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Abstract: In this paper, a new Region-based Convolutional Neural Networks (RCNN) method is
proposed for target recognition in large scene synthetic aperture radar (SAR) images. To locate
and recognize the targets in SAR images, there are three steps in the traditional procedure:
detection, discrimination, classification and recognition. Each step is supposed to provide optimal
processing results for the next step, but this is difficult to implement in real-life applications because
of speckle noise and inefficient connection among these procedures. To solve this problem, the RCNN
is applied to large scene SAR target recognition, which can detect the objects while recognizing their
classes based on its regression method and the sharing network structure. However, size of the input
images to RCNN is limited so that the classification could be accomplished, which leads to a problem
that RCNN is not able to handle the large scene SAR images directly. Thus, before the RCNN, a fast
sliding method is proposed to segment the scene image into sub-images with suitable size and avoid
dividing targets into different sub-images. After the RCNN, candidate regions on different slices are
predicted. To locate targets on large scene SAR images from these candidate regions on small slices,
the Non-maximum Suppression between Regions (NMSR) is proposed, which could find the most
proper candidate region among all the overlapped regions. Experiments on 1476× 1784 simulated
MSTAR images of simple scenes and complex scenes show that the proposed method can recognize
all targets with the best accuracy and fastest speed, and outperform the other methods, such as
constant false alarm rate (CFAR) detector + support vector machine (SVM), Visual Attention+SVM,
and Sliding-RCNN.

Keywords: SAR target recognition; large scene; region-based convolutional neural networks

1. Introduction

Spaceborne and airborne synthetic aperture radar (SAR) is able to operate in all-weather all-time
conditions to generate high resolution SAR images; thus, SAR has been widely used both in military
and civil fields. SAR image interpretation is the inevitable way to fully obtain the information of a
specific SAR image. However, because of scattering imaging mechanism and speckle noise in SAR
images, interpretation and understanding of SAR images is much more difficult than that of optical
photos [1]. Several years ago, many algorithms based on deep learning have been well established for
SAR automatic target recognition (ATR) [2,3], which is focused on in this work.

To achieve automatic target recognition (ATR) systems for SAR interpretation, MIT Lincoln
Laboratory put forward a standard SAR ATR architecture. The structure contains three stages:
detection, discrimination and classification/recognition [4]. The detection part is to extract candidate
regions that might include targets from SAR images with a constant false alarm rate (CFAR) detector.
However, these regions include not only targets that we want to recognize, such as tanks and vehicles,
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but also background objects, for example, buildings and trees. Then, in the discrimination part,
a discriminator trained by several manually designed features is used to divide regions into two
classes, target or not target, to reduce false alarms. Output of discriminator will be sent to the classifier
to give out the type of targets, and this operation is called classification/recognition. Performance of
classification will be greatly influenced if targets are in extended operating conditions. The accuracy
will also decrease significantly if any stage of SAR ATR is not well designed or not suitable for the
current operating condition [5]. To provide enough samples for these SAR ATR models, a project called
model-based Moving and Stationary Target Acquisition and Recognition (MSTAR) was carried out [6].
In the past few years, most researchers just focused on one part of these three stages, put forward
theories such as scene segmentation, target discrimination, feature extraction, classifier design and
so on. However, these theories and algorithms just out-perform in specific operating conditions, which
makes them not able to be applied universally. This will also result in procedure isolation and increased
difficulty of detection and recognition connection.

A reliable and universal system requires effective connection between detection and recognition,
so End-to-End models were proposed [7,8], and apply robust trainable classifiers, such as Adaboost
and support vector machine (SVM) [9–11] to realize SAR ATR. Though these End-to-End SAR ATR
models can realize the connection among three stages, they are still not as efficient as we expect.
Problems like size difference and target position mismatch between training samples and interpreting
images still need to be solved.

Neural networks could extract features automatically and have obtained remarkable achievements
in optical image detection. Regions with convolutional neural network (R-CNN), Fast R-CNN and
Faster R-CNN were proposed, which can recognize different kinds of objects with different sizes
in optical images with high accuracy [12–14]. You Only Look Once (YOLO) was proposed, which
achieved fast detection, but the accuracy is lower than Faster R-CNN [15]. Liu proposed Single Shot
MultiBox Detector (SSD), which was a compromise in accuracy and speed between Faster R-CNN and
YOLO [16].

