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Abstract: Most hyperspectral anomaly detection methods directly utilize all the original spectra to
recognize anomalies. However, the inherent characteristics of high spectral dimension and complex
spectral correlation commonly make their detection performance unsatisfactory. Therefore, an
effective feature extraction technique is necessary. To this end, this paper proposes a novel anomaly
detection method via discriminative feature learning with multiple-dictionary sparse representation.
Firstly, a new spectral feature selection framework based on sparse presentation is designed, which is
closely guided by the anomaly detection task. Then, the representative spectra which can significantly
enlarge anomaly’s deviation from background are picked out by minimizing residues between
background spectrum reconstruction error and anomaly spectrum recovery error. Finally, through
comprehensively considering the virtues of different groups of representative features selected
from multiple dictionaries, a global multiple-view detection strategy is presented to improve the
detection accuracy. The proposed method is compared with ten state-of-the-art methods including
LRX, SRD, CRD, LSMAD, RSAD, BACON, BACON-target, GRX, GKRX, and PCA-GRX on three
real-world hyperspectral images. Corresponding to each competitor, it has the average detection
performance improvement of about 9.9%, 7.4%, 24.2%, 10.1%, 26.2%, 20.1%, 5.1%, 19.3%, 10.7%,
and 2.0% respectively. Extensive experiments demonstrate its superior performance in effectiveness
and efficiency.

Keywords: anomaly detection; hyperspectral image; sparse representation; multiple dictionaries;
feature extraction; clustering

1. Introduction

Hyperspectral image (HSI) delivers rich spectral information [1] that usually covers a large spectral
range almost from visible to mid-infrared. These spectra are divided into hundreds of approximately
continuous and very narrow spectral bands which have a strong ability to precisely characterize
different objects and accurately recognize the subtle differences between surface materials [2,3].
Benefiting from its high spectral resolution, hyperspectral image has been successfully used in many
applications [4], such as target detection [5,6], image classification [7,8], band selection [9,10], and
hyperspectral unmixing [11,12].
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Target detection is one of the hottest topics in remote sensing. Anomaly detection is a special
category of target detection, in which no prior information about the spectra of both the target of interest
and the background is known [13]. Through analyzing the surrounding background information, and
comparing the spectral difference, a pixel will be regarded as an abnormal target when its spectra
significantly deviate from the spectra of its reference background [13]. Requiring no information about
the scene makes anomaly detection have been widely used in many practical applications [14–16],
such as agriculture [17], geology [18], public security [19,20], etc.

Hyperspectral anomaly detection has attracted researchers’ great interest, and many methods
have been proposed in recent decades [21–25]. Generally, most of these methods aim to make a more
accurate background estimation or enhance the difference between background and anomaly by
using some criteria or assumptions. The famous Reed-Xiaoli (RX) [26] algorithm is the most typical
method, which is based on a hypothesis test. It assumes a multivariate normal distribution for the
background and formates two conditional probability functions corresponding to the conditions of
within and without anomalies [27]. In the specific implementation process, a Mahalanobis distance is
computed to estimate the difference between the pixel under test and its reference background. The RX
method contains two versions according to the scope of the reference background [28]. When the
local surrounding region of a pixel under test is regarded as the background, it will be the local RX
(LRX). While when the whole image scene is treated as the background, it will be defined as the global
RX (GRX).

However, in fact this multivariate normal distribution is hard to be satisfied and is too simple
to accurately characterize a real hyperspectral image, because the image scene usually covers a large
scale of ground containing many different materials [29]. The computation of Mahalanobis distance is
also inaccurate, because it involves computing the background mean and covariance matrix which
will be affected by anomalies. Specifically speaking, for the LRX method, although it usually adopts
a sliding dual window [30] to relieve anomalies’ effects on background estimation, it can hardly
eliminate anomalies’ existence from the reference background. Besides, LRX also has a small sample
problem and suffers heavy time computation. As for the GRX method, it generally directly estimates
the background statistical property on the whole image without using a sliding technique. Thus it is
much more efficient than LRX method. But the inadequate distribution assumption is also the main
reason that limits its performance.

In order to address these problems involved in RX, many methods have been proposed in recent
two decades. Some of them aim to obtain a more purer background in order to make an accurate
estimation. For example, the random-selection-based anomaly detector (RSAD) [31] uses a random
selection strategy to select some representative background pixels, then a better background set can be
finally obtained after implementing the selection procedure several times. Zhao et al. propose a method
named robust nonlinear anomaly detection (RNAD) [32] which utilizes a regression detection strategy
to purify the background and suppress the contamination of anomalies. Some of them adopt a kernel
technique to nonlinearly map the hyperspectral data into a high-dimensional feature space in order to
enhance the discrimination between the target and the background. One typical kernel-based method
is kernel-RX (KRX) which is a nonlinear version of RX method [33]. The support vector data description
(SVDD) [34] method is a nonparametric kernel-based anomaly detector. It constructs an enclosing
hypersphere to envelope the background in the high-dimensional feature space. In addition, a more
complex background distribution assumption is also proposed in order to describe the hyperspectral
image more accurately. It has a hypothesis that the background contains multiple classes with
different distributions [35]. For example, the cluster-based anomaly detector (CBAD) [36] divides the
hyperspectral image into different clusters and makes the assumption that each of background class
obeys a multivariate normal distribution.

In recent years, many representation-based methods [37–44] have been proposed. For these
methods, the background is supposed to be well represented by some representative materials’
spectra or basis vectors. For instance, the collaborative-representation-based detector (CRD) [45]
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which is also a sparse representation-based detector (SRD), considers that a background pixel can be
approximately linearly represented by its neighbors, while an anomaly can not satisfy this condition.
Yuan et al. [38] propose analyzing the local sparsity divergence to detect anomalies, in which a sliding
window strategy is directly used to obtain the sparsity difference between abnormal targets and
background. Wang et al. [40] impose the sparsity constraint for abnormal pixels and simultaneously
use a minimum volume constraint in the matrix decomposition process in order to analyze the
background. Zhao et al. [46] propose a hyperspectral anomaly detection method through constructing
a sparsity score estimation framework. By using the sparse representation technique, they compute
the atom usage probability according to the learned dictionary and further transform the probability
into sparsity score as abnormal degree. In order to select some most active dictionary bases to better
describe the background, Li et al. [43] propose an anomaly detector by using the background joint
sparse representation. Since the background usually lies in a low-dimensional subspace, it tends to
have a low rank property. Therefore, a low-rank and sparse matrix decomposition-based mahalanobis
distance method (LSMAD) [41] is proposed to accurately calculate the background statistics after
using the low-rank constraint to obtain the background matrix. In order to accurately represent the
characteristics of different material spectra, Qu et al. [39] take both the spectral unmixing and low-rank
decomposition into consideration. They regard the abundance vectors as new features after using
spectral unmixing technique, and then design a low-rank decomposition approach to detect anomalies.

