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Abstract: Surface water mapping is essential for monitoring climate change, water resources, ecosystem
services and the hydrological cycle. In this study, we adopt a multilayer perceptron (MLP) neural network
to identify surface water in Landsat 8 satellite images. To evaluate the performance of the proposed
method when extracting surface water, eight images of typical regions are collected, and a water index
and support vector machine are employed for comparison. Through visual inspection and a quantitative
index, the performance of the proposed algorithm in terms of the entire scene classification, various
surface water types and noise suppression is comprehensively compared with those of the water index
and support vector machine. Moreover, band optimization, image preprocessing and a training sample
for the proposed algorithm are analyzed and discussed. We find that (1) based on the quantitative
evaluation, the performance of the surface water extraction for the entire scene when using the MLP
is better than that when using the water index or support vector machine. The overall accuracy of the
MLP ranges from 98.25–100%, and the kappa coefficients of the MLP range from 0.965–1. (2) The MLP
can precisely extract various surface water types and effectively suppress noise caused by shadows and
ice/snow. (3) The 1–7-band composite provides a better band optimization strategy for the proposed
algorithm, and image preprocessing and high-quality training samples can benefit from the accuracy of
the classification. In future studies, the automation and universality of the proposed algorithm can be
further enhanced with the generation of training samples based on newly-released global surface water
products. Therefore, this method has the potential to map surface water based on Landsat series images
or other high-resolution images and can be implemented for global surface water mapping, which will
help us better understand our changing planet.

Keywords: surface water extraction; multilayer perceptron; neural network; global change; Landsat 8

1. Introduction

Water is the foundation that supports the survival of various biological activities in nature and is
the basis for the production, life and development of social civilization [1,2]. In many types of water
bodies, surface water, including lakes, rivers and reservoirs [3], plays an important role in Earth’s energy
circulation and energy exchange [1], and it profoundly affects natural and human landscapes [4,5].
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Surface water mapping has important practical significance and scientific value in terms of water resource
management [1,6], biodiversity [7], disaster management [5,8] and climate change [9,10].

Remote sensing technology is an efficient and convenient mean for mapping global surface water
at a large scale [11]. Different types of remote-sensing data (optical and radar) for surface water
mapping have been widely documented [12,13]. In recent years, many scholars have conducted
meaningful work on surface water mapping at a global scale, including the Global 3 arc-second Water
Body Map (G3WBM) [9], the Global Land Cover Facility inland surface water map (GLCF-GIW) [3],
the finer resolution observation and monitoring of the global land cover (FROM-GLC) water mask [14],
the Global Land 30-water map [15] and high-resolution mapping of global surface water (HMGSW) [16].
These products are produced by combining a variety of water body extraction methods [15], which
consist of four categories: the threshold method, the water index method, the object-oriented method
and machine learning [15]. The threshold method extracts surface water using near-infrared or infrared
bands [17]. The key to this method is determining the threshold between water and non-water bodies.
Visually identifying this threshold may result in serious classification errors [18]; thus, automatic
identification methods based on the differences in the gray value of a pixel have been used extensively
to extract surface water [19]. The water index method is a popular method for highlighting surface
water by establishing a water index, such as the normalized difference water index (NDWI) [20],
the modified normalized difference water index (MNDWI) [21] and the automated water extraction
index (AWEI) [22]. However, cloud shadows, mountain shadows, ice and snow remain major noise
contributors when using the water index method [23]. The object-oriented method is typically
utilized to extract surface water with a high-spatial-resolution remote image [24], such as ZY3 [25,26],
SPOT5 [27], WorldView-2 [24] and WorldView-2 [28]. This method requires an enormous amount of
time for image segmentation, and the efficiency of the extraction is limited [29]. The machine learning
method is used to select tremendous amounts of training samples to identify surface water using
different intelligent classifiers, including maximum likelihoods (MLs) [25], support vector machines
(SVMs) [30], decision trees (DTs) [31], neural networks (NNs) [32] and constraint energy minimizations
(CEMs) [33]. These methods are automatic, efficient and require less manual labor [15]. Although the
machine learning method promotes global surface water mapping, there are still challenges regarding
algorithm complexity and high-quality training samples [15].