Inspired by these advanced methods, many researchers tried to introduce deep learning methods
into the field of SAR target detection and recognition to solve problems in End-to-End models.
Morgan realized SAR target recognition with CNN and verified its ability to extract SAR target
features [17]. Hansen and Ding solved problems of target displacement, random speckle noise
and pose missing with CNN, and proved that CNN has a favorable robustness compared with
other classifiers [18,19]. Chen built an all-convolutional network called A-ConvNets to realize
recognition of SAR targets and solved the over-fitting problem caused by lack of training samples [20].
Researchers above have verified that convolutional neural networks can be realized in every process
of SAR image interpretation, but they are still in the range of three-stage process, a universal model
that can interpret large scene SAR images at once is still under exploration.

In order to break the bottleneck of traditional three-stage process, these research results gave
us the inspiration for applying deep learning methods and strategies in optical image detection to
fields of SAR target detection and recognition with consideration of unique features of SAR images.
In this paper, we have increased randomness of target distribution with strategies of segmentation to
avoid over-fitting problems cased by small training data sets, and Non-maximum Suppression among
Regions (NMSR) is proposed to choose the most proper candidate boxes among adjacent regions.
The CNN network realized not only integration of detection and recognition, but also an effective and
efficient performance dealing with large scene SAR images.

The remainder of this paper includes an introduction to the structure and components of
our convolutional neural network as well as training and testing details in Section 2, exhibition
of experimental results in Section 3, analyses of experimental results in Section 4 and conclusions
in Section 5.
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2. SAR Target Recognition Based on Region-Based Convolutional Neural Networks

At first, the flow chart of the model that we used to realize interpretation of large scene SAR
images is shown in Figure 1.
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Figure 1. Flow chart of our model. (NMSR: non-maximum suppression among regions; SAR: synthetic
aperture radar).

Then, structure of the CNN used to realize integration of target detection and recognition is
given out, and every component of this CNN is described in detail to show how it works.

Finally, a nonlinear softmax function is used to realize classification and a fully connected layer is
used to locate bounding boxes of targets [21].

Components of the CNN network are presented in details as below.

2.1. Fast Sliding

Before images are sent into the CNN, they will be re-sized to a certain size so that feature maps of
them after CNN are of the same size, and classification could be finished accurately. With application
of this strategy, the network is endowed with a certain degree of scale invariance for small images of
different sizes and scales. However, as for large scene images, once they are re-sized to a small size,
disappearance of most pixels will lead to information lost and result in a sharp drop of target
detection [22], such as missing most targets, inaccuracy of target location and lower confidence.

Thus, it is necessary to cut large scene images into sub-images, and then send these sub-images
into convolutional neural network to realize detection and recognition accurately.

Compared with recognition of SAR targets, location and detection of SAR targets are much more
time-consuming because of random distribution of sparse targets. Furthermore, sliding operation is
time-consuming as well. A sliding window with stride of one pixel can achieve the best detection
performance, but it has the lowest efficiency. Using a sliding window with a larger stride will decrease
time consumption. Since randomly distributed targets will appear in any place in an image, if one
sliding window covers only a part of the target, detection and recognition results of this target in
this sliding window will be not accurate at all. To solve the problem, we need to make sure that any
potential target in a large scene image will be completely covered by at least one sliding window. If the
size of the target is wt ∗ ht, the size of sliding window is z; then, overlap k among adjacent slices should
be limited as follows:

k ≥ max(wt, ht)

z
. (1)

This strategy could ensure an accurate detection result and a smaller time consumption.
A diagram of this fast sliding strategy is shown in Figure 2.



Remote Sens. 2018, 10, 776 4 of 18

Sub-image 1

Sub-image 2

Sub-image 4

Sub-image 3

1 2

3 4

Figure 2. Diagram of fast sliding.

2.2. Structure of Region-Based Convolutional Neural Networks

It has been proved that the number of convolutional layers plays an important role in the
performance of CNN [23]; as for SAR images, a network with a simple structure and only several layers
could get a satisfying performance. As shown in Figure 3, a CNN network with five convolutional
layers (conv layers) and two max pooling layers is used to extract features in SAR images. The number
after the symbol @ is convolution kernel size.