In this paper, we want to propose a novel anomaly detection method from the view of
discriminative feature extraction. Despite the high spectral resolution delivering rich information,
its high spectral dimension and complicated spectral correlation commonly have great effects on the
anomaly detection performance when a detector is directly implemented on the original whole spectra.
Therefore, it is necessary to pick out some representative spectra to recognize anomalies. Actually, the
spatial information is also important to analyze a remote sensing image. For example, Chen et al. [47]
incorporate the spatial information in their sparsity-based hyperspectral image classification model.
Dao et al. [48] also jointly consider the spatial and spectral information to constrain the group sparsity.
However, in this work, we mainly focus on the spectral information in order to obtain the discriminative
spectral feature. The spatial information will be deeply studied in the future work. Generally, there are
a variety of materials belonging to different categories in the background. Each category has its own
specifically significant spectra. Consequently, we can pick out a particular group of representative
spectra for each category to enlarge the deviation of anomaly from each background class. In other
words, each background category can be regarded as an observer, and each of them selects some
salient spectra which are greatly different from anomaly’s from its own perspective. Inspired by this
idea, we propose a novel hyperspectral anomaly detection method based on sparse representation
through constructing multiple dictionaries to learn discriminative features. The sparse representation
is used to describe the relationships between different spectra. More specifically, each band vector
can be sparsely represented by a few of salient band bases, and these corresponding data bases will
be selected as the new spectral features. These discriminative features are expected to strengthen the
disparity between background and anomaly in order to further improve the detection performance.
The main contributions of the proposed method can be summarized as follows. Bulleted lists look
like this:

(1) Instead of simply combining the feature selection technique with anomaly detection method,
a new spectral feature selection framework based on sparse representation is designed, which is
closely guided by the anomaly detection task and they can reciprocally affect each other.

(2) Not only using the background information but also applying some anomalies’ spectral
knowledge, the representative spectra which can significantly enlarge anomaly’s deviation
from background are picked out by minimizing the residues between their recovery errors.

(3) Through comprehensively considering the virtues of different groups of representative features
selected from multiple dictionaries, a global multiple-view detection strategy is presented to
jointly improve the detection accuracy.
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The rest of this paper is organized as follows. In Section 2, the proposed method is described in
detail. In Section 3, extensive experiments conducting on three real hyperspectral images are reported.
Finally, the conclusion is drawn in Section 4.

2. Our Method

In this paper, we detect abnormal targets from the view of discriminative feature extraction.
The philosophy of our method is based on that selecting some representative spectra to enlarge
the difference between background and anomaly can significantly improve the anomaly detection
performance, because the original whole spectra usually have characteristics of high spectral dimension
and complex spectral correlation. We take advantage of sparse representation to construct the
discriminative feature selection framework, and further comprehensively apply the background and
anomaly knowledge learned from a simple preliminary detection to constrain this feature extraction
process. There are two important procedures: (1) multiple-dictionary sparse feature extraction and
(2) global multiple-view anomaly detection.

First, we design the multiple-dictionary sparse feature extraction process which is closely guided
by the anomaly detection task. Considering the image scene covers various kinds of materials,
multiple dictionaries are constructed to select different groups of representative features corresponding
to different background categories. Moreover, in order to pick out these discriminative spectra
which can significantly enlarge the disparity between background and anomaly, we minimize
the residues between their spectra reconstruction errors. When finishing selecting a few groups
of representative features, we further propose a global multiple-view anomaly detection strategy.
Through comprehensively considering the virtues of different groups of representative features selected
from multiple dictionaries, a global joint detection strategy is presented to fuse all the detection results
generated by different background views in order to improve the detection accuracy. The proposed
method will be introduced in detail in the following parts.

2.1. Multiple-Dictionary Sparse Feature Extraction

This part will introduce the multiple-dictionary sparse feature extraction method in detail.
Considering that the rich spectral information with hundreds of spectra usually contains much
redundant information and band correlation, a spectral band of a hyperspectral image is generally
assumed to be linearly represented by some representative spectra. The sparse representation is a
typical model to describe the relationships between spectra. In this paper, H = [h1, h2, ..., hB] ∈ Rmn×B

denotes the 2-D representation of a 3-D hyperspectral image, where m and n respectively correspond to
the height and width of the hyperspectral image, mn is the total number of image pixels, B denotes the
number of spectra, and hi ∈ Rmn, i = 1, 2, ..., B denotes a spectral vector of one image band. Assuming
that some desired spectral bands can construct a dictionary D = [d1, d2, ..., ds] ∈ Rmn×s (s is the
number of the desired bands), consequently, the traditional feature selection model based on sparse
representation can be defined as follows.

min
A
‖H−DA‖2

F+λ‖A‖2,1, (1)

where A ∈ Rs×B is the coefficient matrix, and λ is the regularized parameter. It should be noted
that many different norms can be applied to constrain the coefficient matrix A. Here, we utilize the
commonly used l2,1 mixed norm to guarantee that A is sparse in rows. We expect to pick out some
active spectra that can simultaneously accurately describe intrinsic characteristics of all the samples
in H. In addition, the l2,1 norm of A can be computed as

‖A‖2,1 =
s

∑
p=1

√√√√ B

∑
q=1

A2
pq =

s

∑
p=1
‖ap‖2, (2)
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where Apq is one element of A and ap is a vector corresponding to the pth row of A.
As stated above, the goal of traditional band selection is to select an appropriate band subset from

the original band set of the hyperspectral image. It usually requires that the selected subset should
have a good ability to describe the whole hyperspectral image. Nevertheless, it also requires that the
difference between these selected bands should be large and the correlation should be small with
some certain constraints at the same time [49]. But this feature selection is completely independent
of any application tasks. Consequently it is hard to ensure the selected bands are appropriate for
the subsequent tasks. Therefore, in this work we combine the anomaly detection with the feature
selection closely and design a new spectral feature selection framework driven by anomaly detection.
Through constructing this model, we expect these two tasks can mutually affect each other in order
to pick out some representative bands which can satisfy the requirements of anomaly detection and
further improve the detection performance.