Neural networks are a popular method used in target detections and image classifications across
various image processing fields [34,35]. To solve complex situations, more layers are required in
a neural network that has a full connection with all neurons, which is referred to as the multilayer
perceptron (MLP) neural network [36]. However, with the deepening of neural network layers,
the optimization function is likely to transform into a local optimal solution. As the new activation
function emerges and the computer performance improves, an MLP with an increasing number of
layers can be used in the field of image possessing by learning the spectral features at the pixel
level. Compared with MLP, deep learning not only includes multiple layers, but it also has the
ability to learn image shapes or texture features [37], such as the convolutional neural network (CNN)
and the fully-convolutional network (FCN) [29,38]. For remote sensing images, the CNN and FCN
have been widely applied in scene classifications [35,39], land cover classifications [40,41] and target
detections [37] during recent years. Moreover, some studies have reported the application of the
CNN or FCN in the surface water mapping community [29,42]. Yu et al. presented a novel CNN
with a logistic regression to identify water via Landsat [42]. Furthermore, an FCN was proposed
to map surface water by training a feature from a different land cover type [29]. Because the CNN
or FCN conduct convolution computation during the process of model training, these methods are
time consuming.

Multilayer perceptron neural networks have been verified to be an excellent neural network
algorithm at the pixel level given the connection with perceptron [36], which has been employed to
generate cloud masking [36], image classifications [43] and change detections [44] in the field of remote
sensing. However, the application of MLP to surface water extraction has not been presented so far in
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the literature. Given this motivation, the purpose of this paper is to introduce MLP neural networks to
extract surface water. To objectively illustrate the ability and performance of MLP in surface water
extraction, the experiment is conducted at a large scale, and the applicability of the algorithm for
different water and noise types is comprehensively compared. First, eight images covering different
water types and water noises are collected as the experimental dataset. Subsequently, a water index
and support vector machine are employed to compare the performance of the proposed algorithm for
surface water mapping with previous methods. Then, the reliability of the proposed algorithm when
suppressing noise (including cloud shadows, mountain shadows, building shadows and ice/snow)
is verified. Finally, the band optimization, image preprocessing and training samples are analyzed
and discussed. Through a comprehensive comparison and analysis, the proposed algorithm holds
promise for mapping global surface water and helps us understand our changing planet in regard to
global change.

2. Materials and Methods

2.1. Study Area and Dataset

Different types of surface water are abundant in China, and eight typical regions are selected as
the study area (Figure 1), which covers different surface water types, as shown in Table 1. The Landsat
8 OLI images (Figure 2) corresponding to the study areas are collected from the U.S. Geological
Survey [45], and the metadata information of these images are shown in Table 1. In addition, major
noise from cloud shadows, mountain shadows, building shadows and snow/ice are also included in
the collected dataset.

Figure 1. The locations of the study regions.
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Table 1. The metadata, water types and major noise sources of the Landsat 8 OLI.

Study Area Landsat Scene ID Path/Row Data Acquisition Cloud Cover Site Center Water Type Major Noise Source

a LC081190282013090501T1 119/28 2 May 2017 4.25% 46.0381◦N
124.859◦E River channel, lake cluster Cloud shadows, wetland

b LC81220332015163LGN00 122/33 12 June 2015 0.43% 38.9007◦N
117.8280◦E

Sea water, river, artificial
pond

Dark built-up surface, cloud
shadows, mudflat

c LC81220442015291BJC00 122/44 19 October 2015 1.12% 23.1221◦N
113.6062◦E River network, sea water Built-up shadows,

mountain shadows

d LC081280402017052601T1 128/40 15 June 2017 2.70% 28.8657◦N
105.7404◦E Thin river Dark built-up surface, cloud

shadows, paddy field

e LC81290432015148LGN00 129/43 28 May 2015 0.48% 24.5307◦N
103.1013◦E Lake, artificial pond Dark built-up surface,

mountain shadows

f LC81420352015255LGN00 142/35 12 September 2015 1.30% 36.0229◦N
86.0493◦E Lake cluster Snow, cloud

shadows, mudflat

g LC81470282015194LGN00 147/28 13 July 2015 0.03% 46.0227◦N
81.5998◦E Lake, thin river Mountain shadows,

snow, wetland

h LC81490342015288LGN00 149/34 15 October 2015 3.80% 37.4712◦N
75.6858◦E Thin river Mountain shadows,

snow, ice
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Figure 2. Eight images of the typical regions used in this study ((a–h) are the Landsat OLI band
composite (R: Band 6; G: Band 5; B: Band 4) images of eight study areas).

