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Abstract: This paper presents a fast SAR imagery algorithm for Ground Moving Target Imaging
(GMTIm) based on the slope detection strategy combined with Time-Frequency Representation (TFR),
which is known as Lv’s Distribution (LVD). This fast imagery algorithm focuses on the solution
of the ambiguity problems and relevant heavy computing load in SAR imagery. Firstly, according
to the relationship between the slope of the range walk trajectory and the cross-track velocity of
moving target, a new high-efficiency slope detection strategy based on gradient and level-line angle
is presented in the image domain. Then, the Doppler centroid shift induced by cross-track velocity
can also be obtained. Secondly, owing to the cross-track velocity estimated before, the Range Walk
Migration Correction (RWMC) can be performed to concentrate the echo response of the moving target
into a single range cell. Finally, due to the superior performance in representing multi-component
Linear Frequency Modulation (LFM) signal, LVD is adopted here to represent the Doppler chirp
rate of multiple moving targets in a Doppler Centroid Frequency and Chirp Rate domain (CFCR).
The performance of the proposed algorithm is evaluated in terms of superiority and effectiveness
using simulations, and the comparison between the proposed algorithm and the other conventional
algorithms is also presented.

Keywords: ground moving target imaging (GMTIm); Airborne Synthetic Aperture Radar;
slope detection; lv’s distribution (LVD)

1. Introduction

Airborne Synthetic Aperture Radar (SAR) has the capability of remote sensing regardless the
weather conditions and indifferently in day and night. Furthermore, the development of radar signal
processing technology has provided it with the capability of imaging and positioning of ground moving
targets, so that SAR has tracked even more attentions in both civilian and military applications [1–9].
Generally, in order to achieve a high azimuth resolution, the SAR system adopts the synthetic aperture
technique by installing radar sensor on aerial platforms, which is required to fly on a fixed routine [10].
The SAR sensor monitors ground moving targets by transmitting a large number of broadband pulses,
so the reflected pulses is related to the motion parameters, which makes the moving targets unfocused
and smeared in SAR images [2]. Furthermore, the cross-track (radial) and the along-track velocity are
the main reasons leading to Doppler parameter variation and large range migration, which influence
the accuracy of velocity estimation as well as the radar imaging quality. Obviously, this is a challenge
for fast moving target imaging [5,11–19]. Specifically, comparing stationary targets, the cross-track
velocity of moving targets causes the Doppler centroid shift and the extra range walk migration,
whereas the along-track velocity has an effect on the Doppler modulation rate [20,21].
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To address this issue, Ground Moving Target Imaging (GMTIm) is developed to enhance
the capability of image formation and parameters estimation for airborne SAR. Existing GMTIm
algorithms can be classified into two categories: single channel and multiple channel algorithms.
Multiple channel algorithms utilize the interferometric phase between different SAR channels to
resolve the ambiguity problem related to the target motion parameters. The algorithms, such as
Along-Track Interferometry (ATI) [22], Displaced Center Antenna (DPCA) [23,24] and Space-Time
Adaptive Processing (STAP) [25,26] are capable of moving target focusing and precise motion
parameter acquiring [2,10,27–30]. However, these multiple channel SAR algorithms usually suffer from
both expensive computing costs and complicated equipment installation. In addition, the susceptible
registration error also has a significant effect on the radar signal processing [31]. Therefore, the research
of imagery algorithm for single channel SAR is still opening.

For single channel SAR imagery algorithms, as aforementioned, one of the core procedure is the
Range Walk Migration Correction (RWMC). The main methods to remove range walk migration can
be divided into two sorts. First, as a classical means, by rescaling the slow time axis to remove the
coupling between range frequency and slow time, Keystone Transform (KT) is an effective tool to
correct the range walk migration without knowing the motion parameters of moving targets [5,6,32–36].
Besides, owing to the significant performance in correcting a large range curve migration or the
quadratic component of the range migration, the second-order KT is also widely used in many
applications to eliminate the effects of range curve migration [33]. However, in the case of the fast
moving target, the problem of Doppler ambiguity must be take into consideration for the application
of KT, which in turn increases the computational complexity. Additionally, all the relative KT-based
methods are subjected to a large computational load caused by the interpolation operation [36].
To reduce the computational load is still a challenge for KT. Second, for RWMC, the cross-track velocity
is the most interesting motion parameter of the moving target. Considering the relationship between
the slope of the range walk trajectory and cross-track velocity, Randon Transform (RT) and Hough
Transform (HT) are used to obtain the slope of the range walk trajectory [1,37–43]. Both the above
two algorithms can get rid of the limitation of the Doppler ambiguity and the cross-track velocity
can be well estimated simultaneously. However, due to the searching angles and ranges to obtain
a high precision value of the slope, both RT and HT suffer from a large computational load [36].
Although HT is efficient, it is subjected to a high signal-to-noise ratio. In addition, the drawback that
the computing time increases with the number of targets existed in the observed scene also has an
effect on the applications of HT. So that when these two methods are used in the SAR signal processing,
the tradeoff between estimation precision and computational load has to be well deliberated, especially
for a real-time SAR system.