For the anomaly detection task, the representative spectra which can enhance the difference
between background and anomaly are expected to be picked out. Based on the sparse representation,
if a band subset can well describe the background spectra but has larger reconstruction errors to
represent the anomaly spectra, then this band set can be regarded as the representative band set in
this work. When using these selected spectral features, an abnormal target will be more significant in
the image scene and the detection performance will be improved. Inspired by this idea, we revise the
traditional sparse feature selection method by introducing the background and the anomaly knowledge
which can be learned from a simple preliminary detection. Our feature selection method guided by
anomaly detection task can be formulated as

min
A

(
‖Hb −DA‖2

F−‖Ha −DA‖2
F

)
+ λ‖A‖2,1, (3)

where Hb is the background spectra set, and Ha denotes the anomaly spectra set. Through minimizing
the residues between background spectra reconstruction errors and anomaly spectra recovery errors,
the difference between background and anomaly will be enlarged. Consequently, we can accurately
select the representative spectra which have stronger distinctiveness to distinguish abnormal targets
from background.

Generally, the background usually covers different kinds of materials and each category has its
own representative spectra compared with anomaly spectra. Consequently it is better to respectively
pick out some specific spectra for each background category. The reason behind is that treating different
materials as a whole to extract the desired bands will ignore the interclass difference, which will reduce
the distinctiveness of the selected spectra set. Therefore, in this work, we regard each background
category as an observer and extract its own discriminative spectra compared with the learned anomaly
information to construct its own decision basis. To this end, we further construct a multiple-dictionary
sparse feature extraction framework for anomaly detection. The objective function for each background
category can be written as follows.

min
Ac

(
‖Hc

b −DcAc‖2
F − ‖Ha −DcAc‖2

F

)
+ λ‖Ac‖2,1, (4)

where Hc
b ∈ RN×B is one background spectra set corresponding to the cth background category,

Dc ∈ RN×B is the corresponding dictionary set, Ac ∈ RB×B is coefficient matrix of cth category, and
Ha ∈ RN×B is the fixed anomaly spectra set that can be learned from a simple preliminary detector.
Assuming the whole background can be divided into K categories, c will satisfy c ∈ {1, 2, 3, ..., K},
and N is the total number of the selected background samples from each category. For the same learned
anomaly spectra set, we expect to pick out different representative spectra set for different background
materials. The detailed data acquisition way for Hc

b, Dc, Ha and the background categories will be
introduced later in the last two parts of this section.
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Through solving the objective Equation (4), we can learn the coefficient matrix Ac which can also
be regarded as a feature selection matrix. Since the Equation (4) contains the l2,1 mixed norm, it is
difficult to directly find its optimal solution. Here, an alteratively iterative strategy is used to solve this
problem. According to Equation (2), the objective Equation (4) can be rewritten as

min
Ac

(
‖Hc

b −DcAc‖2
F−‖Ha −DcAc‖2

F

)
+ λ ∑

p
‖ac

p‖2
. (5)

Since Ac is sparse in rows, ‖ac
p‖2

seems to be zero in theory. As a result, the Equation (5) is

non-differentiable. To avoid this case, we rewrite ‖ac
p‖2

as

√(
ac

p

)T (
ac

p

)
and further add a small

enough constant ε to regularize it as

√(
ac

p

)T (
ac

p

)
+ ε. Consequently, the Equation (5) is revised as

min
Ac

(
‖Hc

b −DcAc‖2
F−‖Ha −DcAc‖2

F

)
+ λ ∑

p

√(
ac

p

)T (
ac

p

)
+ ε. (6)

Now let

Jc = ‖Hc
b −DcAc‖2

F−‖Ha −DcAc‖2
F+λ ∑

p

√(
ac

p

)T (
ac

p

)
+ ε. (7)

Calculating the derivative of Jc with respect to Ac, and setting it to be zero, we have

∂Jc

∂Ac = −2(Dc)THc
b + 2(Dc)THa + 2λWcAc = 0, (8)

where Wc ∈ RB×B is a diagonal matrix, and Wc
pp is denoted as

Wc
pp =

1

2

√(
ac

p

)T (
ac

p

)
+ ε

. (9)

Due to Wc depending on Ac, it is unable to directly solve Ac. So an alternatively iterative
algorithm is used to find the optimal solution in this work. When Ac is fixed, Wc is calculated by
Equation (9). Then fixing Wc and solving Equation (8), Ac can be obtained easily as follows.

Ac = (λWc)−1(Dc)T (Hc
b −Ha) . (10)

After obtaining the final solution Ac, we sort all the features according to ‖ac
p‖2 in descending

order. Then we pick out the spectral features whose ratio generated by their accumulated sum of
‖ac

p‖2 to the whole ∑
p
‖ac

p‖2
satisfies not less than a given ratio η for the firsrt time. With the above

introduction, the whole solving procedures of multiple dictionaries sparse feature extraction are finally
summarized in Algorithm 1.

Now we will elaborate the data acquisition strategy for the proposed multiple dictionaries
sparse feature extraction method including the background spectra set Hc

b, each dictionary set Dc,
anomaly spectra set Ha, and background categories. In this work, we use the background information
and anomaly information to jointly constrain the feature selection. Their initial information can
be obtained by applying a simple anomaly detection method. Here, we use the traditional GRX
method as a preprocessing procedure to detect a given hyperspectral image. GRX method is fast
and has the generally stable performance. According to detection result, the pixels with higher
abnormal probabilities are considered as anomalies, while other pixels with relatively lower abnormal
probabilities are regarded as background. Therefore, when fixing a threshold value, N pixels with high
abnormal probabilities will be obtained to construct the anomaly spectra set Ha ∈ RN×B (Each row
of matrix Ha corresponds to an anomaly pixel with B spectral bands). The remaining pixels consist
of the original background data. Then considering the complexity of scene covering various kinds



Remote Sens. 2018, 10, 745 7 of 21

of materials, the representative features should reflect different attributes of background materials.
To this end, a simple K-means++ technique [50,51] is applied in this paper, and the original background
data is divided into K clusters.