2.2. Methods

The flowchart of this study is shown in Figure 3. This flowchart contains three steps: image
preprocessing, water extraction and an accuracy assessment. The first step generates surface reflectance
from the Landsat 8 images by using radiometric calibration and atmospheric correction. Then, in the
second step, to compare the performance of the MLP, the water index and support vector machine
are also employed to extract surface water. The classification of the three classifiers for each study
region are generated. Finally, random samples, which are validated with high-resolution Google Earth
images, are collected to assess the classification accuracy. The performance of the MLP when extracting
water types and suppressing noise is comprehensively compared with two other algorithms.

Figure 3. Overall flowchart adopted in this study.
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2.2.1. Image Preprocessing

To obtain a high-quality and consistent experimental dataset, the downloaded images should
be radiometrically and atmospherically calibrated. Radiometric calibration can be divided into two
steps. The first step calculates the top of atmosphere (TOA) radiances, RTOA, using the following
equation [46]:

RTOA = a × DN + b (1)

DN denotes the original digital number (DN) value. The variables a and b represent the gain factor
and offset factor, respectively, which can be obtained from the metadata file.

The second step calculates the TOA reflectance, ρTOA, which can correct errors in the Earth–Sun
distance and the exo-atmospheric solar irradiance [47].

ρTOA =
π × RTOA × D2

E0 × COSθ
(2)

D represents the Earth-to-Sun distance; E0 denotes the mean exo-atmospheric solar irradiance; θ

represents the solar zenith angle; and π = 3.1415926.
Furthermore, atmospheric correction is conducted using the 6S model (i.e., the second simulation

of the satellite signal in the solar spectrum) with a digital elevation model (DEM) and atmospheric
parameters (i.e., water vapor content, ozone and aerosol optical thickness), which are derived from
MODIS atmospheric products [46]. Through the above preprocessing, the original data are converted
into surface reflectance data.

2.2.2. Multilayer Perceptron

Multilayer perceptron is a neural network model with multiple hidden layers [48], and the neurons
between adjacent layers are connected [44]. The architecture of the model is shown in Figure 4, and the
parameters of the MLP are summarized in Table 2. The parameter selection involved in the proposed
MLP is based on experience and experiment. As for the hidden layers’ selection, the comparison
experiment is conducted by setting 2, 4, 6 and 8 hidden layers, and the result (Figure 5a) shows that
with the layer increased, the time cost will sharply increase, while the accuracy will not be improved.
When the layer is set as two, the classification accuracy is low. Therefore, to balance the accuracy and
time cost [49,50], four hidden layers are selected in this experiment. The number of neurons for each
hidden layer is set according to the experience of multiple trials, and the principle is still balancing time
cost and accuracy. The activation function and loss function are ReLU and softmax cross-entropy with
logits, respectively. The flow of the extraction contains three steps: sample selection, model training
and classification generation.

• Sample selection: The training samples for each scene are manually labeled and cover all water
types and non-water types. In this paper, all training samples are manually labeled in ENVI
5.3 using ROI for water and no-water. Each ROI consists of pixels within a polygon feature.
The distribution of these samples is based on manual experience, and we try our best to improve
representativeness and randomness of the spatial distribution. To ensure the accuracy of the
sample, only identified non-water and water bodies will be selected as samples. The mixed pixels
in coastal area, river banks and wetlands will not be considered. The sample numbers for all water
and non-water types in each image are shown in Table 3. These samples are randomly divided
into training samples and validation samples. According to the experiment, by setting different
training sample percentages (Figure 5b), 80% of the total sample is used to train the model and to
generate the fitting accuracy, and 20% of the total sample is used to verify the accuracy. To ensure
the comparability of the algorithm accuracy, the training samples of the water and non-water
bodies via the MLP and support vector machine are the same.
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• Model training: Based on these training samples and the architecture, the surface reflectance
variables of the seven bands in the labeled pixel are input into the model. During the forward
propagation process, the activation function is used to compute the weights and biases with the
labeled training samples. To optimize the weights and minimize the errors, a gradient descent
algorithm is applied to train the network and identify the weights and biases of each layer during
the back-propagation process.

• Classification generation: With the trained model, the probability of water and non-water types
for each pixel are computed. The classification type depends on the probability value. Then,
the classification results, which are labeled with different colors, can be generated.

TensorFlow [51], which is an open source platform developed by Google, is employed to
implement the MLP with Python.