After range compression, range curve and range walk migration correction, the energy of moving
target is concentrated into a single range cell, and the Doppler parameters with related to along-track
velocity can be obtained within the range cell. Since the Azimuth Phase Modulation (APM) is in a linear
frequency modulated form, the time-frequency analysis is widely adopted in GMTIm algorithms, such
as Wigner-Ville Distribution (WVD) [44] and Fractional Fourier Transform (FrFT) [45]. In practice,
where multiple moving targets are closely located in the observe scene, a multi-component LFM
echo will appear. In addition, the WVD-based methods are limited by its cross-terms and cannot be
regarded as the real characteristic of the LFM signal [10]. Although FrFT can get rid of the influence of
cross-terms, but it still cannot get a real representation of the modulate rate [46].

To tackle these issues in the aforementioned methods, in this paper, a novel imaging algorithm
based on the Slope Detection strategy combined with LVD (SDLVD) is proposed to obtain a high quality
SAR image and precise motion parameters. In order to facilitate the analysis and conclusion, a general
SAR geometry was adopted here. Then, based on the principle of gradient and level-line angle [47],
an efficient and accurate slope estimation method is applied into estimating the target trajectory slope
and correcting the range walk migration. Next, due to the advantageous performance in representing
multiple moving targets in a Doppler Centroid Frequency and Chirp Rate (CFCR) domain, LVD is used
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to obtain the Doppler modulate rate of the moving target [10,46,48–51], meanwhile, the along-track
velocity can also be calculated. After the azimuth compression, the final image of moving target can be
well focused. In the end, simulation results are exhibited for the certification of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 presents a universal radar-moving target
geometry, and the analysis of echo signal characteristics is also given. Section 3 presents a novel slope
estimation method and LVD is also used to acquire the along-track velocity. Section 4 focuses on
the performance evaluation for the proposed algorithms in terms of the effectiveness and accuracy.
Finally, conclusions are presented in Section 5.

2. Airborne SAR Echo Signal Model and Analysis

This section presents a single channel SAR geometry, where all targets are supposed to be
isotropic points in the geometry and a ground moving target M is modeled with a constant velocity,
meanwhile a stationary target S is constructed to represent the static ground or the target. Following
the conventional research approach, the SAR geometry is assumed to be a linear system, which makes
the echo signal as the linear accumulation of the targets. Besides, the intended algorithm is focused on
the fast-moving target velocity parameters estimations, which involves severe range walk migration.
Taylor’s series approximation and far-field hypothesis are also utilized in the analysis of the echo
signal model.

2.1. SAR Geometry of Fast Moving Target

The geometry model of a single-channel strip-map mode SAR system is shown in Figure 1a.
A spatial Cartesian coordinate system is used to depict the geometry, whereas S represents a stationary
target and M denotes a moving target with cross-track velocity Vy and along-track velocity Vx. The SAR
sensor flights at the height of H, va is the forward velocity of the platform while ta is the flight time
of the platform, also known as slow time. R0 and R(ta) denote the nearest and the instantaneous
slant ranges of the target, respectively. Similarly, X represents the nearest ground range of the target.
The instantaneous coordinates of the platform and the moving target can be defined as (Vata, 0, H)

and (X + Vxta, Y + Vyta, 0).
As aforementioned depiction, under the hypothesis that the platform flies along the predetermined

trajectory, the distance between the moving target and the radar is dynamic. As shown in Figure 1a,
R(ta) can be given as

R(ta) =
√
(Vata − X − Vxta)2 + (Y + Vyta)2 + H2 (1)