Algorithm 1 Alternatively iterative algorithm to solve Equation (4)

Input: Background spectra set Hc
b ∈ RN×B, dictionary set Dc ∈ RN×B, anomaly spectra

set Ha ∈ RN×B, regularized parameter λ, and feature selection ratio η.

Output: The representative spectra for cth background category.

1: Initialize Wc = I, Wc ∈ RB×B

2: repeat

3: Update Ac = (λWc)−1(Dc)T (Hc
b −Ha

)
4: Calculate Wc by Wc

pp = 1

2
√
(ac

p)
T
(ac

p)+ε

5: until converge

6: sort all features according to ‖ac
p‖2 in descending order, and select the spectral features whose

ratio generated by their accumulated sum of ‖ac
p‖2 to the whole ∑

p
‖ac

p‖2
satisfies not less than a

given ratio value η for the first time

In order to improve the anomaly detection performance, the selected feature should accurately
enlarge the difference between background and anomaly spectra. If we select some background pixels
which are originally significantly different from the abnormal targets and are easily to be distinguished,
the feature selection by minimizing the Equation (4) will have no meaning. Instead of that, we need to
select some hard samples from each background category which are exactly similar to the anomalies to
construct the background spectra set. Thus, we search for the one nearest neighbor for each anomaly
pixel from each background category to generate the background spectra set Hc

b ∈ RN×B (Each row of
matrix Hc

b denotes a background pixel with B spectral bands). As for the dictionary set, in order to
cover as much diversity of each background cluster as possible, N pixels are randomly picked out from
each category to construct the dictionary spectra set Dc ∈ RN×B. When all the data sets are obtained,
we can select a specific group of representative features for each category according to Algorithm 1.

2.2. Global Multiple-View Anomaly Detection

After finishing the process of multiple-dictionary sparse feature extraction, K different groups of
discriminative spectra are obtained. Although it is a simple and possible way to directly concatenate
all the selected features together as one spectral vector to generate a new hyperspectral image for
anomaly detection, it may reduce the distinctiveness between different background clusters and
violate the original intention of the proposed multiple-dictionary sparse feature extraction. Therefore,
we further present a global multiple-view anomaly detection strategy. Specifically, if each background
category is regarded as an observer, then each selected spectra set can be treated as its basis to
estimate the abnormal probability of each pixel. In other words, each observer makes a decision from
its own view according to the specific background characteristic, which will generate various and
complete estimation results. Consequently, we can further generate K different hyperspectral data sets
corresponding to K different groups of new selected spectra to remain the distinctiveness and diversity.
Then the global RX method is carried out on each new data to get K different detection results. In order
to make full use of each observer’s decision-making ability, we further fuse all the detection results
and compute an average value to obtain the final detection result. This simple averaging operation
can comprehensively all the observers’ performance and improve the detection accuracy. We believe
that if each observer assigns a larger anomaly probability to a pixel, then its anomaly probability will
be further strengthened by this fusion operation. If some observers assign relatively higher anomaly
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probabilities to a pixel while others recognize it as the background by giving lower values, the fusion
strategy can compromise all their decisions to reduce the risk of false alarm rate. Therefore, the
condition to define a pixel as an abnormal target tends to be much stricter, and the final detection
result will be more convincing.

3. Experiments

In this section, extensive experiments on three real-world hyperspectral images are conducted in
order to evaluate the performance of the proposed method. First, the employed hyperspectral data
sets are introduced. Then we further describe the specific experimental setup including evaluation
criteria, benchmark competitors, and parameter setting. Next, the experimental results are presented
and analyzed in detail. Afterward, the time consumption of each employed method is evaluated.
Finally, some parameter selections and effects are discussed as well.

3.1. Data Sets

To evaluate the performance of the proposed method, three kinds of publicly available real-world
data sets are used in this paper. These images include different ground scenes containing various
anomalies. The detailed descriptions of these hyperspectral images are introduced as follows.

The first hyperspectral image is the HYDICE Urban data set. This real-world hyperspectral
image is downloaded from the website of U.S. Army Engineer Research and Development
Center (http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetsArticleView/tabid/9254/
Article/476681/hypercube). Its reflectance spectra are collected by HYDICE on an airborne platform,
scanning an urban scene. It has the spectral resolution of 10 nm covering spectral range of 400–2500 nm,
and the spatial resolution of 1 m. The size of the original hyperspectral image is 307× 307× 210.
Since the ground truth for the whole scene is difficult to determine, a sub-image with 80× 100 pixels
is cropped from the upper right region of the whole image. This sub-image contains several cars
and roofs that are regarded as anomalies. Its corresponding ground truth is defined referring to the
works [46,52]. The false color image and the ground truth map of this urban sub-image are shown in
the first column of Figure 1. For the ground truth map, the highlighted pixels denote the locations of
anomalies, and the black region is the background.

Figure 1. The visualization of the HSIs and the ground truth maps. The first row shows the false
color pictures of Urban data set, AVIRIS1 data set, and AVIRIS2 data set respectively. The second row
illustrates their corresponding ground truth maps.

http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetsArticleView/tabid/9254/Article/476681/hypercube
http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetsArticleView/tabid/9254/Article/476681/hypercube
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The remaining two real-world data sets are cropped from the different regions of the same
hyperspectral image named AVIRIS which is acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) from San Diego, CA, USA. Its spectra range from 370 nm to 2510 nm with 224
spectral bands. Its spatial resolution is 3.5 m. Referring to the work [53], several spectral bands with
the characteristics of either water absorption regions or low-SNR are removed, including 1–6, 33–35,
97, 107–113, 153–166, and 221–224. Therefore, totally 189 bands are used in the experiments. As for
these two sub-images, one has the size of 60× 60 containing 14 planes regarded as abnormal targets in
this scene; the other has the size of 200× 240 and there are 6 planes as anomalies. For simplicity, these
two sub-images are named as AVIRIS1 and AVIRIS2 respectively in this work. The corresponding
false color images and ground truth maps are sequentially shown in the second and third columns
of Figure 1.