Conv1 @7*7
Maxpooling1

Conv2 @5*5
Maxpooling2

Conv3 @3*3

Conv4 @3*3

Conv5 @3*3

Feature maps

Figure 3. The convolutional neural network used to generate feature maps. (conv: number of feature
maps; @: filter size).
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During convolution operation, each convolution kernel is set to share the same weights so that
this kernel could detect the only specific feature at different positions of the previous layer. Strategy
of weight sharing can significantly reduce the number of free parameters, which can make training
faster and more efficient [14]. Then, the input image is sent to do convolution operations with
several convolution kernels, and outcomes of each convolution operation are organized as a set of 2D
arrays [24]. Thus, a specific convolution kernel can be treated as a feature detector as well. However,
a useful feature is more likely to distribute in a small part of the input, so it is necessary to make use of
obvious features and drop useless parts. In our network, there is always one max pooling layer after
each of the first two conv layers [25]. The max pooling layer is to find out the largest unit in a local
patch and realize a subsample on the output of the conv layer to extract local optimal features—the 2D
array output of this is called the feature map [26].

2.2.1. Convolutional Layer

Conv layers are to extract different features in the input feature maps with plenty of convolution
kernels. Input feature maps are connected to output feature maps through a specific designed strategy, so
convolution kernels are forced to extract different features. If some input feature maps O(l−1)

i (i = 1, ..., I)

are connected to one output feature map O(l)
j (j = 1, ..., J), and O(l−1)

i (x, y) is a unit of the ith output

feature map in layer l − 1 at position (x, y), O(l)
j (x, y) is the unit of the jth output feature map in

layer l at position (x, y). Let manually configured parameters k(l)ji (u, v) present the convolution kernel

connecting these input feature maps and output feature maps, b(l)j presents trainable bias of the output
feature map. The convolution is computed as below:

O(l)
j (x, y) = f (G(l)

j (x, y)), (2)

G(l)
j (x, y) =

I

∑
i=1

K−1

∑
u,v=0

k(l)ji (u, v) ·Ol−1
i (x− u, y− v) + b(l)j , (3)

where f (·) is the nonlinear activation function, and here we used the ReLu function. G(l)
j (x, y) denotes

the weighted sum of inputs to the output feature map at position (x, y). Other parameters include the
number of input feature maps I, kernel size K× K, convolution stride S and zero padding P. Stride S
specifies the intervals while using convolution kernels to the input feature maps, and lead to lower
dimensional outputs. Padding P is used to preserve the spatial size of input feature maps so that
features appearing in edges can be extracted as well. A common strategy is to pad the input with zeros
on each side of the input. A conv layer with kernels of size K× K, stride of S and I feature maps of
size W1 × H1 as input will get output composed of J feature maps of size W2 × H2, where

W2 = (W1 − K + 2P)/S + 1, (4)

H2 = (H1 − K + 2P)/S + 1. (5)

Recent literature has indicated that using filters with small sizes, such as 3 × 3 or 5 × 5, with a
stride of 1 usually produces satisfying performance [23]. The number of feature maps on each layer
is determined through cross validation. The common setting is that lower layers tend to have fewer
feature maps and higher layers tend to have more. However, in some deep models, middle layers
have much more feature maps and highest layer have fewer to reduce redundancy [27]. With strategy
of weight sharing and a specially designed connection between layers, kernels are forced to extract
a certain feature in a different position of feature maps, and the number of parameters is reduced
as well.
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2.2.2. Activation Function

The relationship between input image and output box and label is supposed to be a highly
nonlinear mapping, so nonlinear activation function needs to be added at each conv layer [28].
In traditional convnets, a hyperbolic tangent function f (x) = tanh(x) or a sigmoid function
f (x) = 1/(1 + exp(−x)) are used as the nonlinear activation function at conv layer [29]. However,
hyperbolic function is not good enough because when its output is near −1 or 1, the gradient of this
function tends to zero, and this might terminate training. Thus, it used to be hard to train deep models
due to these saturating nonlinearities. Recent research has found a nonsaturating nonlinearity that
often works well in training, the rectified linear unit (ReLU) [30]. This function is given by

f (x) = max(0, x). (6)

ReLU can significantly reduce training time and deep networks using ReLU usually can reach
their best performance with only supervised training on large labeled data sets without requiring any
unsupervised pretraining.

2.2.3. Pooling Layer

In our model, there is only one pooling layer after each of the first two conv layers. Max pooling
operation is used to select the pixel with maximum value in a certain group of pixels as the most
significant and efficient features. Though this operation will throw away some information, it achieves
shift and distortion invariance somehow. If the input image shifts a small amount, this operation can
make sure that most outputs of pooling will not change [31].

The max pooling operation is defined as

O(l+1)
i (x, y) = max

u,v−0,...,M−1
O(l)

i (x · s + u, y · s + v), (7)

where M is the pooling size. Stride s determines distance between neighbor pooling windows.
As said before, pooling operation throws away some information during subsampling, so a larger

pooling size is going to result in worse performance of feature extraction. This is why actually only
two hyperparameter settings: 2 × 2 as pooling size with a stride of 2 and 3 × 3 as pooling size with a
stride of 2 are used in practice [32].

