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Abstract: Land surface temperatures (LSTs) obtained from remote sensing data are crucial in
monitoring the conditions of crops and urban heat islands. However, since retrieved LSTs represent
only the average temperature states of pixels, the distributions of temperatures within individual
pixels remain unknown. Such data cannot satisfy the requirements of applications such as precision
agriculture. Therefore, in this paper, we propose a model that combines a fast radiosity model,
the Radiosity Applicable to Porous IndiviDual Objects (RAPID) model, and energy budget methods
to dynamically simulate brightness temperatures (BTs) over complex surfaces. This model represents
a model-based tool that can be used to estimate temperature distributions using fine-scale visible as
well as near-infrared (VNIR) data and temporal variations in meteorological conditions. The proposed
model is tested over a study area in an artificial oasis in Northwestern China. The simulated BTs
agree well with those measured with the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER). The results reflect root mean squared errors (RMSEs) less than 1.6 ◦C and
coefficients of determination (R2) greater than 0.7. In addition, compared to the leaf area index
(LAI), this model displays high sensitivity to wind speed during validation. Although simplifications
may be adopted for use in specific simulations, this proposed model can be used to support in situ
measurements and to provide reference data over heterogeneous vegetation surfaces.

Keywords: land surface temperature; heterogeneity; radiosity model; energy budget method

1. Introduction

Land surface temperature (LST) is always treated as a vital variable in the physical processes
of surface-atmosphere interactions such as the energy budget and the hydrological cycle [1,2].
Currently, inversion with remote sensing data provides a vital means for obtaining global surface
temperatures [3–6]. Many LST products have been evaluated and have been shown to have accuracies
close to or less than 1.0 K [7–11]. However, because these retrieved LSTs usually correspond to
a temperature state measured at specific spatial and temporal scales, how to fully use these retrieved
results in applications such as evapotranspiration, climate change, and vegetation monitoring remains
challenging [1].
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For global-scale applications, the spatial resolution of thermal infrared (TIR) pixels collected
by many geostationary or polar-orbit satellites is as coarse as 1.0 km or 5.0 km. In such cases,
heterogeneous pixels are very common. Measurements of surface brightness temperatures (BTs) by the
near-surface and airborne platforms display large differences in temperature among components while
existing LST products represent only the average temperature states of satellite pixels [12]. Therefore,
discrepancies between the temperatures of components and the results for individual pixels are
inevitable. Kimes found that the deviation between nadir sensor BTs and vegetation BTs over a soybean
canopy can reach up to 11 ◦C at midday [13]. Over mixed pixels that cover vegetation and urban areas,
the temperature differences between components can reach up to 20 ◦C [14]. This level of discrepancy
is not conducive to quantitative applications such as precision agriculture and sustainable urban
design, which typically require finely resolved LSTs. In addition, the lack of a surface temperature
distribution limits our understanding of the accuracy of coarse-scale LST products over heterogeneous
surfaces due to scale problems.

In the visible and near-infrared (VNIR) domain, high-resolution images can be applied to
obtain the distributions of reflectance within coarse-scale pixels [15,16]. This strategy is proposed
mainly because the surface reflectance typically varies only slightly over short periods. However,
LSTs display high sensitivity to the sun’s location and atmospheric instability. Therefore, the temporal
variations in LSTs are more desirable than the LSTs at a specific temporal node when a satellite
passes overhead [17,18]. Since the temperatures of surface components may respond differently to
meteorological changes, surface heterogeneities increase the complexity of the transfers of radiation
and energy within pixels. Currently, in situ experiments for the temporal and spatial variations in LSTs
are limited.

Model-based approaches can help narrow the gap between the spatial-temporal variability of
LSTs and practical applications. Three-dimensional (3-D) models seem suitable to explain the complex
nature of satellite pixels, which may contain different types of landscapes [19–21]. Currently, many
models have been proposed that aim to consider heterogeneous scenes and participate in the radiative
transfer model intercomparison (RAMI) project [22]. For the temporal variability of LSTs, energy budget
(EB) methods are typically incorporated [23–26]. This kind of model can be viewed as a tool that
combines information on surface structure and diurnal changes in meteorological conditions. To study
the temporal variability in the emissions from row-planted crops, Bian et al. proposed a quasi-3-D
model that combines a 3-D radiosity model, a thermal radiosity-graphics combined model (TRGM),
and EB methods. The combined model is named TRGM-EB) [27]. This model fully considers the
effects of surface heterogeneities on radiative transfer. However, this combined model is not suitable
for scenes on the scale of satellite pixels because it is slow to run and has high computer memory
requirements. Addressing these shortcomings would enable the TRGM-EB model to be applied to
study the distributions of surface temperatures within individual satellite pixels.