Figure 4. The architecture of the MLP used in this paper.

Figure 5. The experiments of the MLP parameter. (a) Classification accuracy and time cost by setting
different hidden layers and (b) fitting accuracy by setting different percentages of the training sample.
To highlight the differences in the four experiments, the top ten training epochs are selected.
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Table 2. The parameters of the MLP and support vector machine.

MLP Support Vector Machine

input variables surface reflectance via seven bands kernel type radial basis function (RBF)
activation function ReLU gamma in the kernel function 0.143
classification rule based on the probability of each class penalty parameter 100
loss function for training softmax cross-entropy with logits pyramid levels 0
number of hidden layers 4 probability threshold 0
number of neurons in the first layer 30 number of classes 2
number of neurons in the second layer 30
number of neurons in the third layer 30
number of neurons in the fourth layer 10
learning rate 10−4

training epochs 200
batch size 100
display step 1
number of classes 2

Table 3. The training sample numbers for the water and non-water surfaces in each scene.

Study
Area

Water Non-Water

Lake River Sea
Water

Open
Pond

Turbid
Water

Aquacultural
Water Land Ice/Snow Cloud Cloud

Shadow

a 11,829 4116 0 10,294 1079 1074 30,084 0 25,669 19,242
b 1150 1022 2348 607 1108 1963 22,027 0 8743 2771
c 5164 1472 1123 688 512 1272 22,797 0 7241 1026
d 641 1534 0 303 0 131 12,087 0 242,458 7307
e 73,112 1006 0 6265 1575 2655 219,108 0 74,832 22,057
f 8747 1003 0 17,133 1495 0 103,737 260,507 18,757 1523
g 138,269 252 0 2497 131 0 247,367 38,112 8711 1230
h 0 1297 0 1837 33 0 289,476 208,986 0 0

2.2.3. Accuracy Assessment

(1) Quantitative assessment:

To quantitatively evaluate the water extraction accuracy, the surface reflectance images of Landsat
8 are classified as various water and non-water types according to the categories of Table 3. Fifteen
to 25 random points are generated for each layer using stratified random sampling, and the total
validation points for water and non-water is 100, respectively. Then, these points are verified based
on a high-resolution Google Earth image. The error matrix for the water classification for each scene
is implemented with the validation points and classification results. Finally, based on the error
matrix, the overall accuracy (OA) and kappa coefficients (KCs) can be calculated using the following
equations [31]:

OA =

k
∑

i=1
xii

N
(3)

KCs =
N

k
∑

i=1
xii −

k
∑

i=1
(xi+ × x+i)

N2 −
k
∑

i=1
(xi+ × x+i)

(4)

where N denotes the total number of pixels used in the accuracy assessment, xii represents the total
number of correct pixels for the i-th class, xi+ represents the total number of i-th classes acquired
from the classification result and x+i represents the total number of i-th classes acquired from the
validation data.

(2) Performance comparison:

To compare the performances of the proposed algorithms, two commonly-used methods (i.e., support
vector machine [52] and water index [21]) are employed in this study. The radial basis function (RBF),
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which is an extensive function applied in the remote sensing classification field [53], is selected as the
kernel function for the support vector machine. The SVM classification is implemented on the ENVI 5.3
platform, and the model parameters are summarized in Table 2. In addition, the value of gamma in the
kernel function is set to 0.143 according the inverse of the number of bands.

Modification of the normalized difference water index (MNDWI) [21] is a widely-used water
index that highlights water information [3,23]. In this study, the MNDWI, combined with the popular
Otsu’s threshold segmentation method [18,54], is adopted to automatically extract surface water for
a performance comparison.

3. Results

In this section, the performance of the surface water extraction for the entire scene is assessed
first through visual comparisons and a quantitative index. Subsequently, detailed comparisons of
the different water types are implemented to explore the universality of the proposed algorithm.
Then, several noises are included to test the reliability of the proposed algorithm. Finally, the band
optimization of the proposed algorithm is analyzed.