A typical connection between conv layer and pooling layer is shown in Figure 4. As we have
shown before, f x is convolution operation, bx and bx+1 are biases, Wx+1 is the weight, Sx+1 is the output
feature map.

 X  

fx

bxinput

Cx

Wx+1 bx+1

Activatio

n function Sx+1

Figure 4. Typical connection between conv layer and pooling layer.

2.2.4. Softmax Classification

To deal with multi-class classification problems, the softmax nonlinearity is used in the output
layer to generate posterior probabilities over each class. Due to that, after one fully connected layer,
a two-dimensional vector is mapped into a K-dimensional weighted vector, and the value of each



Remote Sens. 2018, 10, 776 7 of 18

element represents the relative probability of class of this input pi = P(y = i |x ), for i = 1, ..., K.
The softmax function can be presented as

p(i) =
exp(θT

i x)

∑ K
j=1 exp(θT

j x)
, (8)

where θT
j x is the jth element of output vector.

As for the classification procedure, with a set of Ncls labeled training samples, the loss function
can be defined as

Lcls(θ
T
j ) = −

1
Ncls

Ncls

∑
i=1

log P(pi
∗ |pi ; θT

j ), (9)

where pi is the predicted label of the ith sample and p∗i refers to the ground-truth label.
With these ground-truth training samples, a better performed classifier can be obtained

automatically through adjusting the trainable parameter θT
j , while minimizing this loss function,

which means increasing the probability of giving out correct labels.

2.2.5. Region Proposal

To realize the integration of classification and location, a small network is used to slide on the final
feature maps obtained from previous layers [14]. As shown in Figure 5, the network is fully connected
with a N × N window on feature maps to generate a certain number of anchor boxes with different
sizes and scales.

conv feature map

sliding window

256-d

2k scores

4k coordinates

k anchor boxes

cls layer

reg layer

Figure 5. Region proposal network.

Then, these anchor boxes are sent to a fully connected layer called the intermediate layer and
mapped into a lower dimensional vector. With these vectors as input, one fully connected layer
called the classification layer (cls layer) is used to output scores of being an object or not an object to
pick foregrounds out of backgrounds, and another fully connected layer called the regression layer
(reg layer) is used to generate parameters of each anchor box and fine-tune the boundaries so that
these boxes are accurate enough to locate objects through feature maps.

The network operates as a sliding window, so the fully connected layers are shared among all
spatial locations. Anchor boxes with different sizes and scales ensures that they are able to locate
objects with different sizes and shapes.

2.2.6. Loss Function

Anchors generated by that small network for region proposal are divided into two kinds:
the positive and the negative. Anchors that have the highest Intersection-over-Union (IoU) overlap
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with one ground-truth box or have an IoU overlap higher than 0.7 with any ground-truth box will be
treated as positive anchors. In some previous references, the ratio is set to 0.7, and 0.7 is an empirical
value. In general, this score >0.5 can be considered a good result. This means that any other bounding
boxes with IoU higher than 0.7 will be treated as similar bounding boxes, and they will be deleted
since they are not of the highest classify score. Those that have IoU overlap lower than 0.3 with
all ground-truth boxes will be treated as negative anchors. The number of positive anchors chosen
randomly for training equals that of negative anchors in each training sample. Other anchors do not
participate in training.

A multi-task loss function is used to realize integration of classification and location. It is described
as below:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ), (10)

where pi is the predicted probability of the ith anchor being an object. If this anchor is positive, then the
ground-truth label p∗i will be set to 1, or will be set to 0 if the anchor is negative. ti is a vector with four
parameters that represents the coordinates of the predicted bounding box. t∗i is the parameters of the
ground-truth box associated with a positive anchor.

A log loss Lcls over two classes (being an object or not) is used as classification loss, which is
described in formula 8. For regression, a smooth L1 function defined as

SL1(ti − t∗i ) =

{
0.5(ti − t∗i )

2
∣∣ti − t∗i

∣∣ < 1∣∣ti − t∗i
∣∣− 0.5 others,

(11)

which is also a robust loss function, is used as regression loss Lreg. The regression loss is activated only
for positive anchors and disabled when anchors are negative. Classification term and regression term
are normalized with Ncls, Lreg and a balancing weight λ.