Apply the third-order Taylor series coefficients expansion into Equation (1), R(ta) can be
simplified as

R(ta) ≈ R0 +
YVy

R0
ta +

(va − vx)2

2R0
t2
a −

YVy(va − vx)2

2R3
0

t3
a (2)

It can be seen that the cubic component of Equation (2) is proportional to the cross-track velocity
Vy, and this component cannot be ignored in the further analysis, especially for the fast-moving
target. Integrating Equation (2) into the SAR geometry on a slant range plane as shown in
Figure 1b, Vr represents the radial velocity, which is related to the cross-track velocity Vy. According to
the projection relationship of the motion parameters between the range domain and slant range
domain [43], The instantaneous slant range with relation to the radial velocity can be expressed as

R(ta) ≈ R0 + Vrta +
(va − vx)2

2R0
t2
a −

Vr(va − vx)2

2R2
0

t3
a (3)
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Figure 1. Broadside geometry of a moving target and a static target in the single-channel SAR system:
(a) geometry in a Cartesian coordinate system; (b) geometry on a slant range plane.

Assuming that the SAR sensor transmits a LFM signal with the carrier frequency fc

s(t̂, ta) = wr(t̂)exp(j2π fcta) (4)

where t̂ represents the signal propagation time, also known as fast time, and wr(t̂) is the window of
the LFM signal. In the analysis of the echo signal, assuming that λ is the wavelength of the transmit
signal and c is the speed of light, After range compression the receiving signal can be shown as

s(t̂, ta) = Awa(ta)sinc[πB(t̂ −
2R(ta)

c
)]exp[−j

4π

λ
R(ta)]

(5)

where A defines the backscatter coefficient, wa(ta) represents the azimuth window, B is the bandwidth
of the transmitted signal. By substituting (3) into (5) and taking FFT with respect to the fast time,
the echo signal can be constructed as:

s( fr, ta) = Awa(ta)W( fr)exp(−j
4π

λ
R0)exp(−j

4π

λ
Vrta)exp(−j

4πR0

c
fr)exp(−j

4πVr

c
frta)

exp(j
4π

λ

Vr(Va − Vx)2

2R0
2 ta

3)exp(−j
4π

c
(Va − Vx)2

2R0
frta

2)exp(−j
4π

λ

(Va − Vx)2

2R0
ta

2)
(6)

where fr is the range frequency and W( fr) denotes the envelope of the range frequency spectrum.

2.2. Motion Parameters Analysis

In Equation (6), it can be drawn that the spectral information is exhibited in the range-frequency
and azimuth-time domain with seven exponential terms. The first and the fifth exponential terms
have no virtual effect on the following analysis and will not be considered further. The second
exponential term indicates that the Doppler centroid shift, fdc =2Vr/λ. The third exponential term
indicates that the Doppler modulate rate of the fast moving target is mainly affected by the along-track
velocity. The fourth exponential term, called Range Walk Migration (RWM), usually creates the
problem of defocus and misalignment in SAR images. In contrast, the sixth exponential term,
called Range curve Migration (RcM), causes the trajectory curve in the range-compressed domain.
Furthermore, the combination of RWM and RcM is called Range Cell Migration (RCM), which can be
expressed as
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RCM = exp(−j
4πVr

c
frta)exp(−j

4π

c
(Va − Vx)2

2R0
frta

2) (7)

The fifth exponential term in Equation (6) is the cubic phase error of the fast-moving target,
which is an important parameter, especially when Vr increases. Equations (6) and (7) show that Vr

has significant influence on the echo signal spectrum. The keystone transform is usually deployed
to correct the range walk migration, but it may not be a practical solution when the conundrum of
Doppler ambiguity arises. From this point of view, to obtain high quality image, the range walk
migration needs to be compensated accurately. Therefore, a precise estimate value is vital to form
a high quality SAR image, especially for fast-moving targets.