3.1. Classification Results and Accuracy Comparisons

The classifications of the surface water extractions using the three algorithms in eight regions are
shown in Figure 6. Based on the visual inspection, the patterns for surface water in Regions a and d
are similar, while the performances in Regions b, c, e, f, g and h using the three classifiers are different.
For Region b, some sea-water bodies are not extracted using the water index. Moreover, many detailed
surface water bodies are not identified with the water index and the support vector machine in Region
c and Region e. Generally, clouds, mountain shadows and ice/snow are obstacles when extracting
surface water bodies. Compared with the classifications in Regions f, g and h, the MLP performs better
than the water index, and the performances of the MLP and support vector machine are almost the
same. Specifically, for Region h, the water index method cannot distinguish ice/snow from surface
water bodies. Therefore, through visual comparison, the classification shows that the MLP can achieve
an adequate performance for the entire image.

To quantitatively evaluate the accuracy of the surface water classification, the overall accuracy
and kappa coefficients are calculated for each region, and the results are summarized in Table 4.
When comparing the overall accuracy of the three methods in the eight study regions, the accuracy
of the MLP is higher than those of the water index and the support vector machine. The overall
accuracy of the MLP ranges from 98.25–100%; however, the overall accuracy of the water index ranges
from 76.56–98.50%. The overall accuracy of the support vector machine is similar to that of the MLP,
while the water index achieves the lowest accuracy of the three methods because Otsu’s threshold
is highly dependent on the ratio between water and non-water surfaces [55]. The threshold of eight
images ranges from 0.2157–0.4392. Furthermore, a comparison of the kappa coefficients shows that the
kappa coefficients of the MLP are greater than those of the other two classifiers. The kappa coefficients
of the water index in Regions e and h are still the lowest because this method misses several thin
ponds and ice/snow noise. Based on this accuracy evaluation, the quantitative indices of MLP are
greater than those of the water index and support vector machine. These results are consistent with
the visual inspection.
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Table 4. Accuracy evaluation of the three methods in eight regions.

Study
Region

Overall Accuracy (%) Kappa Coefficients

Water
Index

Support Vector
Machine MLP Water

Index
Support Vector

Machine MLP

a 98.25 98.25 98.75 0.965 0.965 0.975
b 87.25 98.53 99.25 0.745 0.971 0.985
c 96.75 97.00 99.75 0.935 0.940 0.995
d 90.25 91.75 98.75 0.805 0.835 0.975
e 79.75 97.75 98.25 0.595 0.955 0.965
f 97.75 98.50 99.00 0.955 0.970 0.980
g 98.50 99.00 100.00 0.970 0.980 1.000
h 76.75 91.02 98.50 0.535 0.821 0.970

Figure 6. Cont.
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Figure 6. The classification comparison of the three algorithms in eight study regions ((a1–h1) are
the water index classification results; (a2–h2) are the support vector machine classification results;
and (a3–h3) are the MLP classification results).
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3.2. Performance Comparison When Extracting Different Water Types

To assess the universality of the MLP algorithm, typical surface water bodies, including lakes,
thin rivers, sea water, open ponds, turbid waters and aquacultural waters, are derived from the
classification results in Section 3.1. A comparison is used to detect false water and true water bodies
based the visual inspection and to analyze the reason for classification differences.

The performance comparison among lakes, thin rivers and sea water bodies is shown in Figure 7,
and the differences in the extraction results are highlighted using a yellow circle. Regarding lakes,
the local images, which are derived from Regions a and c, are shown in Figure 7(a1,b1), respectively.
It can clearly be seen that the highlighted surface water in Figure 7(a3,b2) is missing, while the MLP
method can exactly identify the surface water. This missing result may be related to the spectrum
difference across the lake. Moreover, detailed thin rivers cannot be mapped with the support vector
machine and water index, especially in Figure 7(c3,d2). For the extraction of sea water, the water index
can distinguish land from sea water in Figure 7(e2), while it misses some water details in Figure 7(f2).
The support vector machine can achieve almost the same performance as the MLP method when
extracting sea water bodies.