Those four coordinates in ti and t∗i are designed as below:
tx = (x− xa)/wa,
ty = (y− ya)/ha,
tw = log(w/wa),
th = log(h/ha),

(12)


t∗x = (x∗ − xa)/wa,
t∗y = (y∗ − ya)/ha,
t∗w = log(w∗/wa),
t∗

h
= log(h∗/ha),

(13)

where x and y denote the coordinates of the center of the box, and w and h denote the width and height
of the box. x, xa and x∗ are variables of predicted box, anchor box and ground-truth box, respectively.
It can be seen that this loss function can transform an anchor box to a nearby ground-truth box.
Unlike previous feature-map-based bounding regression methods, the features on feature maps that
we used for regression have the same spatial size. Then, a set of k bounding-box regressors are learned
so that it can work for different sizes. Every regressor is independent and responsible for a specific
scale and aspect ratio. Thus, even if features are of a fixed size or scale, it is still possible to predict
boxes of various sizes.

2.3. Non-Maximum Suppression between Regions

After fast sliding, each slice is sent to the CNN network sequentially to detect and locate
targets. Once the predicted bounding boxes and classification scores are generated by regression
layer and classification layer respectively, the next task is to find out the most proper bounding box.
Bounding boxes in the common area of adjacent slices are generated by different slices, so the traditional
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Non-maximum Suppression (NMS) method could not be simply used to deal with these bounding
boxes. The strategy of Non-maximum Suppression between Regions (NMSR) is proposed and used to
find out the most proper bounding boxes, which also achieved admiring performance. The method of
NMSR is described as below.

As each slice has a fixed position in large scene SAR image, if a slice of large scene image is the ith
from left to right and the jth from top to bottom, the absolute position (x*, y*) of a pixel in this slice can
be calculated through the function below:{

x∗ = x + (1− 0.3)× w× (i− 1),
y∗ = y + (1− 0.3)× h× (j− 1),

(14)

where w and h is the size of each slice, and (x, y) is the coordinate of a pixel in this slice.
To reduce computation complexity, the operation of NMS is executed in every slice before NMSR.
At first, the bounding box with the highest classify score is found out and set as a compared box.

Any other bounding boxes have an intersection over the union (IoU) higher than a certain ratio with
this compared box will be deleted.

Then, bounding boxes with the highest classify score in the rest of the bounding boxes are set as
the compared box. Calculate IoU with all the rest of the bounding boxes.

Repeat this operation until bounding boxes with the top N classify scores are discovered.
After this, these N bounding boxes with the highest classify scores are left after NMS in each slice.
Any other bounding boxes are ignored and will not be calculated in the next step.

Finally, all coordinates of these left bounding boxes in each corresponding slice are replaced by
their absolute positions, and operation of NMS is applied again among all these bounding boxes
with absolute positions. NMS of bounding boxes in common areas is also achieved. Furthermore,
the most proper bounding boxes with their coordinates on large scene images are determined after
these operations.

A diagram that shows each step of this large scene SAR image detection and recognition method
is shown in Figure 6.

Fast 

Sliding

Detection

Absolute 

Position NMSR

Detection

Figure 6. Non-maximum suppression between regions.

3. Experiments

3.1. Experimental requirements

In this paper, the experimental data are from the MSTAR dataset, which is widely used in testing
and comparing the performance of SAR detection and recognition algorithms. The collection of the
MSTAR dataset was supported by the Air Force Research Laboratory and the Defense Advanced
Research Projects Agency. A large amount of SAR images were collected, including different target
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types, aspect angles, and depression angles. An x-band, HH polarized SAR in a 0.3-m resolution is
used to collect these images. However, only a small part of these images are publicly released. The type
of targets we used are BMP2 (tank), BTR70 (armored car), and T72 (tank). The images were captured at
two different depression angles 15◦ and 17◦ with 190 ∼ 300 different aspect versions, which are full
aspect coverage over 360◦. Optical images and SAR images of these three types of targets with similar
aspect angles are shown in Figure 7.

In our experiment, overlap among adjacent sliding windows is set as 0.3 since widths and heights
of all targets in training samples are smaller than 60 pixels. A sliding window of 200 × 200 is used
to cut large scene images into small slices before detection in our model. With this strategy, every
potential target will appear completely in at least one slice. As for slices occurring at the edges of large
scene SAR images, the excess part will be padded with zero. This strategy has achieved an efficient
segmentation, much faster than that with a stride of one pixel. Furthermore, the larger the sliding
window we use, the faster detection and recognition will be accomplished. Because of the size and
scale invariance of our network, even though the size of the sliding window we use is about twice
that of training samples in our experiment, performance of detection and recognition is still of high
quality. The final result has achieved balance between time consumption and accuracy of detection
and recognition.