Huang et al. proposed a fast radiosity model known as the Radiosity Applicable to Porous
IndiviDual Objects (RAPID) model in which the many facets that were previously used to represent
small leaves are replaced with porous plant objects to improve the running speed of the model [28].
When large-scale scenes are considered, the RAPID model appears to be more suitable to be combined
with EB methods than the TRGM. Therefore, we explore the application of a model (hereafter named
RAPID-EB) that combines the RAPID model with EB methods to simulate surface BTs using both
fine-scale VNIR data and in situ measured meteorological parameters. An artificial oasis in the middle
reaches the Heihe River and is selected for investigation in a case study. In this study area, the spatial
distribution of the BTs estimated using the RAPID-EB model and is evaluated using Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) TIR data. In Section 2, the new
combined model is described. In Section 3, a practical procedure is applied to the study area and
an evaluation is performed. In Section 4, validation problems and potential applications of this model
are discussed. Section 5 provides a short summary of the paper as a whole.
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2. The RAPID-EB Model

The strategy of combining a radiosity model includes TRGM or RAPID and EB methods,
which are based on the Soil Canopy Observation, Photochemistry, and an Energy Fluxes (SCOPE)
soil-vegetation-atmosphere-transfer (SVAT) model [25]. The radiative transfer process in SCOPE is
based on the Scattering by Arbitrarily Inclined Leaves (SAIL) framework and assumes a homogeneous
vegetation canopy. For a row-planted maize canopy, the 4SAIL radiative transfer treatment used in
SCOPE is replaced by the 3-D radiosity model TRGM in Reference [27]. The use of this model enables
the accurate estimation of the net radiation of each facet over both homogeneous and heterogeneous
scenes. In this paper, the TRGM is replaced by the RAPID model. Consistent with TRGM-EB, the new
combined model mainly consists of two modules including radiative transfer and EB. These modules
correspond to two processes. Specifically, component temperatures are entered and the net radiation of
each facet is then calculated according to the radiation interactions among facets while the calculated
net radiation is then divided into the turbulent and soil surface heat fluxes and the component
temperatures are optimized according to the energy balance equation. After several iterations between
these two processes, the thermodynamic equilibrium state of a given scene is characterized.

2.1. Radiosity Model

In a radiosity model, each of the facets mentioned above represents a basic unit and these units
comprise complex scenes. The initial step in a radiosity model is to calculate the radiosity of a facet,
which is defined as the radiation flux density that leaves the facet. The radiation interactions among
facets in a generated scene can be described by the radiosity equation shown below [21].

Bi = Ei + xi ∑
j

Fi,jBj, i, j = 1, 2, . . . , 2np (1)

Ei = [Fs(i) + Fd(i)]ρi +
[
Fs
(
i + np

)
+ Fd

(
i + np

)]
τi + Fe(i) (2)

where Bi represents the radiosity of the surface facet i. Ei represents the emittance, which consists of
direct solar light (Fs), atmospheric diffuse light (Fd), and a self-emission term (Fe), which is shown in
Equation (2). xi represents the reflectance or transmittance depending on the orientations of facets i and
j relative to each other. np represents the number of facets in a scene, i + np represents the other side of
facet i, Fi,j represents the viewing factor between facets i and j, and it denotes their radiation interaction
intensity, which depends on their area and orientation relative to each other. A detailed description of
the procedure used in estimating Ei is provided in Equation [21]. Based on the radiosity equations of all
facets, the multiple scattering radiation (xi ∑

j
Fi,jBj) can be calculated using a Gauss-Seidel optimization

method. The net radiation of one side of facet i can then be calculated using the equations below.

Rn,s(i) = ∑
λ

dFs(i, λ)/a(i, θs) + Fd(i, λ) + ∑
j

Fi,jBj(λ)− Fe(i, λ)e[1− ρ(i, λ)− τ(i, λ)] (3)

Rn,h(i) = ∑
λ

dFd(i, λ) + ∑
j

Fi,jBj(λ)− Fe(i, λ)e[1− ρ(i, λ)− τ(i, λ)] (4)

where Rn(i) represents the net radiation of one side of facet i. The subscripts s and h represent the sunlit
and shaded portions of a facet, respectively, a(i, θs) represents the viewing fraction of facet i in the solar
direction θs, and λ represents the spectral wavelength. For leaf components, the total net radiation
of facet i is Rn(i) + Rn(i + np). For soil or building components, the net radiation of facet i is Rn(i).
In this model, the total net radiation is calculated by integrating from the visible domain (0.4 µm) to the
infrared domain (50 µm). Since the viewing factors among the facets are independent of the wavelength
and Sun location, their calculated values can be used for all spectral bands and temporal nodes. In this
paper, the self-emission term (Fe) in the infrared domain is calculated using the temperature (Ti) and
broadband emissivity (εi) of each component, according to the Stefan-Boltzmann law.
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Fe(i) = εiσT4
i (5)

where σ is the Stefan–Boltzmann constant, i.e., 5.6704 ×10−0 W m−2 K−4.

2.2. Energy Budget Methods

An EB module is incorporated to solve the difficulties that are encountered when obtaining
surface component temperatures and simultaneously calculating surface heat fluxes. The core of the
EB module is the energy balance equation, which is shown in the equations below.