3.2. Experimental Details

In this section, the evaluation criterion, the employed competitors and parameter setup involved
in the experiments are introduced in detail as follows.

3.2.1. Evaluation Criterion

A valid evaluation criterion is very important to analyze and compare the performance of anomaly
detectors fairly. In this paper, the classical receiver operating characteristic (ROC) curve and area
under the curve (AUC) value are used to estimate the detection performance for both qualitative and
quantitative analyses. The ROC curve is plotted by a set of points of the target detection rates and
the false alarm rates. It can directly reflect the trade-off relationship between these two rates. When a
discrimination threshold is given, the values of these pairs of two rates can be exactly computed. As for
an accurate quantitative analysis, AUC value is further computed through integrating the area under
the ROC curve, which can intuitively estimate the performance of the detector.

3.2.2. Competitors

In order to verify the performance of our proposed method, a number of state-of -the-art methods
are used in the experiment. Totally ten different kinds of competitors, including local RX (LRX),
SRD, CRD, LSMAD, RSAD, BACON, BACON-target, global KRX (GKRX), global RX (GRX) and
PCA-GRX, are used by taking a comprehensive view of popularity, recency, and variety. In the field of
hyperspectral anomaly detection, these comparison methods usually serve as competitors which can
be regarded as the benchmark detectors. Therefore, the performance estimation for a new anomaly
detection method is more accurate and convincing when compared with them.

Specifically, LRX and GRX are two versions of the classical Reed-Xiaoli method. SRD, CRD, and
LSMAD are some sparse representation based methods. RSAD and BACON [54] are two novel anomaly
detection methods with the aim of obtaining an accurate background estimation by taking away the
potential anomalies. Since the proposed method utilizes some knowledge of anomalies, we also
compare with the BACON-target [55] method which further takes the abnormal target information into
consideration after applying the BACON method in order to reduce its false alarm rate. We compare
with the global KRX method by mapping the original feature into the high dimensional feature
space as well. Moreover, in order to demonstrate the effectiveness of our multiple-dictionary sparse
feature extraction, the traditional PCA [56] method is used to reduce the spectral dimensions before
implementing the GRX method, denoted as PCA-GRX. In addition, we also design another verification
experiment to evaluate the superiority of the proposed global multiple-view anomaly detection strategy.
After selecting different groups of representative features corresponding to multiple dictionaries, we
directly concatenate all the features to generate one new hyperspectral data set and apply GRX to
finish anomaly detection, named as Ours-withoutMV. Besides, it is noteworthy that since we use the
simple and fast GRX method as the preliminary method, therefore, the whole performance of the
proposed method can be demonstrated when compared with GRX.
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3.2.3. Parameter Setup

In this part, some important parameters will be set. For the proposed method, four main
parameters including the size of dictionary N, the number of clusters K, the regularized parameter
λ, and the feature selection ratio η are elaborated as follows. The value of N is determined mainly
depending on the number of anomaly pixels detected by an simple preliminary detection. Since the
pixel whose detection probability is larger than a given threshold will be regarded as an anomaly,
in fact N is closely related to the threshold value. In our paper, considering that anomaly usually has
a low occurrence probability, a value corresponding to the 99.5 percentile of all the initial detection
probabilities is empirically set as the threshold. The value of K determines the scale of multiple
dictionaries reflecting the different attributes of background. It will take different values in accordance
with the scale and scene complexity of a hyperspectral image. As for η, deciding the number of the
selected features, it closely relates to the contained materials as well. We carry out a deep analysis
about parameter selection rules including K, η and λ in section 3.5. Here, we just claim the final
assigned vale to each parameter in the comparison experiment respectively. For Urban, AVIRIS1, and
AVIRIS2, the values of K are set as 10, 5 and 2; λ is completely fixed at 10; the values of η are 0.45, 0.20,
and 0.35 in turn. The parameters for Ours-withoutMV is consistent in the camparison experiment.

Since some of the state-of-the-art competitors, such as LRX, SRD and CRD, use the sliding window
technique, the window sizes containing both outside window and inner window should be claimed.
Generally, different hyperspectral images have various abnormal targets with different sizes, and
different competitors often require different appropriate window sizes. Therefore, in order to compare
fairly, we set many different pairs of window sizes for these three detectors. We set two kinds of
inner window sizes including 7× 7 and 9× 9 according to the targets’ possible largest size. For LRX
method, in order to avoid covariance matrix singular problem, we finally use four pairs of window
sizes (outside, inner) including (17, 7), (17, 9), (19, 7), and (19, 9) by comprehensively considering all
the spectral dimensions of all the hyperspectral images. As for SRD and CRD, we define six kinds of
different sizes including (13, 7), (15, 7), (17, 7), (17, 9), (19, 7), and (19, 9). In addition, the regularized
parameter λ involved in CRD method is set as 10−6 referring to its original work [45]. The parameters
of LSMAD are strictly kept consistent with its original work [41]. We fix the maximal rank of the
background matrix r at 2, and sparse cardinality k at 0.005. As for RSAD, the size of the randomly
selected image block is fixed at 70. For BACON, the integer c is set as 4 according to its original work.
The parameters involved in BACON-target are also consistent with its original literature. We set c = 4,
and first 15 principal component images are acquired. As for GKRX, according to [33], the width of
the Gaussian RBF kernel is fixed at 40, and the number of cluster centers is set as 600. The number of
spectral dimensions is empirically reduced to 10 in PCA-GRX.

3.3. Comparison Results

In this section, the performance of our proposed algorithm is evaluated and analyzed through
comparing with all the competitors. The experimental results are thoroughly and meticulously
discussed according to qualitative and quantitative comparisons. Considering the simplicity of
typesetting, for LRX, SRD and CRD, we only present the visualization pictures and ROC curves of their
best results on the corresponding optimal window sizes, which are underlined in Table 1. AUC values
and time consumption on all different window sizes are shown in Tables 1 and 2 respectively. For all
the competitors, the highest three results are remarked in bold. The average performance of AUC
values and time consumption of all the competitors on the three data sets is illustrated in Table 3.