3. Algorithm Description

3.1. RCMC and Radial Velocity Estimation

In the aforementioned analysis, the RCM of the moving target must be compensated to obtain
a focused SAR image. After the range compression, due to the range curve migration, the straight
line trajectory of the moving target becomes deformed. This kind of distortion can lead to a large
estimation error in the detection of the slope of the trajectory, therefore, the range curve migration
must be corrected ahead of the detection of the slope. Nevertheless, Vx is an unknown parameter in
the seventh exponential term in Equation (6). Since the fact that the along-track velocity of moving
target is much smaller than the velocity of platform, it is available for the approximation to ignore
the effect of the along-track velocity. Therefore, the match-filter function for RcM correction can be
approximated as follows

HRcM ≈ exp(j
4π

c
Va

2

2R0
frta

2) (8)

In addition, the effect of this kind of range curve migration correction has been validated in [1].
Once the range curve migration is corrected, the trajectory of the moving target can be focused into a
straight line in the frequency-time domain. Then the relationship between the slope and the radial
velocity is depicted as shown in Figure 2 , which can be expressed as

V̂r =
PRF × tan θ̂ × c

2 fc
(9)

where θ̂ is the estimated slope of the trajectory, PRF is the pulse repetition frequency. Actually, the key
is the estimation of trajectory slope [1,40,41]. To acquire the slope from the aforementioned
range-compressed and range corrected image, the image processing techniques are used. For example,
HT and RT are used to obtain the slope, in which RT requires low Signal-to-Noise Ratio (SNR), but HT
is more efficient than RT. Notes that all RT- and HT-based methods are required to map each point
of the image into the parameter space. In this case, the computing load can be extremely heavy [31].
Such kind of weakness limits the applications in real-time SAR signal processing.

Here a novel algorithm is proposed by detecting the object edge under the idea that a series of
pixel, which have the same gradient angle can define the edge of an object [47]. The gradient of the
image indicates the gray value variation information between adjacent pixels, so it can also be used to
detect the slope of a straight line. Rafael Grompone von Gioi [52] proposed a linear-time line segment
detector algorithm, which can give sub-pixel accurate results and can be applied to any digital image
with no parameter settings. It performs well in detecting short line segments with a low computation
but cannot fit for the GMTI SAR image. Based on the principle of this method, a novel strategy is
proposed to detect the slope of line in range-compressed image domain. The gradient and level-line
angle of the image are the critical concepts of the method, seen in Figure 3.
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Figure 2. SAR image after range curve correction.

Level-line

Gradient

i(x,y) i(x+1,y)

i(x,y+1)
i(x+1,
  y+1)

Figure 3. Gradient and level-line.

After range compressed and range curve corrected, the target trajectory can be approximated as
a straight line in the image. However, the line is seriously affected by the staircase effect [52]. In order
to cope with the aliasing and quantization artifacts (especially the staircase effect), an 80% image
scaling is adopted, the zoom factor is the smallest image reduction that reasonably solves the staircase
problem while producing almost the same result as a full-scale analysis on images without the effects
of artifacts [52]. After the scaling, the number of pixels is sharply reduced to 64%. Meanwhile this
operation also reduces the computing complexity to some extent.

As shown in Figure 3, a moving window of one pixel per step, called 2 × 2 mask, is used to
calculate the image gradient. This is able to reduce the dependence of the computed gradient values
in the gradient computation, which makes the method able to provide a proximal theoretical slope
value of the trajectory. As is shown in Figure 3, i(x, y) is the image gray value at pixel (x, y), the image
gradient can be computed with the formula as

gx(x, y) =
i(x + 1, y) + i(x + 1, y + 1)− i(x, y)− i(x, y + 1)

2

gy(x, y) =
i(x, y + 1) + i(x + 1, y + 1)− i(x, y)− i(x + 1, y)

2

(10)

Then, the gradient magnitude can be calculated by

G(x, y) =
√

g2
x(x, y) + g2

y(x, y) (11)
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For the edge of the line in the image, the gradient magnitude is larger than that of the adjacent
pixels and the gradient direction becomes uniform. The extended direction of the edge is perpendicular
to the gradient direction. By rotating the original level line angle 90 degrees counterclockwise, here the
level-line angle can be computed as

level_line_angle = arctan
gx(x, y)
gy(x, y)

(12)