Rn = H − λ− G (6)

H = ρacρ
Ts − Ta

ra
(7)

λ = γ
qs(Ts)− qa

ra + rs
(8)

Ts(t + ∆t)− Ts(t) =
√

2ω

Γ
∆tG(t)−ω∆t

[
Ts(t)− Ts

]
(9)

where H and λ represent the sensible and latent heat fluxes, respectively, which are estimated using
Equation (6) and Equation (7) [2] and G represents the surface heat flux and its value for soil is
estimated using a force-restore method, which was described by Equation (9) [25,29]. ρa, cρ, qa, and
Ta represent the density, heat capacity, humidity, and temperature of the air, respectively. ra and rs

represent the aerodynamic resistance and surface (leaf stomatal) resistance, respectively. γ is the heat
of evaporation of water, qs and Ts are the surface humidity and temperature, respectively, ∆t is the
time interval, ω is the frequency of the diurnal cycle, Γ is the soil thermal inertia, and Ts is the average
annual temperature.

Over a mixed vegetation canopy, plants with different heights, leaf area index (LAI) values, and
leaf angle distributions (LADs) may coexist. Therefore, we use a series of aerodynamic resistance
values reported by Reference [30] for different leaf facets in this model. The storage of heat by leaves
is not considered [31]. In general, the initial input of component temperatures does not satisfy the
energy balance equation. The component temperatures are modified step by step, which is shown in
the equations below.

Tupdate,i = Ta +
[Rn(Ti)− LE(Ti)−G(Ti)]ra

ρacρ
(10)

T′i = Tupdate,iw + (1− w)Ti (11)

where Rn(Ti), LE(Ti), and G(Ti) represent the net radiation, latent heat flues, and soil surface heat
fluxes of facet i when using the last temperature Ti, respectively. Tupdate,i represents the temperature
in H(Ti) that satisfies the energy balance and T′i represents the modified temperature. w represents
the weight of Tupdate,i on T′i . When the difference between Rn(Ti) and LE(Ti) + G(Ti) + H(Ti) is less
than the required accuracy (1 W/m2) for all facets, the thermodynamic equilibrium state of the scene
is assumed to have been achieved.

2.3. Combination of RAPID and Energy Budget Methods

In the TRGM, an exact 3-D vegetation canopy is typically used, which is composed of many trunks,
branches, and small leaf facets. A modified extended L-system has been introduced for canopies of
different vegetation types such as wheat and maize [21]. However, too many small leaf facets are
necessary to produce a detailed forest canopy. Based on the descriptions provided above, the iteration
of the radiative transfer and EB modules to achieve component temperatures satisfy the energy balance
equation, which requires a considerable amount of computing time. Therefore, reducing the number of
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facets used can be a good means of improving computational efficiency and saving computer memory,
which is the strategy used in RAPID [28].

Although the TRGM is replaced by the RAPID model, the RAPID-EB model inherits all of the
processes included in TRGM-EB, i.e., Equations (1)–(8). The major improvement represented by the
RAPID model uses plant objects to represent vegetation canopies [28]. Figure 1 shows an actual
forest canopy and the illumination of plant objects. A plant object is composed of several horizontally
arranged porous facets that represent a group of small leaf facets in each layer in a canopy. The gap
frequency of a large porous facet is determined by the characteristics of leaves such as the LAI, the LAD,
and the shapes of leaves. As a default approximation, the shape of a leaf is set to an equilateral triangle.
Under this simplification, the heterogeneity of a scene is considered in terms of the spatial distribution
and the shapes of plant objects, but the structure within a porous facet is considered to be homogeneous.
When calculating transfers of radiation and energy, only these large porous facets are involved rather
than the small leaf facets. This fact implies that a limited number of effective facets can be used to
represent many actual facets inside a plant. Note that a 3-D scene that can be used in the TRGM can
also be used in the RAPID model. For details on the RAPID model, refer to Reference [28].
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Figure 1. (a) Actual forest canopy and (b) illumination of plant objects. Horizontally arranged green
facets are used to represent groups of small leaf facets in each layer and yellow facets are used to
represent trunks.

In the TRGM-EB model, in order to consider large-scale scenes that contain different vegetation
types, a simple discrete method is adopted to address horizontal heterogeneity. The use of this method
causes discrepancies in simulations at the borders between types if the discretization is coarse. In the
RAPID-EB model, all facets within a landscape are calculated using land cover information. Within
a large-scale pixel, buildings may appear. In the radiative transfer process, only the outward sides of
building facets can be viewed. These are similar to soil facets. The turbulent heat fluxes over urban areas
have been analyzed by many authors [32–35]. In this paper, the heat fluxes from buildings are calculated
based on Reference [32]. Over an urban area, the ratio between the roughness length for momentum
and the building height is set to the default value of 1/10 and the ratio between the zero-plane
displacement length and the building height set to the default value of 2/3. These two variables can
also be calculated based on building geometry [36]. In addition, the latent heat fluxes from building
facets are not considered.