The visualization results on the HYDICE Urban hyperspectral image are presented in Figure 2.
It can be obviously seen that RSAD and BACON have a very high false alarm rate. GKRX also
seems to assign relatively salient intensities for some background regions. LRX, LSMAD and
BACON-target have some omissions and many obvious false alarms. As for the rest competitors, their
visualization results are similar for they can nearly recognize all of the abnormal targets. The main
result difference of these competitors is the different intensities assigned to background and targets.
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The background clutter of SRD is obvious. The anomalies detected by CRD are not salient compared
with the background. Taking both the ability to recognize anomalies and the ability to suppress
background clutter through analyzing all the visualization results, the proposed method shows the
best performance. In order to evaluate the performance fairly, ROC curves and AUC values are further
compared. As it is shown in Figure 3a, on the whole, the ROC curve of the proposed method is
obviously above all the curves of other benchmark competitors except for SRD and Ours-withoutMV
almost in the whole false alarm rate range. Compared with SRD, our method shows its significant
superiority of keeping getting the highest detection rates when the false alarm rates are in the range of
even less than 10−2. Our method has higher detection rate than all the other competitors even in the
case of requiring a very low false alarm rate. This phenomenon proves the superior distinctiveness
of the selected spectral features by the proposed method. Compared with Ours-withoutMV, the
similar result demonstrates the effectiveness of our global multiple-view anomaly detection strategy.
When considering the AUC values shown in Table 1, the proposed method also achieves a promising
result for its value is only slightly less than those of SRD and CRD, while is greatly larger than the
rest of competitors. However, it can be seen that SRD and CRD seem sensitive to the window sizes
as shown in Table 1. Therefore, to conclude, all of these results fully confirm the effectiveness of the
proposed method. It has a better ability to describe the difference between background and anomaly,
and the good advantage of recognizing different kinds of targets.

Table 1. AUC values of all the competitors on three hyperspectral images including Urban data set,
AVIRIS1data set, and AVIRIS2 data set. The bold numbers represent the highest three results, and
the underline marks the result under the optimal window size.

AUC Urban AVIRIS1 AVIRIS2

LRX

(17,7) 0.8184 0.5849 0.7627
(17,9) 0.7411 0.8104 0.6960
(19,7) 0.8450 0.4843 0.8314
(19,9) 0.8111 0.4516 0.8644

SRD

(13,7) 0.9733 0.7809 0.8034
(15,7) 0.9243 0.7616 0.8093
(17,7) 0.9037 0.7625 0.8112
(17,9) 0.8902 0.7614 0.8400
(19,7) 0.9118 0.7476 0.8152
(19,9) 0.8997 0.7447 0.8425

CRD

(13,7) 0.9609 0.4904 0.5013
(15,7) 0.9044 0.6288 0.4183
(17,7) 0.4632 0.4515 0.4872
(17,9) 0.7527 0.4639 0.4794
(19,7) 0.5124 0.4663 0.4901
(19,9) 0.5568 0.4521 0.5031

LSMAD 0.7775 0.8329 0.9039

RSAD 0.8749 0.4845 0.6717

BACON 0.7895 0.6930 0.7327

BACON-target 0.8515 0.9512 0.8608

GKRX 0.8384 0.5523 0.8471

GRX 0.9024 0.7601 0.8343

PCA-GRX 0.9195 0.9084 0.9301

Ours-withoutMV 0.9194 0.8250 0.9198

Ours 0.9604 0.9052 0.9517
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Table 2. Time consumption (seconds) of all the competitors on three hyperspectral images including
Urban data set, AVIRIS1data set, and AVIRIS2 data set.

Time Consumption Urban AVIRIS1 AVIRIS2

LRX

(17,7) 126.52 54.21 756.45
(17,9) 122.39 62.93 915.49
(19,7) 135.07 47.35 647.34
(19,9) 126.67 67.01 958.67

SRD

(13,7) 7.17 2.43 35.44
(15,7) 10.21 3.60 52.29
(17,7) 13.50 4.80 67.89
(17,9) 11.87 7.67 92.47
(19,7) 17.21 5.79 94.21
(19,9) 13.74 9.21 119.14

CRD

(13,7) 14.47 6.913 99.47
(15,7) 23.82 11.64 178.60
(17,7) 48.31 22.87 404.53
(17,9) 36.27 22.44 344.06
(19,7) 80.70 41.11 616.60
(19,9) 61.13 36.97 617.99

LSMAD 17.51 9.59 127.27

RSAD 34.50 10.33 183.31

BACON 3.91 1.41 22.92

BACON-target 3.25 0.71 1533.62

GKRX 65.00 41.01 76.22

GRX 0.97 0.28 4.12

PCA-GRX 0.65 0.30 3.62

Ours-withoutMV 10.28 3.38 10.76

Ours 12.14 4.26 12.42

                 (e)                                         (f)                                         (g)                                          (h)            

                 (a)                                        (b)                                         (c)                                          (d)            

                 (i)                                          (j)                                          (k)                                          (l)            
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Figure 2. The visualization results of different detectors on Urban data set. (a) LRX: window size
(19,7); (b) SRD: window size (13,7); (c) CRD: window size (13,7); (d) LSMAD; (e) RSAD; (f) BACON;
(g) BACON-target; (h) GKRX; (i) GRX; (j) PCA-GRX; (k) Ours-withoutMV; (l) Ours. Values in the color
bar represent the anomaly probability.
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Figure 3. The ROC curves of different detectors on three hyperspectral images. (a) Urban data set;
(b) AVIRIS1 data set; (c) AVIRIS2 data set.

Table 3. Average AUC and average time consumption (seconds) of each competitors using all the three
real-world data sets.

