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Abstract: Monitoring of changes in forest biomass requires accurate transfer functions between
remote sensing-derived changes in canopy height (∆H) and the actual changes in aboveground
biomass (∆AGB). Different approaches can be used to accomplish this task: direct approaches link
∆H directly to ∆AGB, while indirect approaches are based on deriving AGB stock estimates for two
points in time and calculating the difference. In some studies, direct approaches led to more accurate
estimations, while, in others, indirect approaches led to more accurate estimations. It is unknown
how each approach performs under different conditions and over the full range of possible changes.
Here, we used a forest model (FORMIND) to generate a large dataset (>28,000 ha) of natural and
disturbed forest stands over time. Remote sensing of forest height was simulated on these stands
to derive canopy height models for each time step. Three approaches for estimating ∆AGB were
compared: (i) the direct approach; (ii) the indirect approach and (iii) an enhanced direct approach
(dir+tex), using ∆H in combination with canopy texture. Total prediction accuracies of the three
approaches measured as root mean squared errors (RMSE) were RMSEdirect = 18.7 t ha−1, RMSEindirect
= 12.6 t ha−1 and RMSEdir+tex = 12.4 t ha−1. Further analyses revealed height-dependent biases in
the ∆AGB estimates of the direct approach, which did not occur with the other approaches. Finally,
the three approaches were applied on radar-derived (TanDEM-X) canopy height changes on Barro
Colorado Island (Panama). The study demonstrates the potential of forest modeling for improving the
interpretation of changes observed in remote sensing data and for comparing different methodologies.

Keywords: aboveground biomass change; lidar; synthetic aperture radar; tropical rainforests; forest
model; simulation

1. Introduction

Forests play a crucial role in the global carbon budget. Carbon stocks of forests worldwide are
estimated to be around 350–600 Gt [1–3]. Deforestation and forest degradation are estimated to cause
an annual change of 1.1 Gt of carbon. However, these change estimations include large uncertainties,
because they can only be derived indirectly from estimates of other carbon stocks and fluxes [1].
Passive optical remote sensing sensors are successfully used for monitoring the forest extent [4].
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However, to quantify the aboveground biomass and thus carbon stocks of forests, passive optical
sensors suffer from saturation and can be used only for forests with relatively low biomass [5,6]. Active
sensors, such as light detection and ranging (lidar) [7,8] and synthetic aperture radar (SAR), [9] enable
measurements of the canopy height structure of forests, which can be used to derive information about
the standing aboveground biomass (AGB). The height-to-biomass relationship at the stand level for
area-based biomass estimations is a topic of many recent studies in different forest ecosystems and
geographical regions. A multitude of remote sensing metrics [6,10], spatial scales [11,12] and modeling
approaches [13] have been tested and compared in this context. It was found that often a single metric
that captures canopy height can provide accurate biomass estimations based on equations derived
from regression analysis [14]. Among several possible metrics that describe average canopy height
(e.g., height quantiles, mean profile height), the so-called mean top-of-canopy height (TCH) [15] has
become one of the most frequently used metrics [16–18].

Country-wide [19] and even biome-wide maps [20,21] have been published that build on the
height-to-biomass relationship. Combining a baseline map of biomass stocks [20] with maps of forest
cover change [4], the carbon emissions due to tropical deforestation between 2000 and 2005 have been
estimated to be 0.81 Gt year−1 [22]. Such an area-change-based estimation does not, however, account
for the dynamics of degradation, disturbances and recovery within forested areas.

For the monitoring of changes in forest biomass, two basically different methods have been
suggested in recent years, often referred to as the direct and the indirect approach [23]. Both try
to estimate the change in aboveground biomass (∆AGB) or carbon of a forest during a certain time
interval, based on two remote sensing data acquisitions: one before and one after the period of interest.
In the indirect method, the remotely sensed height information at the beginning and at the end of the
time interval is used to estimate the standing biomass stocks before and after the interval. The biomass
change is then calculated as the difference between the stocks at both points in time. Hence, the indirect
approach relies on the height-to-biomass relationship. In contrast, the direct method tries to link the
height change (∆H) to the biomass change. Thus, first, height change is calculated as the difference
between height at the end and height at the start of the interval. Then, a ∆H-to-∆AGB relationship is
used to estimate the change in biomass from the observed height change.