2.4. Model Inputs and Outputs

Three types of inputs should be entered into the RAPID-EB model including 3-D scenes,
component properties, and micrometeorological parameters. A graphical user interface (GUI) for
generating complex 3-D scenes was previously developed by Huang et al [28,37]. This GUI includes
predefined plant objects and other plant objects can be generated by using user-defined structural
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parameters. In this model, three main kinds of land cover are considered including areas of bare soil,
vegetated areas, and built-up areas. The facet types within these land-cover types can be classified
as soil, leaves, trunks, roofs, walls, and roads. When generating a scene, the initial step is to set the
background area (soil) using many rectangular solid facets following the surface terrain. The plant
objects mentioned above and a generated exact-structure crop canopy are then distributed over the
vegetated area and the LAI, LAD, and leaf shape are defined for each porous facet. Within built-up
areas, buildings are constructed by using solid facets. Each building is simplified as a cube in this paper.
The component properties and meteorological parameters used in the RAPID-EB model are the same
as those in the TRGM-EB model [27]. The component properties can be simply classified as optical and
physical/physiological characteristics. During the radiative transfer process, the optical characteristics
(reflectance and transmittance) of the components are essential inputs, according to Equation (1).
The physiological properties of leaves are required for the transpiration process, which are related to
leaf stomatal resistance [38,39]. The physical properties of soil and buildings are important factors
when estimating the surface resistance [40]. The meteorological parameters that are required to drive
the EB module can be obtained from a meteorological station.

Once the thermodynamic equilibrium of a scene is achieved, the temperatures and radiosity
values of the sunlit and shaded areas of each facet can be obtained. Then the top-of-canopy (TOC)
TIR radiance can be calculated as the average of the radiosity of all the facets within a field of view
weighted by their visible fractions, which is shown below.

I(v) =
∑

2np
i

B′i
π area(i)·a(i, θv)·|nisv|

∑
2np
i area(i)·a(i, θv)·|nisv|

(12)

where area(i) represents the area of facet i, a(i, θv) represents the viewing fraction of facet i in the
viewing direction θv because facets may obscure each other and ni and sv represent the unit normal
vector of facet i and the viewing direction, respectively. |nisv| explains the projection of facet i relative
to the viewing direction and area(i)·a(i, θv)·|nisv| represents the weight of facet i for the TOC radiance.
B′i represents the efficient radiosity of facet i considering the sunlit fraction in the viewing direction
and B′i/π represents the radiance of facet i in the viewing direction because all the components are
assumed to be Lambertian. In addition, the sensible and latent heat fluxes are calculated in the EB
module, but they are not discussed in this paper.

3. Materials and Methods

A vital goal of this new combined model is to dynamically simulate the distributions of
temperatures over complex surfaces. In this section, we assess the performance of the RAPID-EB model
using TIR data obtained by the ASTER sensor. An artificial oasis in Northwestern China was selected
as a study area. In addition, two days, which are 10 July 2012 and 2 August 2012, were selected for
study. Both of these days fell within the summer vegetation growing season and were cloudless. In this
evaluation, we did not use a cloud mask. An atmospheric correction of the observed TIR radiance
values was performed by converting the top-of-atmosphere (TOA) values to the corresponding TOC
values using the Moderate Resolution Atmospheric Transmission (MODTRAN) code [41,42]. The TOC
TIR radiance values were then converted to BTs using the Planck function. The scheme that was used to
test the combined model can be seen in Figure 2 and details are provided in the following subsections.

3.1. Experimental Site

In this paper, the area shown in Figure 3, which has a size of 6.25 km × 6.225 km, was selected
for the evaluation exercise. This study area is located in an artificial oasis in the middle reaches of the
Heihe River in the Gansu province of China. During the summer of 2012, this area was selected as a key
experimental area where intensive and long-term observations were collected during the HiWATER
(The Heihe Watershed Allied Telemetry Experimental Research) project [43]. During the summer,
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maize is the major agriculture crop and all of the vegetated area was assumed to be occupied by maize
in the evaluation process. In addition, building and road pixels exist in this area. In this paper, the roads
were represented as bare soil because most of these roads are paved with soil. The surface soil type is
silty clay loam. The locations of seventeen automatic meteorological stations are shown in Figure 3 and
these stations measured meteorological parameters during the HiWATER project [44]. This selected
area is a typical irrigation district. The precipitation in this area is approximately 100–250 mm per
year, but the potential evaporation is as high as 1200–1800 mm per year [43]. The annual average air
temperature of this selected area is 280.45 K [45].
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3.2. Data Sets

3.2.1. Scene Generation

This study area was treated as completely flat during the scene generation process. To save
computer memory, the entire study area was divided into many sub-scenes with a size of
900 m × 900 m. To preserve the continuity between neighboring sub-scenes, the actual size of the
sub-scenes was set to be slightly larger than 900 m × 900 m. The land cover information was obtained
online at http://westdc.westgis.ac.cn [46,47]. The maize was planted in rows, but, during the period
for which the evaluation was performed, the canopy was very dense. Therefore, this maize canopy
was considered to be homogeneous. The LAI distribution within the study area was retrieved from
ASTER VNIR images, which is shown in Figure 4 [48]. On 10 July 2012 and 2 August 2012, the average
LAI values of the study area as a whole were 2.94 and 2.63, respectively. In addition, the corresponding
average maize heights were 1.7 m and 2.0 m, respectively. These values were estimated by averaging
measurements made near each automatic meteorological station. These average maize heights were
used for all of the maize canopies in the generated scenes. In addition, the average height of 3.2 m was
used for all of the buildings. Due to the limitations of the spatial resolution of LAI pixels, plant and
building objects were set to a size of 30 m × 30 m. A spherical LAD was assumed for all of the
plant objects.
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3.2.2. Meteorological Data