As shown in Figure 3, the edge of the line has the higher gradient magnitude, which corresponds
to the more contrasted edges. From this point of view, the pixels with the highest gradient magnitude
are chosen to be the seeds of the region growing algorithm. Considering the issues of computational
complexity, a simple pixel pseudo-ordering method is used to institute the sorting algorithms in
terms of the linear time. On the results of pseudo-ordering, the region growing algorithm is starting
from the seed in the ordered list of unused pixels to form a line-support region. The adjacent pixels
whose level-line angle is equal to the region angle up to a tolerance (22.5 degrees or π/8 radian,
details at [52]) are added to the region. The process is repeated until no other pixel can be added to the
region. While the line-support region were figured out, the enclosing rectangle description is chosen
to present and judge the line-support region, as shown in Figure 4. Reference [52] uses a quiet strict
and computationally complex Helmholtz Principle, it performs well in detecting short line segments
but misses long lines in the image, especially in range compressed SAR image, where the trajectory
is associated with all azimuth samples, as shown in Figure 2. Here a simple and effective method
is introduced to replace the Helmholtz Principle. As shown in Figure 4, length to width ratio of the
rectangle is used to detect a long line. For a given threshold of length to width ratio, the rectangle can
be used to represent the trajectory of moving target. To estimate the slope of the trajectory, the center
of the rectangle can be calculated as

cx =
∑num

k=1 xk

num
, cy =

∑num
k=1 yk

num
(13)

where (cx, cy) and (xk, yk) are the coordinates of the rectangular center and the kth pixel in the
line-support region involved by the rectangle, respectively, where num is the total number pixels
contained by the rectangle. The rectangle’s angle is associated with eigen value and eigen vectors of
the matrix

M =

[
mxx mxy

mxy myy

]
(14)

where

mxx =
∑num

k=1 (xk − cx)2

num

myy =
∑num

k=1 (yk − cy)2

num

mxy =
∑num

k=1 (xk − cx)(yk − cy)

num

Setting the eigen values as a, b (b > a), the corresponding eigenvectors of the bigger one is (b1, b2),
then the slope of the trajectory can be expressed as

tan θ̂ = b2/b1 (15)
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Note that this method also has an excellent performance in the situation of poor SNR [52]. With the
slope, the radial velocity can be well estimated. Then the RWM can be corrected by

HRWM = exp(j
4πV̂r

c
frta) (16)

The edge of the trajectory

Center

Length

Width

θ

Figure 4. The edge of the trajectory is specified using a rectangle.

3.2. Along-Track Velocity Estimation

After the aforementioned operations, the radial velocity can be obtained and the response of
the moving target is concentrated into a onefold range cell. Therefore, to obtain an ideal azimuth
compression, the Doppler modulate rate is mainly considered in the following analysis. When RCMC
and IFT are conducted, the echo signal in Equation (6) can be simplified expressed with the single
variable ta as

s(ta) = Aexp(j2π f ta)exp(jπKdta
2) (17)

where f is the frequency with respect to Doppler centroid frequency, which is not a major concern
in the following analysis. and Kd is the Doppler modulated rate, Kd = −(2(Va − Vx)2)/(λR0).
It is directly associated with the along-track velocity. In addition, for an unknown LFM signal,
Time-Frequency Analysis (TFA) shows the excellent performance. The Winger-Ville Distribution
(WVD) is a well known method for TF representation. However, it has to be aware that there may
be multiple moving targets located closely in the same range cell. In this case, the Azimuth Phase
Modulation (APM) is in a multi-component LFM form, and the WVD is no longer useful due to its
bolinearity generating cross-terms. During the implementation of Wigner-Hough Transform (WHT)
and Randon-Ambiguity Transform (RAT), the rotational and searching operations are needed in the
TF plane, they both suffer from a heavy computational load. The linear Fractional Fourier Transform
(FrFT) can get rid of the interferences of cross-terms, but this method also brings a considerable
computational load. According to [10,46], the Wigner-based methods and the FrFT methods are all
failed to represent the real Doppler modulation rate. As a novel TFA technique, Lv’s Distribution
(LVD) can provide us a true and natural TFR in a Doppler Centroid Frequency and Chirp Rate
(CFCR) domain, and cannot be disturbed by rotational, searching operations, cross-terms and any
nonphysical attributes. The Doppler centroid frequency has been estimated after the application
of slope estimation method as aforementioned in part Section 3.1, so only the Doppler modulation
rate is considered. Detailed implementation process of the modified LVD is discussed as follows.
The Parametric Symmetric Instantaneous Auto-correction Function (PSIAF) of Equation (17) can be
expressed as

RC
s (τ, ta) = s(ta +

τ + a
2

)s∗(ta +
τ + a

2
)