The direct and the indirect biomass change estimations have been applied in several studies
(sometimes in direct comparison to each other), covering different forest types, of boreal [24],
temperate [25,26], subtropical [23] and tropical regions [27,28]. In some studies, the direct approach
led to more accurate estimations, while, in other studies, the indirect approach led to more accurate
estimations. It remains unclear which approach performs better under which conditions. The studies
dealing with the topic had a rather regional extent and were based on a limited set of forest inventory
plots. Plots are usually small in size, which results in large variation in the observed relationships.
With new spaceborne lidar and SAR sensors becoming operational (e.g., TerraSAR-X-Add-on for Digital
Elevation Measurements (TanDEM-X), Sentinel 1, Global Ecosystem Dynamics Investigation Lidar
(GEDI), BIOMASS, Tandem-L) that enable large-scale measurements of forest structure, it is necessary
to establish standardized approaches for how to estimate biomass changes from remote sensing.

There are advantages and disadvantages to both approaches. The advantage of the indirect
approach is that it makes use of the well-studied H-to-AGB relationship, which is applied at
the beginning and end of the time interval. The direct approach requires the establishment of a
∆H-to-∆AGB relationship. The advantage of this approach is that with an established ∆H-to-∆AGB
relationship, measurements of absolute forest heights are no longer required and net changes in canopy
surface height are sufficient to estimate changes in AGB. This holds the potential to map ∆AGB from
changes observed in digital surface models (DSM) (e.g., Shuttle Radar Topography Mission (SRTM)
and TanDEM-X products), which represent only the canopy surface height. Knowing the terrain
height [digital terrain model(DTM)] underneath for deriving net vegetation height [canopy height
model(CHM)] would not be required [29–31]. Such situations can arise if a certain technique is only
capable of generating surface information (e.g., photogrammetry, SAR interferometry) or if the terrain
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information is of low precision due to dense vegetation or on hill slopes (e.g., large footprint lidar,
polarimetric SAR interferometry).

Despite the lack of absolute vegetation height information, the DSMs do, however, contain
valuable information on canopy structure. Crown and gap size distributions vary among forest stands,
depending on their age and height structure, and are reflected in the DSM texture. Textural information
from optical remote sensing imagery has been used previously to map habitat heterogeneity [32] and
forest biomass [33–35], and textural information from DSMs and CHMs has been used successfully in
forest classification [36] and estimation of average tree height, basal area and stem volume [37,38]. Thus,
analyzing the DSM texture—that is, local height variability among neighboring pixels—can provide
a useful set of metrics to characterize a forest stand in the absence of absolute height information.
This textural information could be used to enhance biomass change estimations in situations where a
simple direct approach may fail. Each single texture metric alone may only show a weak relationship
with canopy height, but using an ensemble of metrics and a machine learning algorithm (e.g., random
forest), we expect to improve estimations of biomass change from DSM change compared to the
simple direct approach. Comprehensive analyses of the relations between remote sensing metrics
and ground-based metrics require a large number of ground-truth plots. The measurement effort
becomes even larger when the goal is to analyze changes over time, which requires synchronized
remote sensing and field campaigns at regular time intervals, ideally covering the full successional
range of the forest. Biomass losses due to disturbances happen stochastically and even the most
expansive field campaigns can hardly provide representative samples for them. For that reason, forest
models have gained popularity to analyze simulated forests and explore relationships between remote
sensing and ground-based metrics [39].

Forest models have a long tradition in ecology and forestry. They have traditionally been used
to understand processes in forest ecosystems and to test system behavior under the influence of
management scenarios or disturbance events [40]. Starting from simple forest yield tables [41],
the incorporation of more ecological processes led to advanced types of forest models, including
forest gap models [42], and finally to the development of individual-based forest models [43]. Forest
ecosystem functions and forest structure emerge from individual trees and their interactions. Therefore,
gap models are designed to work at local scale and represent forest structure and dynamics at a detailed
level [44,45]. An architecture based on individual trees allows the modeling of structurally realistic
concepts that are based on field measurements at different organizational levels [46]—which was
the key driver for the successful applications of gap models. As the impact of disturbance events or
management in forests is mainly quantified at the tree level, an individual-based structure is a huge
advantage for simulating disturbances.