The meteorological data were obtained from the automatic meteorological stations shown in
Figure 3. Meteorological data were collected every 10 minutes and include the air temperature,
air humidity, and air pressure at 5.0 m above the ground level. The wind speed and direction is
10.0 m above the ground level, the four-component radiation (downward/upward shortwave and
longwave radiation) is 6.0 m above the ground level, and the soil moisture has depths of 2.0 cm
and 4.0 cm. The Daman Super Station (i.e., station15) is a 40 m boundary-layer tower located at
100◦22′ E, 38◦51′ N. This station is surrounded by maize canopies, which is shown in Figure 5a and
provides air temperatures and wind speeds at heights of 3.0 m, 20.0 m, 30.0 m, and 40.0 m. The air
temperature, air humidity, air pressure, and wind speed values are considered to be the same over
the study area as a whole and those obtained from the Daman Super Station were entered into the
RAPID-EB model. The soil surface moisture was obtained by interpolating the measured values
from the 17 automatic meteorological stations. Figure 5b,c show the spatial distribution of the soil
surface (0 cm to 5 cm) moisture on the two selected days and this quantity was calculated by averaging
the measured data at the 2.0-cm and 4.0-cm depths. The soil moisture mainly varied from 0.25 to
0.35 m3/m3, which represents well-irrigated conditions for agricultural crops.
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Figure 5. Ground photograph of (a) the Daman Super Station located at 100◦22′ E, 38◦51′ N and the
spatial distribution of the 0–5 cm soil moisture over the study area as a whole on (b) 10 July 2012 and
(c) 2 August 2012. 0710 stands for 10 July 2012 while 0802 stands for 2 August 2012.

In this paper, the BTs observed by the ASTER sensor were employed for evaluation and these
values corresponded to approximately 12:15 Beijing time (12:13 and 12:19 Beijing time on 10 July and
2 August 2012, respectively). Therefore, the measured records that ranged from 12:10 to 12:20 Beijing
time were used. The corresponding local time was approximately 10:35 and the two selected days were
cloudless and feature air temperatures of 25.9 ◦C and 27.8 ◦C, respectively. The downward shortwave
radiation values were as high as 925 W/m2 and 916 W/m2 with solar zenith angles of 21.5◦ and 25.6◦,
respectively. In addition, the corresponding wind speeds were 1.62 m/s and 0.90 m/s.

3.2.3. Component Properties

The optical properties of the components are important factors when estimating the net radiation
of facets. The reflectance and transmittance of leaves in the VNIR domain were simulated by using
the PROSPECT model with the input parameter values shown in Table 1 [49]. The VNIR properties
of the other components were acquired from the ASTER spectral library [50]. The emissivity values
of the components were retrieved using the Iterative Spectrally Smooth Temperature and Emissivity
Separation (ISSTES) algorithm based on data measured using an ABB BOMEM MR304 Fourier
transform infrared spectroradiometer [51]. In this paper, the five TIR bands of the ASTER sensor, i.e.,
8.29 µm, 8.63 µm, 9.07 µm, 10.66 µm, and 11.32 µm, were all selected [52]. By resampling with spectral
response functions, the channel emissivities of the components can be calculated, which is shown
in Table 1.

The physical and physiological properties of components are mainly used to calculate the surface
resistance and leaf stomatal conductivity. The leaf physiological properties were the same with the
pre-defined empirical values of the SCOPE model [27,53]. In addition, the soil surface resistance was
estimated using the surface moisture, which is shown in the equation below [40].
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rs = 1.439× 105(θsat − θ0−5)
3.14 (13)

where θ represents the soil water content. θsat and θ0−5 represent the soil water content at saturation
and the soil moisture of the top soil layer (0–5 cm), respectively. In our study area, θsat is set to
0.48 m3/m3. The soil surface moisture was also used to estimate the soil heat capacity (ρscs), which is
shown in the equation below [54].

ρscs = ρdrycdry + ρwcwθ0−5 (14)

where ρdrycdry and ρwcw are the heat capacities of dry soil
(
∼ (1− θsat)× 2.1× 106 J kg−1 K−1

)
and

water (∼ 4.2× 106 J kg−1K−1).

Table 1. Leaf parameters used in the PROSPECT model and the emissivities of the components in the
ASTER bands.

Parameter Leaf (Maize) Soil Wall Roof

N 1.518 - - -
Cab (µg/cm2) 58 - - -
Cw (g/cm2) 0.013 - - -
Cm (g/cm2) 0.003662 - - -

Emissivity Band 10
(8.29 µm) 0.982 0.940 0.983 0.909

Emissivity Band 11
(8.63 µm) 0.983 0.952 0.946 0.887

Emissivity Band 12
(9.07 µm) 0.976 0.947 0.869 0.870

Emissivity Band 13
(10.66 µm) 0.968 0.972 0.885 0.912

Emissivity Band 14
(11.32 µm) 0.979 0.975 0.895 0.923

N: leaf structure parameter; Cab: chlorophyll content. Cw: equivalent water thickness; Cm: dry matter content.