Methods LRX SRD CRD LSMAD RSAD BACON BACON-Target GKRX GRX PCA-GRX Ours

AUC 0.8399 0.8656 0.6976 0.8381 0.6770 0.7384 0.8878 0.7459 0.8323 0.9193 0.9391

Time 385.57 15.01 51.47 76.05 214.70 9.41 512.53 60.74 1.79 1.52 9.61

The AVIRIS1 data set has lots of anomalies and all of them are with a relative large size.
Thus the effect of anomalies on the estimation of background is hard to avoid. From Figure 4,
it can be seen that SRD, CRD, RSAD and BACON have a serious problem of high false alarm rate.
RSAD nearly fails to detect all the targets and conversely assigns very high anomaly probabilities
to some background. Although BACON can detect the abnormal targets, it also recognizes some
background regions as anomalies. The performance of LRX is poor for it can just detect a few
abnormal pixels. The reason behind is that abnormal targets’ effect on the estimation of background is
exceedingly serious in each local sliding window. The GKRX also fails to detect anomalies. LSMAD has
better performance than the previously-mentioned methods for it can distinctly detect many anomaly
targets. However, its background suppression is not satisfactory. For the other methods, the detection
results are similar to a certain extent. Compared with GRX and Ours-withoutMV, BACON-target,
PCA-GRX and our proposed method are better because they seem to succeed in suppressing the
background. The ROC curves and AUC values are further analyzed for an accurate estimation. Figure
3b plots the ROC curves of all the detectors on this hyperspectral image. It can be seen that the
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proposed method obtains far superior ROC curve to most of the competitors. Although LSMAD
can obtain the best performance when the detection rate is less than about 0.65, its false alarms are
very serious when it gets the 100% detection rate. However, the BACON-target, PCA-GRX and our
method can quickly achieve the highest detect rate at a relatively lower false alarm rate. For the
AUC quantitative comparison shown in Table 1, the proposed method obtains the higher value with
significant superiority. Although, our method does not obtain the best result on this data set, it is still
in the top three. Moreover, our method has made a dramatic improvement to the original GRX method,
which directly verifies its entire effectiveness of our two important motivations. The significant
performance improvement compared with Ours-withoutMV also demonstrates the good virtue of
global multiple-view anomaly detection strategy. In summary, our method has shown its good ability
to suppress the background and detect anomalies.

                 (e)                                         (f)                                         (g)                                          (h)            

                 (a)                                        (b)                                         (c)                                          (d)            

                 (i)                                          (j)                                          (k)                                          (l)            
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Figure 4. The visualization results of different detectors on AVIRIS1 data set. (a) LRX: window size
(17,9); (b) SRD: window size (13,7); (c) CRD: window size (15,7); (d) LSMAD; (e) RSAD; (f) BACON;
(g) BACON-target; (h) GKRX; (i) GRX; (j) PCA-GRX; (k) Ours-withoutMV; (l) Ours. Values in the color
bar represent the anomaly probability.

The visualization comparison results on the AVIRIS2 data set are presented in Figure 5. It can be
obviously seen that RSAD and BACON have a serious problem of high false alarm rate. SRD and CRD
also assign high intensities to many background pixels. The performance of LRX is inferior for it seems
to hardly detect a few of targets for the visual inspection. GRX seems much better than the above
mentioned methods for it can detect more targets. LSMAD shows its good ability to detect anomalies
but it still has unsatisfactory ability to suppress background clutter. As for the remaining competitors,
their detection results are similar as a whole and the main difference exists in some local regions with
different salience. Fortunately, the performance of the proposed method seems better than others
because it can not only detect almost all the abnormal targets, but also assign each target a remarkable
detection probability. Moreover, the background is also suppressed obviously. Figure 3c illustrates the
ROC curves of all the detectors, and the corresponding AUC values are shown in Table 1. The proposed
method completely defeats all the other competitors. It obtains the highest detection rate when the
false alarm rate is in the range of approximately less than 0.02. Our method also obtains the highest
AUC value, a totally satisfactory detection result, making a dramatic improvement compared with
some competitors whose AUC values are really low. In addition, our method’s better performance
than PCA-GRX verifies the good virtue of multiple-dictionary sparse feature extraction strategy;
its superior result to Ours-withoutMV demonstrates the effectiveness of global multiple-view anomaly
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detection strategy. Therefore, through the above results and analyses, the superiority of our method has
been demonstrated. Owing to the representative feature selection technique, the difference between
background and anomaly has been enhanced. The proposed method can successfully distinguish
anomalies from the background. Besides, taking good advantage of its global multiple-view operator,
all different sizes of targets can be well detected and the detection performance is excellent.

                 (e)                                         (f)                                         (g)                                          (h)            

                 (a)                                        (b)                                         (c)                                          (d)            

                 (i)                                          (j)                                          (k)                                          (l)            
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Figure 5. The visualization results of different detectors on AVIRIS2 data set. (a) LRX: window size
(19,9); (b) SRD: window size (19,9); (c) CRD: window size (19,9); (d) LSMAD; (e) RSAD; (f) BACON;
(g) BACON-target; (h) GKRX; (i) GRX; (j) PCA-GRX; (k) Ours-withoutMV; (l) Ours. Values in the color
bar represent the anomaly probability.

On the whole, compared with the ten state-of-the-art competitors, our method shows its
superiority in detecting different abnormal targets and suppressing the background, which
convincingly verifies the good distinctiveness of the selected representative features that enlarge
the difference between anomalies and background. Overall, although our method does not keeps
getting the best results on all the data sets, its comprehensive performance has always been in the
top three, which is significantly better than some methods may only performing well occasionally
on one data set. The average performance of each method on all the data sets is shown in Table 3,
in which the average values of LRX, SRD and CRD are obtained according to their best results on
each data. Our method gets the highest average AUC, which also demonstrates its excellent and
stable performance. Besides, according to result analysis on each data set, the effectiveness of the
proposed two important procedures are objectively proved compared with PCA-GRX, GRX, and
Ours-withoutMV.

