and 

7). 

In comparison, wrong classification can be found in the mixture areas of ground and Suaeda 

glauca, leading to decrease the accuracy of classification for ground and Suaeda glauca. It is noted 

that CLBP did not help improve classifying the mixed areas of two vegetation types, which is 

similar to the result in Song’s study [38]. This means that CLBP is sensitive to texture changes in 

producing wrong classifications of high spatial resolution images. 

In addition, it is found that CLBP_m obtained high and consistent classification for vegetation 

types as shown in Table 7 and Figure 5. The results indicate that CLBP_m is better than other CLBP 

measures for classifying Phragmites communis and Suaeda glauca, above 90%, in that they are regular 

graininess textures, except for ground and mixed vegetation types.  

When comparing Table 7 with Table 6, it is noted that the overall accuracy classification of 

CLBP is slightly better (2–3%) than that of GLCM. But CLBP improved classification accuracy for 

Spartina alterniflora 10% more than using GLCM, from 78.57% to above 90% (see Tables 6 and 7). 

Compared with the results of CLBP24,3 in Guo et al. [33] and CLBP8,1 in Dubey and Jalal [39], 

our overall accuracy is about 85%, which is a little bit lower than that in previous studies [33,39]. 

One reason might be that those researchers used CLBP in Outex database and digital imaging, 

while we applied it in high spatial resolution satellite images. In our view, CLBP has great potential 

on large-scale images such as high spatial resolution Pléiades satellite images, although the 

accuracy was reduced when compared to digital camera images in other studies.  

Although our experiment yielded the expected results of about 85%, the study still had 

limitations. Most points from the field were close to the edge of the vegetation community; it is 

hard to reach the heart of the community because of the natural environment. If more points can be 

collected, including the center of the community, the accuracy of classification would be more 

convincing. Additionally, we chose the CLBP operator, which was more effective in Guo et al.’s 

study [33]. Since CLBP_c was not considered as a fundamental element, it was not discussed 

separately. However, CLBP_c improved the classification accuracy, whether in this study or in Guo 

et al. [33]. Therefore, the mechanism and effect of CLBP_c should be addressed in further studies.  

4. Conclusions 
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This study presented a performance assessment of texture features for the classification of 

coastal wetland vegetation from high spatial resolution imagery using CLBP. Based on the 

experimental results, it was found that both the CLBP and GLCM texture features improved 

classification accuracy effectively. The overall accuracy using CLBP was slightly better than with 

GLCM when combining spectral information with texture features. However, if comparing these 

vegetation classes, CLBP exhibits a better classification accuracy for Spartina alterniflora than when 

using GLCM. Thus, CLBP measures could be more suitable for extracting the details and regular 

graininess textures.  

Among the various CLBP features, CLBP_m showed more effective improvement for 

vegetation classification, although the overall accuracy of the classification may be slightly different, 

including water and ground areas. However, jointed features, such as CLBP_s/m and CLBP_s/m/c, 

did not show greater advantages compared to CLBP_m for the mixture and complex vegetation 

classes. 

In short, the study demonstrates that CLBP, an efficient and simple texture feature extraction 

method usually used in face recognition, could be applied to high spatial resolution Pléiades 

satellite images to classify coastal wetland vegetation. Our results evince that CLBP appears to be a 

promising method with regard to image classification of remote sensing data, especially in coastal 

wetland vegetation classification. Further research should be focused on mixed vegetation 

classification by refining the algorithm and attempting to combine CLBP with GLCM. 
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