The performances of surface water mapping for open ponds, turbid waters and aquaculture
areas are shown in Figure 8. For open ponds, the performance comparison shows that a large open
pond can be precisely extracted with the three methods, while a smaller open pond is missed when
using the water index and support vector machine. Moreover, mixing between surface water and
wetlands causes a commission error in Figure 8(a2). The results of the turbid water area located in
the Pearl River estuary and those demonstrating the performance of the surface water extraction are
almost the same; however, the support vector machine misses several surface water bodies, as shown
in Figure 8(b3). Two aquaculture areas (Figure 8(c1,d1)) are selected from Region c to compare the
detailed surface water extractions. For these two areas, the surface water area using the MLP is larger
than that using the other two algorithms, which demonstrates that the MLP performs better when
identifying detailed surface water bodies, while several surface water bodies in Figure 8(c3,d3) using
the support vector machine are missed. By analyzing Figures 7 and 8, the MLP can achieve an adequate
performance when extracting various surface water bodies, which confirms the universality of the
proposed algorithm.
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Figure 7. The performance comparison for lakes (a1,b1), thin rivers (c1,d1) and sea water bodies (e1,f1).
(a2–h2) are the water index classification results; (a3–h3) are the support vector machine classification
results; and (a4–h4) are the MLP classification results. Yellow circle are used to highlight the differences
of three extraction results.
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Figure 8. The performance comparison for open ponds (a1), turbid waters (b1) and aquacultural
waters (c1,d1). (a2–d2) are the water index classification results; (a3–d3) are the support vector machine
classification results; and (a4–d4) are the MLP classification results. Yellow circle are used to highlight
the differences of three extraction results.

3.3. Performance Comparison When Suppressing Noise

The spectrum for shadows and ice/snow is similar to that for surface water; thus, it is a challenge
to remove these noises from surface water bodies in remote sensing images [9]. To examine the
reliability of then MLP when suppressing noise, four major noise images, including cloud shadows,
mountain shadows, building shadows and ice/snow, are derived from the studied dataset. Then,
a performance comparison of these images is shown in Figure 9.

For cloud shadows, the surface water map results in Figure 9(a1,b1) show that cloud shadows can
be removed using the water index and MLP methods; however, the support vector machine mixes
some of the cloud shadows with the surface water. The performance of the MLP when suppressing
mountain shadows is the best among the three methods (Figure 9(c1,d1)). The support vector machine
can distinguish most of the mountain shadows in Figure 9(c3) and Figure 9(d3), but several shadows
cannot be removed clearly in these regions. Figure 9e,f shows the experimental results for building
shadows. The extraction map demonstrates that the performances when suppressing building noise
are almost the same. Moreover, detailed surface water in urban areas can be precisely detected in
Figure 9(f4). For the areas in Figure 9g,h, the water index algorithm causes serious mixing between
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ice/snow and surface water, and the extractions in Figure 9(g3,h3) still contain part of the mountain
shadows, while the MLP can remove this noise.

For the performance comparison when suppressing noise, the water index cannot eliminate noise
from ice/snow, mountain shadows and cloud shadows, and mountain shadows and ice/snow still
exist in the classification map based on the support vector machine extraction. The three algorithms
can efficiently suppress building shadows. Overall, the MLP achieves a better performance when
suppressing noise compared to the other two algorithms.

Figure 9. Cont.
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Figure 9. The performance comparison when suppressing noise from cloud shadows (a1,b1), mountain
shadows (c1,d1), building shadows (e1,f1) and ice/snow (g1,h1). (a2–h2) are the water index
classification results; (a3–h3) are the support vector machine classification results; and (a4–h4) are the
MLP classification results. Yellow circle are used to highlight the differences of three extraction results.

3.4. Band Optimization for the Multilayer Perceptron Neural Network Method

Band optimization is necessary when using the MLP to extract surface water based on Landsat
OLI images. Therefore, a band optimization experiment is conducted using the original band and
several water indices, and the results are shown in Figure 10. There are significant errors in the
cloud and cloud shadow detections in Figure 10(a4), and the building shadows in Figure 10(b4)
are classified as surface water bodies; however, the performances in Figure 10(a2,a3,b2,b3) are very
excellent. These results demonstrate that adding a water index cannot improve the accuracy of the
surface water extraction, and the 1–7-band composite provides an adequate band optimization strategy
for model training. This may be related to the multiple hidden layers of the MLP, which can fully train
the image features [49].
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Figure 10. Performance comparisons based on band selection. (a1,b1) are the original images;
(a2,b2) are the classification results only based on the 1–7-band composite; (a3,b3) are the classification
results based on the composite of Bands 1–7, the NDWI1 [20], MNDWI [21] and NDVI [56]; (a4,b4) are
the classification results based on the composite of eight water indices, including the NDWI1 [20],
MNDWI [21], NDVI [56], NDPI [57], NDWI3 [58], NEW [59] and WRI [60]. Yellow circle are used to
highlight the differences of three extraction results.