3.4. Comparison of Time Consumption

The time consumption of all the detectors employed in this work is discussed in this part. All the
methods are implemented on a machine with Intel Core i3-2130 3.4-GHz CPU and 16-GB RAM in the
MATLAB R2012b platform under the Windows 7 64-bit operating system. The time consumption of
each method in the unit of second is illustrated in Table 2. Comprehensively all the results, PCA-GRX
is the fastest method almost on all the data sets. Benefiting from the global processing, GRX also shows
excellent efficiency for it only takes slightly more running time than PCA-GRX. Following GRX, the
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whole time consumption of BACON and our method is relatively close and efficient according to the
complete analysis on the three data sets. The performance of BACON-target is not stable, because
although it shows its good efficiency on the first two data sets, however, it suffers the unacceptable
time burden on the last image. As for LRX, SRD, CRD, LSMAD, RSAD, and GKRX, they have much
heavier time consumption than GRX by more than one or two orders of magnitude. Moreover, for
LRX, SRD and CRD, their running time is increasing sharply with the change of window size and
image size, and the LRX has the heaviest time consumption. On the whole, compared with the all the
other competitors, our method shows its good performance on efficiency because its time consumption
is obviously less than most of the competitors except for PCA-GRX and GRX. Since we take GRX
method as our preprocessing procedure, it understandably takes more time than GRX. Fortunately, its
running time is just slightly higher than that of GRX on each data set, which demonstrates the proposed
multiple-dictionary sparse feature extraction technique dose not cause much more time consumption.
The average time consumption of each competitor on all the three data sets shown in Table 3 also
demonstrates the good performance of our method in efficiency. To sum up, the proposed method is
efficient within a promising and reasonable time cost range.

3.5. Parameters Setting Discussion

In this part, we will analyze the effects of different parameters on the detection performance, and
discuss the parameter setting criteria. There are three important parameters involved in the proposed
method including the number of clusters K, the regularized parameter λ, and the feature selection
ratio η. In order to have a more convincing discussion, the parameter experiments are conducted
respectively on each hyperspectral image.

For simplicity, we first simultaneously analyze the effects of the number of clusters K and the
regularized parameter λ on the Urban, AVIRIS1, and AVIRIS2. K is successively chosen from the set of

{2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16}, and λ is chosen from
{

10−3, 10−2, 10−1, 100, 101, 102, 103
}

, while the
other parameters are fixed. The experimental results are shown in Figure 6. It should be noted that
the coordinate value corresponding to λ takes the logarithms (base 10) of parameters. From Figure 6,
through comprehensively analyzing all the results of the three hyperspectral images, it can be seen
that with the increasing of λ, the detection performance is firstly significantly improved to reach a
promising result, and then nearly maintains a higher AUC value within a slightly floating change.
On the whole, when the value of λ is equal or greater than 1, the proposed method can get a satisfactory
result. As for parameter K, it can be seen that the number of clusters does not have a very obvious
effect on the detection performance. In other words, our method is not very sensitive to the variation
of K. Considering the convenience in the practical implementation of our method, we suggest that the
number of clusters K can be selected in accordance with the scene complexity of a hyperspectral image.
If the image is complex containing many different kinds of materials, K can be assigned a relatively
larger value. If the image scene seems simple, K will be set as a smaller value.

Then we discuss the effect of the feature selection ratio η on the detection performance.
The parameter η is changed from 0.05 to 1 at the interval of 0.05 for all the three hyperspectral
images. The value 1 means that all the original bands are picked out after conducting the feature
selection process. The experimental results are plotted on Figure 7. All the result curves of the
hyperspectral images reflect the fact that the feature selection is really effective and imperative
because the AUC values corresponding to most of the ratios are higher than the AUC value of ratio 1.
Nevertheless, there also exist some special cases that improper feature selections will even reduce the
detection performance. The main reason behind is when the ratio is too small, a certain very small
number of spectral bands may be picked out. Consequently, the selected features seem insufficient
to describe the characteristics of different materials. As a result, it is difficult to further distinguish
anomalies from different background materials. On the whole, according to the experimental result,
the detection performance is relatively sensitive to the feature selection ratio. However, this parameter
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sensitiveness problem is not specific to our method, which is still an open problem in the field of
feature selection.
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Figure 6. The experimental results of different settings of the number of clusters K and the regularized
parameter λ on three hyperspectral images. (a) Urban data set; (b) AVIRIS1 data set; (c) AVIRIS2 data
set. Values in the color bar represent the anomaly probability.
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Figure 7. The effects of the feature selection ratio η of the proposed method on three hyperspectral
images including Urban data set, AVIRIS1data set, and AVIRIS2 data set.
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4. Conclusions

This paper proposes a novel hyperspectral anomaly detection method by designing a
multiple-dictionary sparse feature extraction approach. Considering that the characteristics of the high
spectral dimension and complicated spectral correlation have negative effects on the performance of
anomaly detection, therefore, an effective feature selection is really necessary to address this problem
in order to improve the detection performance. Different from directly and simply applying the
feature selection method to anomaly detection task, we design a novel feature selection technique
which is closely guided by anomaly detection. In order to select the discriminative features, the
background and the anomaly information obtained from an preliminary detection operator is jointly
used to construct the sparse dictionary representation process. Through this way, these representative
features which can significantly enhance the difference between background spectra and anomaly
spectra will be selected. Taking the background complexity into consideration, multiple dictionaries
are constructed in order to accurately characterize the various attributes of different material clusters.
Finally, the global multiple-view anomaly detection strategy is used to obtain an accurate detection
result by completely considering all the decision-making abilities of different groups of the selected
features specific to different background categories. In order to demonstrate the good performance of
the proposed method, ten state-of-the-art competitors are used for a fair and convincing comparison.
All the methods are implemented on three real-word hyperspectral images. Extensive experimental
results show that the proposed method is superior to all the other competitors after comprehensively
evaluating the effectiveness and efficiency. Compared with LRX, SRD, CRD, LSMAD, RSAD, BACON,
BACON-target, GKRX, GRX, and PCA-GRX, the proposed method has the obvious improvement of
about 9.9%, 7.4%, 24.2%, 10.1%, 26.2%, 20.1%, 5.1%, 19.3%, 10.7%, and 2.0% respectively according to
the average AUC results on all the data sets. Its average time consumption less than 10 s also shows
its promising application value. Benefiting from the good virtues of feature selection technique and
the global multiple-view anomaly detection strategy, our method can not only have good ability
to detect different targets with different sizes, but also have an obvious success in background
suppression. The selected discriminative features can significantly enhance the distinctiveness to
recognize anomalies from background, and the multiple-view strategy can comprehensively take full
use of all the estimation abilities corresponding to different background characteristics. Therefore,
the proposed method can obtain excellent performance. Considering that the spatial characteristic
also plays an important role in analyzing different materials, we will apply this information in the
proposed feature selection approach in our future work.
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