= A2exp[j2π f (τ + a)]exp[j2πKd(τ + a)ta]
(18)
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where τ is the time-lag variable, a is a constant time-delay parameter and ∗ indicates the conjugate
operation. PSIAF induces a coupling between ta and τ. The coupling can be resolved by
a scaling operator

ta =
t̃a

(τ + a)h
(19)

where h is the scaling factor and (t̃a) is the scaled slow-time variable. Then Equation (18) can be
expressed as

RC
S (τ, t̃a) = A2exp[j2π f (τ + a)]exp[j2πKd t̃a

h
] (20)

when the parameters a and h are set up to 1 [19], apply Fourier transform to τ and t̃a, the LVD
representation can be therefore obtained as

Ls( f̂ , K̂d) = A2exp(j2π f )δ( f̂ )δ(K̂d − Kd) (21)

where δ(•) denotes the Dirac delta function. f̂ is the estimated parameter associated with Doppler
centroid frequency, K̂d is the estimated Doppler modulated rate. Then the along track velocity can be
calculated by the Doppler modulate rate of the moving target as

V̂x = Va −
√

λR0Kd

2
(22)

Then to obtain a focused SAR image of moving target, the azimuth cubic phase can be
compensated by using the same approximate principle in Equation (8) as

Hcubicterm ≈ exp(−j
4π

λ

VrVa
2

2R0
2 ta

3) (23)

The Doppler centroid shift can be compensated by

H fdc
= exp(j

4π

λ
Vrta) (24)

The azimuth compression can be expressed as

Hazimuthcompression = exp(−jπK̂dta
2) (25)

The whole flowchart of the proposed algorithm is showed in Figure 5.
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Azimuth Cubic Phase  Compensation

Figure 5. Flowchart of the proposed algorithm.

4. Experiments

In this section, a practical issue of the radical velocity will be discussed and a series of experiments
is devised to verify the performance of the proposed algorithm.

4.1. The Analysis of Parameters Error

Recall Equation (8), the estimation of radical velocity is highly significant for the RWMC and the
term, PRFC/2 fc has a very large magnitude, so that the accuracy of slope is a vital factor to acquire
a well focused image. As shown in Table 1, it can be seen that for a given radial velocity of 25 m/s,
the estimated velocity is more accurate for the smaller searching range. Likewise, Figure 6 shows
the imaging result under different searching ranges. It is evident that the smaller the searching step,
the greater the imaging quality. Therefore, both the numerical results shown in Table 1 and Figure 6
demonstrate that the estimation accuracy of the slope has the significant effect on the focusing of
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moving target image. In other words, due to the existence of the estimation of slope error, the target
cannot be well focused in the final image.

Table 1. A comparison of moving target imaging with different searching ranges.

Vreal Vestimate

25 m/s
searching ranges

1◦ 0.1◦ 0.01◦ 0.001◦

32.7382214 m/s 26.18674612 m/s 25.20426081 m/s 25.02414457 m/s

azimuth cell
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azimuth cell
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l
l

azimuth cell

r
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e
l
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r
a
n
g
e
 
c
e
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Figure 6. A comparison of moving target imaging with different searching ranges.

4.2. Performance Comparison

The following numerical results are obtained by simulation with the parameters presented in
Table 2. It is well-known that HT has a better performance than RT in term of computation complexity.
From this point of view, the following performance comparison focuses on the HT and the proposed
algorithm. Figure 7a shows the computing time versus the number of moving targets for HT and
the proposed algorithm, since the computing time is directly related to the complexity of algorithm.
It can be seen that the proposed algorithm has almost a constant computing time irrespective of
the number of moving target increasing. In contrast, the computing time for the HT algorithm is
exponentially increasing as the number of the moving targets increases, especially for a high accuracy
of 0.001, which gives to a reasonable good image focusing. The reason for the proposed algorithm
to have significant performance in terms of computing time is that the proposed algorithm is able
to provide a slope close to its theoretical value. Furthermore, when the number of moving targets
is more than 7, the proposed algorithm shows superiority to HT at an accuracy of 0.01. Figure 7b
shows the relative error of radial velocity for RT/HT and the proposed algorithm. It can be seen that
the proposed algorithm has excellent precise result regardless the search range changes. This means
that the proposed algorithm does not need to prior set up the search range. In contrast, both RT and
HT need to set up the search range in order to achieve a good estimation on target moving velocity.
From Figure 7a, it can be seen that the computing time is presented in log scale, so that when RT or
HT changes its search range from 0.01 to 0.001, the required computing time increases exponentially.
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Table 2. Simulation Parameters.