Figure 7. Optical images (top) and corresponding synthetic aperture radar (SAR) images (bottom).
From left to right: BMP2, BTR70, T72.

In total, 2268 slices of BMP2, BTR70 and T72 are chosen randomly and used for generating training
patches, as shown in Table 1. One-hundred slices of each type of target above are left for testing.

Table 1. Numbers of BMP2, BTR70, and T72 slices for generating training samples.

Class No. Images

BMP2 1185
BTR70 329

T72 754

Before training, every 128 × 128 SAR target slice is randomly sampled into 90 × 90 patches.
Because there is only one target in the center of each slice, the patch size of 90 × 90 could ensure
that the target appears in each patch completely. This operation will increase the number of training
samples as well as the randomness of the target position, which ensures that the CNN model after
training could find targets in different positions of every slice. With this strategy, each slice can be
increased at most (128− 90 + 1)× (128− 90 + 1) = 1521 times. However, actually, considering the
redundancy of these 1521 patches and the amount of training samples required, five randomly chosen
patches of each slice are generated and chosen as training samples. Thus, there are 2268× 5 = 11, 340
training samples in total. The example of the original slice and corresponding five randomly generated
patches are shown in Figure 8.
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Figure 8. Original image and five randomly generated patches.

Ground-truth boxes are marked manually, which just cover the target in these 11,340 90 × 90
patches of three different targets. The information saved includes coordinates of ground-truth box and
target type in each patch. These patches are re-sized to 800 × 800 so that features in these patches are
well extracted. These patches along with their corresponding coordinates of ground-truth box and
target type are used as training samples to train the CNN network.

To show performance of the network that we used for integration of SAR detecting and
recognizing, confirmatory experiments with test samples are done and the results that we get
are inspiring.

3.2. Accuracy of Detection and Recognition

In order to determine the detection and recognition accuracy of the CNN network that achieve
integration of detection and recognition after training, the remaining 300 SAR images of three different
types are used as test samples. Since the size of test samples is similar to that of training samples,
there is no need to segment test samples before detection and recognition. Boxes with the highest
score from the softmax classifier are shown for these test samples. If the target along with its shadow
is surrounded by this box correctly, then the class on this box is regarded as the recognition result.
The confusion matrix of this test is shown in Table 2. The true target class is listed on the left and
predicted target class is shown on top.

Table 2. Number of chosen images.

Class BMP2 BTR70 T72 Accuracy(%)

BMP2 93 2 5 93
BTR70 2 97 1 97

T72 5 1 94 94
Average - - - 94.67

3.3. Anti-Noise Performance

Another experiment is done after we get detection and recognition accuracy. The experiment
is to explore anti-noise performance of our CNN network. Unlike other well-established work for
anti-noise [33], values of a certain proportion of pixels are replaced by that of a Gaussian distribution
noise. The replaced proportions are 2%, 4%, 8%, and 16%. An example of original slice and its modified
images with noise are shown in Figure 9. The network trained previously on three-target detection and
recognition problem is used to deal with these noise added slices. Only if over 80% area of the target
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along with its shadow is surrounded by the predicted box with the highest score, and the predicted
class for this box is correct can the slice be regarded as a correctly detected and recognized one.

Figure 9. Example of original slice (left) and modified images with noise. Proportions are 2%, 4%, 8%
and 16%, respectively, from left to right.

Every group of modified images with noise are sent to the CNN network trained previously
successively, and accuracy of each group of noise added images is listed in Table 2.

3.4. Performance of Region Proposal Network and Non-Maximum Suppression

In order to evaluate the accuracy of candidate regions generated by the region proposal network in our
CNN network, an untrained slice of T72 in MSTAR data set is used as test sample, as Figure 10 (left) shows.
Seven candidate regions with the highest scores after detection and recognition are shown in Figure 10.
In order to show boundaries of these candidate regions clearly, predicted class and scores are hidden.

Figure 10. Test sample and the top seven candidate regions.

After generating the candidate regions, feature maps surrounded by these candidate regions are
used as inputs to fully connected layer in CNN. Then, the strategy of NMS is used to find out and
show the most proper box with a label on it. The final result of test samples used above is shown in
Figure 11 to show its performance and verify that the integrated network can give the correct labels of
candidate regions.

Figure 11. Interpretation result after Non-Maximum Suppression (NMS).