3.3. Evaluation for Temperature Distribution

The surface BTs were simulated with a spatial resolution of 90.0 m in order to match the ASTER
pixels. In this paper, only pixels that were completely included within the study area were selected.
Since the maximum viewing angle in an ASTER TIR image is only 8.55◦ [52], nadir observations were
adopted for all of the simulated pixels.

Figure 6 shows the distributions of the observed and simulated BT values (11.32 µm) on the
two selected days and their scatterplots. The corresponding statistics are shown in Table 2. The surface
BTs on 10 July 2012 were slightly lower than those on 2 August 2012. Both the observed and simulated
surface BTs displayed large ranges of values and the maximum BT difference was as large as 15 ◦C.
Figure 6e,f shows scatterplots of the BTs between the observed and simulated pixels. The low RMSE
values obtained for the two selected days (1.33 ◦C for 0710 and 1.55 ◦C for 0802) indicate that
the RAPID-EB model displays acceptable performance when simulating surface BTs. In addition,
the spatial distribution of the simulated BTs agreed well with those observed by the ASTER sensor.
The corresponding coefficients of the determination (R2) value was greater than 0.73. In addition,
similar evaluation results were obtained for the other ASTER bands where the RMSE values were less
than 1.6 ◦C and the R2 values were greater than 0.70.
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Figure 6. Observed (a,b) and simulated (c,d) surface BTs at 11.32 µm on two days (10 July 2012 and
2 August 2012) and the corresponding scatterplots (e,f). The solid line represents the 1:1 line while the
dotted lines represent the 1:1 line ± the RMSE. All of the BTs are given in ◦C.

Table 2. Statistical information on the simulated BTs over the study area for each band.

Band 10 Band 11 Band 12 Band 13 Band 14

Date R2 RMSE (◦C) R2 RMSE (◦C) R2 RMSE (◦C) R2 RMSE (◦C) R2 RMSE (◦C)

0710 0.76 1.34 0.74 1.41 0.70 1.52 0.74 1.44 0.75 1.33
0802 0.72 1.58 0.73 1.45 0.72 1.37 0.73 1.51 0.73 1.55

However, differences between the observed and simulated BTs also appeared. The building
pixels with relatively large BTs displayed worse agreement than the vegetation pixels with relatively
low BTs, which can be easily found in the scatterplots. The simulated BTs for the building pixels
displayed similar values while their corresponding observed results substantially varied. Relative to 2
August 2012, this underestimate appeared for some of the simulated building pixels on 10 July 2012.
In addition, the spatial distribution of the simulated vegetation BTs slightly differed from the observed
BTs on 10 July 2012. Table 3 displays the evaluation results of the BTs (11.32 µm) for vegetation and
building pixels. The RMSEs for buildings (2.11 ◦C and 1.73 ◦C) were larger than those for vegetation
(1.14 ◦C and 1.20 ◦C). The RMSEs for bare soil were 2.66 ◦C and 1.96 ◦C on 10 July 2012 and 2 August
2012, respectively.
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Table 3. Statistical information on the simulated BTs with different LAI and wind speed errors.

All Maize Building

Case RMSE (◦C) Bias (◦C) RMSE (◦C) Bias (◦C) RMSE (◦C) Bias (◦C)

0710

- - - 1.33 −0.28 1.14 −0.19 2.11 −1.16
LAI −

0.5 1.36 0.48

LAI + 0.5 1.26 −0.54
u − 0.5 1.34 0.01 1.21 −0.02 1.89 0.66
u + 0.5 1.69 −0.90 1.41 −0.73 3.15 −2.52

0802

- - - 1.29 0.01 1.20 −0.08 1.73 0.78
LAI −

0.5 1.46 0.57

LAI + 0.5 1.37 −0.33
u − 0.5 4.10 3.09 3.45 2.54 7.93 7.73
u + 0.5 1.37 −0.29 1.19 −0.24 2.42 −1.73

3.4. Sensitivity to the LAI and Wind Speed

During the evaluation process, errors due to input parameters are inevitable. To understand the
sensitivity of the combined model to its input parameters would be very useful in order to avoid
significant differences due to small errors in input parameters. A comparison of the BT and LAI images
corresponding to 10 July 2012 showed that the spatial distributions of these parameters agree with
each other mainly because the same height and LAD were assumed for all of the maize canopies.
Therefore, the spatial distribution of the BTs simulated for the vegetation pixels was predominantly
affected by their LAI values. Moreover, atmospheric fluctuations were also important factors for the
simulated results because meteorological conditions averaged over a 10-minute period were used in the
model while the observed BTs simply corresponded to an instantaneous state. Therefore, discrepancies
between the simulated and observed results may appear. In this paper, the combined model was then
analyzed by using different LAI and wind speed values and by introducing specific errors. In this
analysis, the error in the LAI was set to 0.5 m/s and the error in the wind speed was set to 0.5 m/s.
Four cases with different parametric errors (LAI ± 0.5 and u ± 0.5) were generated. The analysis for
the LAI was performed only over vegetation pixels. When the LAI was less than 0, this value was set
to 0. This sensitivity analysis was only performed with the simulated and observed BTs at 11.32 µm.