4. Discussion

Deep learning is a hot topic in the era of artificial intelligence [34], and it has shown great promise
in target identification and image classification from remote sensing images [61–63]. However, there is
still a lack of studies regarding surface water extraction when using the MLP [29]. In this study,
the classification accuracy of surface water in eight regions via a visual inspection and quantitative
index is evaluated first. The results demonstrate that the classification accuracy of the MLP is higher
than that of the other two methods. Subsequently, the performance of the MLP when extracting various
surface water types is better than those of the water index and the support vector machine; moreover,
the MLP can effectively suppress noise to improve the accuracy of surface water extraction.

Despite the fact that MLP achieves an adequate performance when mapping surface water,
there are uncertainty factors that impact the mapping accuracies. The first one is image preprocessing.
To ensure data consistency, a majority of surface water mapping is based on the top of atmosphere
(TOA) reflectance or surface reflectance [3,9]. For surface water extraction based on single-scene images,
there are almost no differences between the original image and the preprocessed image. However,
for surface water mapping at a large scale, it is necessary to preprocess the image to improve the
consistency of the proposed method.

The second factor is training samples. MLP belongs to a supervised classification; thus,
the classification accuracy depends on the training samples. From a practical perspective when
training the sample selections, all water and non-water bodies in the image should be selected, and the
labeled training samples must be absolutely correct; otherwise, serious mixing between the water
and non-water bodies occurs. To obtain high accuracies and various samples, manually-sampled
selections are employed in this study. However, this limits the automation of the proposed algorithm.



Remote Sens. 2018, 10, 755 18 of 22

Fortunately, given several high-resolution surface water products that have been released during
recent years [9,16], the automation of the proposed algorithm is further improved by using these
reference products to generate high-quality training samples.

To further illustrate the reliability of the proposed method, the model accuracies for each study
region are shown in Figure 11. The figure shows that the fitted accuracy and the tested accuracy are
greater than 99.75%, which demonstrates the advantage of an MLP classifier when extracting surface
water. This result may explain why the MLP achieves higher accuracies compared to support vector
machine extraction with the same training samples. Another advantage of the MLP is a model without
a threshold, which may be suitable for the extraction of surface water with multiple scenarios and
multiple satellite images. Moreover, if there is a large number of samples to train and optimize the
algorithm, the universality of the proposed algorithm is further improved, which can be used when
mapping surface water at a global scale. In addition, this method can not only be used to identify
surface water, but it also has the potential to extract other types of land cover, such as urban areas,
farmlands and forests [29].

Figure 11. The accuracy of the MLP for each study region.

5. Conclusions

Deep learning shows great promise for target identification and image classification. This study
employs an MLP neural network to extract surface water bodies in Landsat 8 OLI images. Eight images of
typical regions are selected, and two other algorithms (i.e., the water index and the support vector machine)
are included to compare their performances when extracting surface water. Then, the performances of
various surface water extractions and noise suppressions are comprehensively compared. Finally, band
optimization and uncertainty factors that impact the accuracy of the surface water extraction when using
the MLP neural network are summarized. The conclusions are summarized as follows:

(1) Based on a visual comparison, the performance of the MLP when extracting surface water is
better than those with the water index and support vector machine. Moreover, a quantitative
evaluation shows that the overall accuracy and kappa coefficients of the MLP are higher than
those of the other two classifiers. The overall accuracy of the MLP ranges from 98.25–100%,
and the kappa coefficients of the MLP range from 0.965–1.

(2) Compared with the water index and the support vector machine, the performance of the MLP
demonstrates that it can precisely extract six types of surface water bodies (i.e., lakes, thin rivers,
sea water, open ponds, turbid waters and aquacultural water), and detailed surface water can be
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identified. Furthermore, the MLP can effectively suppress noise when extracting surface water,
such as cloud shadows, mountain shadows, building shadows and ice/snow.

(3) For the MLP algorithm, the 1–7-band composite is a better band optimization strategy, and image
preprocessing and high-quality samples can reduce the uncertainty of the extraction. Based on
newly-released surface water products, automation of the proposed algorithm will be improved.
Moreover, the algorithm is also suitable for Landsat series images or other high-resolution images
when identifying surface water.

This study introduces an MLP neural network for the extraction of surface water, and the
results confirm that this proposed method can achieve an adequate performance. For future
studies, the automation and universality of the proposed algorithm can be further enhanced using
newly-released surface water products. Then, the proposed method can be used to map global surface
water, which can help us understand the changes in surface water patterns under a background of
global change.
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