The individual-based approach facilitates the linkage of forest models to remote sensing data.
Previous applications have covered different aspects, including mapping of biomass [47,48] and
productivity [49], understanding of height biomass relationships [50,51], error quantification [52] and
monitoring of changes in forest structure [53]. The individual-based forest model FORMIND [54] has
been used to analyze the relationship between many different lidar metrics and AGB for a tropical
rainforest across scales and disturbance states [12]. The simulated disturbances allowed to expand
the range of stand structures and successional stages far beyond the range covered by the available
inventory data of an old-growth forest.

In this study, we used FORMIND simulations to analyze and compare different ways of how
to estimate biomass changes from height changes. We simulated time series of tropical forest stands
(synthetic ground-truth) and synthetic remote sensing data. Tropical forests are of particular interest in
the context of mapping forest biomass changes, due to their large share in the global vegetation carbon
pool and their high deforestation rates. The methods developed on the basis of forest simulations were
finally tested with TanDEM-X data acquired at two points in time.

The main research questions were as follows: (i) How can aboveground biomass change be
estimated from canopy height change, if the goal is to cover the full range of tropical forest succession,
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including disturbed forests? (ii) Under which conditions do the different approaches work best?
(iii) Can canopy texture information improve estimates of biomass change in the absence of canopy
height information?

2. Materials and Methods

2.1. Study Area

The study focuses on Barro Colorado Island (BCI), Panama (9.15◦N, 79.85◦W), a semideciduous
tropical lowland rainforest site. Average daily maximum and minimum temperatures are 30.8 and
23.4 ◦C and the annual precipitation sum is 2600 mm, with a dry season from January to April [55].
Barro Colorado Island hosts a 50 ha (1000 m × 500 m) rainforest observation plot, which has been
continuously monitored for more than three decades, with every tree with a diameter at breast
height (DBH) ≥1 cm being recorded at 5-year intervals [56–59]. This inventory dataset with its
outstanding spatial and temporal dimensions, along with the large amount of research conducted
around it, provides a rich source of information for forest model parameterization [12,60], as well as
ground-truthing for remote sensing studies [28,61,62]. In this study, a forest model parameterized
with the census data was used and the census data of 2010 and 2015 [in combination with the same
allometries as used in the forest model, Equation (3)] served for ground-truthing of satellite-derived
estimations of biomass change.

2.2. Forest Model Description

The forest model FORMIND simulates the dynamic processes of establishment, growth, competition
(for light and space) and mortality at the individual tree level. Species with similar ecological
traits and growth characteristics are grouped into plant functional types (PFT). Biomass growth
is mainly driven by light. Large trees receive most of the incoming radiation and shade smaller
trees. The resulting biomass growth of each tree is determined by a physiology-based carbon balance,
including photosynthesis and respiration. An increase in tree biomass results in stem diameter growth
and, through the use of allometric relationships, also in growth of tree height, stem volume and leaf
area. A detailed description of the model processes can be found in Fischer et al. [54]. FORMIND was
already fully parameterized for the study site [12]. All species present in the BCI plot were grouped
into four PFTs, according to stem diameter increment rates (slow, fast) and maximum tree height
(small, tall). Allometric equations from the literature [63] were used to describe tree geometries [12].
Tree height Htree (m) and crown diameter CDtree (m) are modeled as functions of DBHtree (m) using
Equations (1) and (2).

Htree = 43.4·DBHtree
0.6 (1)

CDtree = 18.2·DBHtree
0.68 (2)

PFTs can reach different maximal heights (20, 20, 40 and 55 m). AGBtree is calculated from
Equation (3), where F is the stem form factor, which accounts for the deviation from a cylindrical shape,
ρ is the wood density (tODM m−3) and σ is the stem-to-total AGB ratio of the tree. Parameter values
are given in Knapp et al. [12].

AGBtree = π·(DBHtree

2
)

2
·Htree·F·

ρ

σ
(3)

The parameterization has been shown to reproduce several patterns observed in the field (AGB,
basal area, stem numbers and stem size distributions of the total plot and per PFT). Additionally,
it has been used in combination with lidar simulations and could reproduce patterns of airborne lidar
data [12]. The temporal development of AGB and canopy height during primary succession is shown
in the Appendix A (Figure A1).