3.5. Detection and Recognition Performance on Large Scene Images

Interpretation of large scene SAR images has also been a difficult problem to solve. Almost all SAR
interpretation methods use strategy of segmentation to deal with this problem. However, traditional
SAR detection and recognition methods are pretty sensitive to segmentation results, and this would
lead to a sharp decrease in interpretation results. In our CNN network, what we need to do is to make
it so every target can appear in one segmented slice at least.
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To get test samples of the similar size with training samples, a large scene SAR image is segmented
into small slices (200 × 200 is used in this paper) to reach balance between interpretation accuracy and
interpretation time. An overlap rate (30%) is set in different adjacent slices, so that each target is bound
to appear in one slice completely at least. Then, each slice is re-sized to 800 × 800 so that the feature
maps are of the same size. These re-sized images are sent to the CNN network sequentially.

At first, performance of this segmentation strategy and NMSR is evaluated through a large
scene SAR image with a simple background. This SAR image is not contained in the MSTAR dataset.
We embed targets of different types in a 1476 × 1784 large simple scene image in MSTAR. Since targets
and scene images are all acquired by SAR sensor with resolution of 0.3 m, embedding targets in scene
images is a reasonable simulation.

Then, this SAR image with 14 untrained targets (4 BTR70s, 5 BMP2s and 5 T72s) is interpreted
by this CNN network to verify the ability of this segmentation strategy and CNN network. Figure 12
shows the detection and recognition results on this large scene SAR image, and boxes with confidence
higher than 0.9 after NMSR are shown. These 14 targets are placed in three lines, but the center of
them are not actually on a line so that the sensibility of target position and distribution of this CNN
network could be verified. There are five BMP2s in the first line, five BTR70s in the second line and
four T72s in the third line. With observation of segmented slices, 10 targets appear in at least two slices.
The red boxes represent “BMP2”, orange represent “BTR70”, and yellow represent “T72”. In addition,
all classification confidence probabilities are shown besides the boxes.

Figure 12. Interpretation result of a large simple scene SAR image.

Finally, interpretation of a complex large scene SAR image of 1476 × 1784 is completed with this
CNN network with NMSR. We embedded targets randomly in an image of fields, trees and bushes
in MSTAR dataset to make up this complex large scene SAR image. The corresponding class of each
target with a given number in Figure 13 (top) is listed in Table 3. The threshold is set as 0.9.



Remote Sens. 2018, 10, 776 14 of 18

(a) (b)

Figure 13. Experiment on complex background image (a) target distribution; (b) interpretation results.

Table 3. Number of chosen images.

Target Class Corresponding Number

BMP2 1, 2, 3, 4, 5
BTR70 6, 7, 8, 9

T72 10, 11, 12, 13, 14

3.6. Comparison Experiments on Complex Background Image

Contrast experimental results based on two large scene SAR images above are completed and
results are listed in Tables 4 and 5. Here, we have listed number of ROIs (Regions of Interest) after
detection (No. ROIs), number of correctly detected targets (No. Det), false alarm rate (F.A. Rate),
proportion of detected targets in all targets (Det Rate), number of correctly recognized targets (No. Rec),
proportion of correctly recognized targets in detected targets (Rec Rate) and time consumption.
A Constant False Alarm Rate (CFAR) detector in [34] and visual attention algorithm in [35] are used as
detectors and SVM is used to finish classification.

Table 4. Results on a large scene synthetic aperture radar (SAR) image with simple background.
(CFAR: constant false alarm rate; SVM: support vector machine; RCNN: region-based convolutional
neural networks).

Methods No. ROIs No. Det F.A. Rate Det Rate No. Rec Rec Rate Time(s)

CFAR + SVM 16 14 12.5% 100% 13 92.86% 37.24
Visual attention + SVM 17 14 17.64% 100% 13 92.86% 15.82
Segmentation + RCNN 9 9 0% 64.29% 9 100% 8.63

Our method 14 14 0% 100% 14 100% 29.32
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Table 5. Results on large scene SAR image with complex background.

Methods No. ROIs No. Det F.A. Rate Det Rate No. Rec Rec Rate Time(s)

CFAR + SVM 21 9 57.14% 64.29% 9 100% 42.73
Visual attention + SVM 24 10 58.33% 71.43% 9 90% 23.92
Segmentation + RCNN 11 11 0% 78.57% 11 100% 10.25

Our method 14 14 0% 100% 14 100% 31.18

4. Discussion

4.1. Analysis on Detection and Recognition Accuracy

It can be seen from Table 2 that all these 300 test samples are surrounded by boxes with highest
scores correctly. Furthermore, recognition accuracy of BTR70 achieves the best performance, but BMP2
and T72 are more likely to be recognized as each other. The reason might be that T72 and BMP2 have
similar turrets and gun barrels.