Figure 7 displays histograms of the differences in temperature between the simulated and
observed pixels with different LAI errors. The corresponding statistics can be found in Table 3.
According to bias, an underestimation of the LAI value can result in simulated results that overestimate
the actual values and vice versa. Compared to the results with LAI errors, the simulated results without
LAI errors displayed slightly better agreement with the observations. It is inferred that no large (>0.5)
discrepancies appeared in the estimated LAI values. Despite the large differences in the bias, slight
differences appeared in the RMSE. To some extent, the low sensitivity to the LAI may have been related
to high LAI values that occurred during the evaluation period.

Figure 8 displays histograms of the differences in temperature between the simulated and
observed values with different wind speed errors. In this analysis, vegetation pixels and building
pixels are evaluated separately. The evaluation results related to building pixels were significantly
worse than those for vegetation pixels. According to the bias, an overestimation of the wind speed
can result in simulated results that underestimate the actual values. In addition, the building pixels
display a high sensitivity to the wind speed when compared to the vegetation pixels. When errors
in the wind speed were induced, obvious discrepancies appeared, which is shown by the peaks on
both sides of the histograms. Moreover, the underestimation of the wind speed on 2 August 2012
showed a larger impact on the simulated results than those on 10 July 2012 when the vegetation and
building pixels were both significantly affected. These observations can be explained by the difference
in wind speed between the two days. The value for 10 July 2012 was 1.62 m/s while the corresponding
value for 2 August 2012 was 0.90 m/s. These results demonstrate that the effects of wind speed
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errors were not accurately reflected by their absolute values and the wind speed state should also be
considered. Based on a detailed analysis of the histograms, the wind speed used for 10 July 2012 may
be overestimated.
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Note that the other parameters also had a strong effect on the simulated values such as the
maximal carboxylation capacity [55]. Duffour et al. found that surface BTs display lower sensitivity
to the maximal carboxylation capacity compared to surface heat fluxes [53]. Therefore, the empirical
values are directly used for practical applications rather than obtaining them from a calibration
procedure when using measured heat fluxes.

4. Discussion

4.1. Validation Issues

The validation of LSTs is still a difficult task due to the high sensitivity of this variable to
atmospheric stability and the sun’s location [8,56]. In this paper, an artificial oasis over flat terrain
was selected as a study area. In the evaluation process, observed ASTER TIR data were used to test
the model’s performance in reconstructing the spatial distribution of surface BTs. The discrepancies
shown in Figure 6 may arise because several simplifications were adopted in practical applications.
In this paper, we assumed that the heights and optical properties of all of the buildings were the
same, but the actual values may vary substantially across the study area. Therefore, in contrast to
the observed building pixels, which displayed substantial variation, relatively similar values were
simulated by the model. Moreover, the assumption of simplifying each building to a cube also leads
to degradation of the simulated results. Since the RAPID-EB model is mainly used for vegetation
canopies, buildings were not fully considered in the current version. Further refinement is required in
the future. The results obtained for the mixed pixels that appeared between the surface types may
be affected by the misclassification of land cover types. In addition, even though different vegetation
types existed within the study area, they were all treated as maize canopies. These simplifications
represented a practical approach, but the simulated results were affected. In spite of these discrepancies,
the performance of the RAPID-EB model was acceptable. A reasonable inference is that, if more detailed
surface data were used, the simulated results would be improved.

In this paper, the performance of the RAPID-EB model when reproducing spatial distributions is
evaluated. Similarly, to TRGM-EB [27], the RAPID-EB model could reproduce the temporal variability
in surface emissions in principle. However, the lack of long-term measured LSTs complicates this
evaluation. A simple example is provided in this part using net radiation values measured at the
Daman Super Station. LAI values of 4.4 and 4.2 were measured near the Daman Super Station on
10 July 2012 and 2 August 2012, respectively. Figure 9 displays scatterplots that show the relationship
between the simulated and measured net radiation values on 10 July 2012 and 2 August 2012. In total,
144 pairs of measurement were used per day given the 10-minute time step. The simulated net radiation
values agreed well with those measured on both 10 July 2012 and 2 August 2012 with RMSE values
less than 14.0 W/m2 and R2 values greater than 0.99. One point shown in Figure 9 exhibits a large
deviation. When the solar zenith angle is very small, a slight error in the sunlit fraction of the facets,
which is shown in the denominator of Equation (3), may result in large errors in the net radiation.