Parameter Name Value

carrier Frequency 9.6 GHz
pulse time width 4 µs
pulse bandwidth 80 MHz

nearest slant range 7500 m
pulse repetition frequency 1000 Hz

platform velocity 150 m/s

(a)

(b)

Figure 7. Performance comparison: (a) Computational load of different methods; (b) Relative error
comparison of radial velocity.
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4.3. Simulated Data Processing

Figure 8 shows a simulation model of single channel SAR system of 4 targets using the same
parameters presented in Table 2, where S represents a stationary target, M1, M2, M3 represent moving
targets with different velocities, respectively. All the moving and stationary targets are supposed to
be isotropic point targets in the scene. In Table 3, Vx (Vr) and V̂x (V̂r) represent the given along-track
velocity (the given radial velocity) and the estimated along-track velocity (the estimated radial velocity),
respectively. To incorporate simulated moving targets, the initial positions in range-azimuth domain
for these 4 targets are shown in Figure 8. In the simulation, after rang walk corrected for the 3 moving
targets, LVD representation is used to estimate the Doppler modulation rate. The obtained result
is shown in Figure 9. The SAR image of moving targets using the proposed algorithm is given in
Figure 10, in which the initial position of the moving target is presented by cross symbol. Due to the
motion of the target, the moving target response is displaced and defocused that is revealed by square
symbol. The relocated and refocused moving target by the proposed algorithm is presented by circle
symbol. Figure 11a,b illustrate the target contour image for the moving target M2 of defocused after
RCMC and refocused by LVD, respectively. To have a more intuitive demonstration, Figure 12 shows
the comparison of azimuth responses of M2 corresponding to that in Figure 11.

Range(m)

Azimuth(m)

200100-100-200

10

-10

M2

M1

M3

S

Moving targets

Stationary target
S : 

M1-M3 :

Figure 8. Simulated target ground truth.

Table 3. Simulated and estimated target velocity.

Vr (m/s) Vx (m/s) V̂r (m/s) V̂x (m/s)

M1 10 10 9.9975 10.0123
M2 25 5 24.9964 5.0215
M3 10 3 9.9973 3.0118
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Figure 9. LVD representation.
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Figure 10. SAR moving target imaging result. The initial position of the moving target is presented by
cross symbol. The displaced and defocused target is presented by square symbol. The relocated and
refocused moving target using the proposed algorithm is presented by circle symbol.
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Figure 11. M2 contour image: (a) Range focused image after range walk correction, Doppler centroid
shift compensation and the cubic term compensation; (b) Final focused image.
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Figure 12. Azimuth responses of defocused and refocused of M2.(Blue line) Defocused target response.
(Brown line) refocused target response based on FrFT representation. (Solid line) Refocused target
response based on LVD representation.
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5. Conclusions

This paper presents a novel SAR imagery algorithm SDLVD for ground moving targets based
on the slope detection strategy combined with LVD. The novelty is the solution of the ambiguity
problem and relevant heavy computing load. This research consists of two main focuses. The first
focus is a new high-efficiency slope detection strategy based on the concept of gradient and level-line
angle. This strategy is able to achieve accurate slope estimation and save significant computing.
For example, as shown in Figure 7, when there are seven moving targets in the observed scene,
the velocity estimation error rate of using the proposed algorithm is approximately equal to the
conventional RT/HT algorithm with a searching range 0.001. However, the proposed algorithm
can save up to 34 s of computing time comparing to RT/HT algorithm. The second focus is a novel
time-frequency representation method, known as LVD, to represent a true and natural doppler chirp
rate for multiple moving targets in a doppler centroid frequency and chirp rate domain. This can be
evidenced by the capability of refocusing the multiple moving targets as shown in Figures 9 and 10.
Furthermore, as shown in Figure 12, the refocused target responses using LVD representation have
narrower main lobes and lower side lobes comparing to the conventional FrFT approach.

In summary, the proposed algorithm can be used for real-time SAR remote sensing system due to
the high accurate velocity estimation, less computing time and refocused target responses. The future
work will test the proposed algorithm on SAR platform, especially on the UAV borne SAR platform.
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