As for the speed of this integrated system, these 300 128 × 128 untrained slices are interpreted,
and the total time these slices cost is about 52 seconds from when it starts to deal with the first image
until all results of these images are shown on a computer with GTX750Ti.

4.2. Analysis on Anti-Noise Performance

Table 6 has shown a phenomenon that the more pixels are replaced by noises in the original image,
the worse the detection and recognition accuracy are. From the experiment, we can find that when the
replace ratio is less than 8 percent, the accuracy of recognition is acceptable. However, when the ratio
is larger than 8 percent, recognition accuracy will face a sharp drop. To some extent, the result shows
that the CNN network can resist the influence of noise. That is to say, compared with training samples,
test samples are not allowed to be badly polluted or have too many imaging differences.

Table 6. Accuracy of each group of noise added images.

Proportion 2% 4% 8% 16%

Accuracy 89.33% 83.67% 72.00% 44.33%

4.3. Analysis on Performance of Region Proposal Network and Non-Maximum Suppression

With observation of Figure 10, we find it obvious that all of these top seven candidate regions
cover the target, and all of them have surrounded the entire target and its shadow correctly. This means
that features of T72 in SAR images are well extracted to generate candidate regions accurately.

From Figure 11, we can see that the CNN network uses NMS to reduce redundancy. It shows a box
in the correct place as detection results and the highest recognition confidence of 0.965. The result has
exhibited the interpretation performance of this integrated SAR interpretation system. The integrated
network can give out correct labels of candidate regions.

4.4. Analysis on Detection and Recognition Performance of Large Scene Images

In Figure 12, it is obvious that all 14 of these targets are well surrounded by boxes, and there
is only one box around each target. This means that all other predicted boxes with lower scores are
suppressed, and predicted boxes in adjacent slices are suppressed as well by NMSR. Although one
BMP2 in the first line is recognized as T72, results verify that CNN with NMSR performs well dealing
with large scene images of a simple background.

The results illustrate that this CNN network that realizes integration of target detection and
recognition works well; all 14 targets of the three different kinds in a complex large scene SAR image
are detected correctly. In addition, all degrees of classification confidence labeled in Figures 12 and 13
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are over 0.97. No trees or bushes are interpreted as targets, which have proved the effect and usefulness
of features extracted by CNN. Features among these three kinds of targets are well extracted and used
to realize interpretation. There is only one box surrounding each target in this large scene SAR image,
even though many of these targets appear on more than two slices. This result has proved that NMSR
is a useful strategy dealing with predicted boxes among adjacent slices.

Thus, the results above have verified that this CNN network with NMSR has a satisfactory
performance dealing with large scene SAR images regardless imaging background.

4.5. Analysis on Comparison Experiments

It can be seen from Tables 4 and 5 that our model can detect all targets in large scene images
accurately and the performance of this model is not influenced by a change of background. This means
that this fast sliding strategy could find all targets in different places, and targets appear at least
one slice completely as we expected. As for results of recognition, since CNN extracts specific and
effective features of SAR targets, and these features are used to realize detection and recognition at the
same time, the best performance of both detection and recognition is achieved with our model.

5. Conclusions

Connecting the detection and recognition process to interpret large scene SAR images is difficult
because of speckle noise and inefficient connection among these processes. Inspired by great success
of deep convolutional neural networks, methods of DCNN are applied to SAR image interpretation
to extract features automatically, and a method to integrate detection and recognition of large scene
SAR images based on non-maximum suppression between regions (NMSR) is proposed in this paper.
A model that is efficient in SAR image interpretation is built and a trained model that can generate a
variety of accurate predicted boxes with confidence is obtained. Then, the performance of this system
is evaluated, and 94.67% of three-class recognition accuracy on the MSTAR data set proved that it is
efficient with high accuracy. Experiments on 1476 × 1784 simulated MSTAR images of a simple scene
and complex scene show that the proposed method can recognize all targets with higher accuracy
and faster speed, compared with the other methods, such as CFAR+SVM, Visual Attention+SVM,
and Sliding-RCNN.

In the future, optimization algorithms should be researched to reduce the training time and
test time. Other structures of deep learning networks can also be considered to implement real-time
detection and recognition systems for SAR.
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