In this paper, besides the evaluation, a procedure was developed to apply the RAPID-EB model
using fine-scale VNIR data and meteorological conditions measured in situ. Landier et al. [57] proposed
a methodology in which the Discrete Anisotropic Radiative Transfer (DART)-EB model can be applied
over urban canopies using only remote sensing data rather than in situ measurements. In this paper,
because in situ measured data were also used, the applicability of the RAPID-EB model in the inversion
would be limited relative to the DART-EB model. However, for many forward simulation applications,
this model can be considered suitable. According to Equation (12), the directional anisotropies of
BTs can also be simulated by the RAPID-EB model. A simple comparison between RAPID-EB and
TRGM-EB models is provided in Figure 10. Two types of homogeneous scenes were generated for
the comparison. In the TRGM-EB, there were 960 and 3840 small triangular leaf facets in scenes with
an LAI of 1.0 and 4.0, respectively. In the RAPID-EB, there were 81 large porous plant facets in the
scenes. The solar zenith angle was assumed to be 15◦. In Figure 10, the directional anisotropies of the
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simulated BTs from RAPID-EB model agreed well with those from the TRGM-EB model. The RMSDs
between these simulated BTs were less than 0.58 ◦C. For one-day simulations (144 temporal nodes at
a 10-minute step), the RAPID-EB model took approximately 3.5 minutes while the TRGM-EB model
required approximately 13.5 minutes for scenes with LAI = 1.0 and required approximately 60 minutes
for scenes with LAI = 4.0.
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4.2. Potential Applications

According to the evaluation results, the RAPID-EB model can be viewed as a tool to dynamically
simulate the distributions of surface temperatures using existing observed and measured information.
Several potential applications may be explored in the future.

â By combining VNIR and TIR data, the light absorption and thermal distribution of plants can
be simulated. This information can support analyses of the effects of meteorological conditions
on the growth of vegetation. This approach can be applied to precision agriculture for a specific
crop field.
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â Since surface temperatures are highly sensitive to environmental factors, the simulation results are
of great value in developing a protocol for use in actual experiments. For instance, given the use
of meteorological parameters in previous periods and a priori knowledge of the canopy structure
and component properties, the simulated temperature distribution can be used as reference data
for choosing the sampling number, area, and frequency. Recently, unmanned aerial vehicles
(UAVs) have been widely used in remote sensing applications [58,59]. UAVs provide a means of
rapidly collecting canopy structure information over large areas with the advantages of flexibility
and low cost. A potential application of the RAPID-EB model can, therefore, be anticipated by
combining the spatial information from a UAV and the temporal information from a portable
automatic meteorological station to provide a comprehensive synthetic dataset.

â This model can also be treated as a tool that can analyze observations collected over a range of
temporal and spatial scales. In the validation process, the ‘true’ values for satellite-scale pixels
are typically obtained via scaling from limited data measured in situ [8,60–62]. The RAPID-EB
model can act as a platform to convert point data measured in situ to match observed pixel data.
This model can, therefore, assist in understanding scale problems in remote sensing [63,64].

â In addition, the RAPID-EB model can be treated as a data generator and may, therefore, be very
useful in preliminary evaluations of other simple models or inversion algorithms. Although
simulation discrepancies may appear, these datasets appear to be desirable for full sensitivity
analyses under various conditions.

5. Conclusions

The spatial and temporal scales of LST products cannot meet the requirements of practical
applications. For the global surface EB, considerable amounts of satellite TIR data have been
generated with frequent revisit intervals but coarse spatial resolutions. When applying these data,
the knowledge of the temperature distribution within individual pixels would be of great value for
some applications that require finely resolved LSTs. In situ experiments that provide the spatial and
temporal characteristics of LSTs are limited. Model-based approaches can provide detailed information
on LSTs within individual pixels. However, most existing models are not spatially explicit and others
are not designed for use in remote sensing studies. Therefore, in this paper, a model that combines the
RAPID model and EB methods was proposed to address this need. This model can be considered to be
a new version of the combination of the TRGM and EB methods.

Using fine-scale VNIR images and temporal variations in meteorological conditions, the new
model can determine the distributions of temperatures within coarse-scale TIR pixels. In this paper,
an artificial oasis in the middle reaches of the Heihe River basin was selected and a practical procedure
was applied to simulate the surface BTs. These simulated BTs agreed well with those observed
by the ASTER sensor. The corresponding RMSE values were less than 1.6 ◦C and the R2 values
were greater than 0.70. Although many simplifications were applied to permit its use in practical
applications, the evaluation results revealed that the performance of the RAPID-EB model was
acceptable. In addition, the sensitivity of the model to the LAI and wind speed was analyzed by
inducing specific errors. The underestimation of the LAI and wind speed can result in simulated results
that overestimate the observed values. The simulated results showed that the new model was more
sensitive to the wind speed than the LAI. In addition, the analysis indicated that the effects of the
input parameters cannot be described by using only their absolute deviations. Instead, their actual
conditions must also be considered.

The potential applications of the RAPID-EB model were also discussed. Specifically, the model
can be used as a data platform by combining spatial and temporal information to dynamically model
temperature distribution at specific scales or can be used as a data generator to provide reference data
in support of in situ measurements and the development of simple models. In addition, the wide use
of UAV techniques would promote the application of this model in TIR remote sensing in the future.
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