Remote Sens. 2018, 10, 731 5 of 23

2.3. Simulations

FORMIND was used to simulate the development of a 16 ha area (400 m × 400 m) of the BCI
forest for a long period (2000 years). The first 200 years of spin-up were discarded from the analysis.
In each year, a full inventory table containing all trees with DBH ≥ 3 cm was stored and a virtual
lidar scan of the area was sampled using the lidar simulation approach described by Knapp et al. [12]
(Figure 1). In FORMIND, we simulated spatially explicit disturbances to frequently clear parts of the
area. Disturbances were set to reoccur at random times and places within the area with an average
time interval of 25 years and an average affected area of 50% [54]. These settings created a spatially
heterogeneous mosaic of different forest regrowth stages. The scenario was designed to produce a
dataset with maximum possible structural heterogeneity to cover the full range of possible biomass
and height changes with the simulations.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 23 

 

2.3. Simulations 

FORMIND was used to simulate the development of a 16 ha area (400 m × 400 m) of the BCI 
forest for a long period (2000 years). The first 200 years of spin-up were discarded from the analysis. 
In each year, a full inventory table containing all trees with DBH ≥ 3 cm was stored and a virtual lidar 
scan of the area was sampled using the lidar simulation approach described by Knapp et al. [12] 
(Figure 1). In FORMIND, we simulated spatially explicit disturbances to frequently clear parts of the 
area. Disturbances were set to reoccur at random times and places within the area with an average 
time interval of 25 years and an average affected area of 50% [54]. These settings created a spatially 
heterogeneous mosaic of different forest regrowth stages. The scenario was designed to produce a 
dataset with maximum possible structural heterogeneity to cover the full range of possible biomass 
and height changes with the simulations. 

 
Figure 1. Technical flowchart of the analysis of the simulated data. The analysis of empirical data was 
conducted in the same way, just with different data sources: inventory data instead of forest model, 
and TanDEM-X data instead of remote sensing simulation (Section 2.8). Abbreviations: AGB—
aboveground biomass, CHM—canopy height model, DSM—digital surface model, TCH—mean top-
of-canopy height. Note that we distinguish between CHM and DSM. In the simulations, CHM and 
DSM are the same, because the simulated forest stands are on flat terrain. However, CHMs are only 
required to derive TCH (indirect approach), while for ΔTCH and texture calculations DSMs are 
sufficient (direct approach and enhanced direct approach involving canopy texture (dir+tex)). 

2.4. Biomass, Height and Change Calculations 

The simulated lidar data were processed to obtain a metric called TCH10 (mean top-of-canopy 
height with 10 m pixel resolution) at 1 ha scale. This metric has been shown to yield a height-to-
biomass relationship which produces accurate biomass stock estimates (root mean squared error, 
RMSE = 19.8 t ha−1; nRMSE = 8%; R2 = 0.96; [12]). To obtain TCH10 from the simulated lidar point 
cloud, CHM was produced by taking the height of the highest lidar return falling into each 10 m × 10 
m area as pixel value. Next, all pixel values were averaged to obtain one TCH10 value for each 
hectare. AGB of the simulated forest stands was aggregated at the 1 ha scale. Changes in observed 
AGB (called ΔAGBobserved) and changes in TCH10 (called ΔTCH10) over each 5-year interval were 
calculated for each simulated hectare (Figure 1, see Appendix A for equivalent analysis for 10- and 
25-year intervals). The total number of analyzed 1 ha forest-stands was 28,736. 

2.5. Texture Calculations 

A variety of texture metrics were derived from the simulated CHM rasters (10 m resolution) to 
capture vegetation surface variability. We used a 3 × 3 pixel moving window (30 m × 30 m), only 

Figure 1. Technical flowchart of the analysis of the simulated data. The analysis of empirical data was
conducted in the same way, just with different data sources: inventory data instead of forest model, and
TanDEM-X data instead of remote sensing simulation (Section 2.8). Abbreviations: AGB—aboveground
biomass, CHM—canopy height model, DSM—digital surface model, TCH—mean top-of-canopy height.
Note that we distinguish between CHM and DSM. In the simulations, CHM and DSM are the same,
because the simulated forest stands are on flat terrain. However, CHMs are only required to derive
TCH (indirect approach), while for ∆TCH and texture calculations DSMs are sufficient (direct approach
and enhanced direct approach involving canopy texture (dir+tex)).

2.4. Biomass, Height and Change Calculations

The simulated lidar data were processed to obtain a metric called TCH10 (mean top-of-canopy
height with 10 m pixel resolution) at 1 ha scale. This metric has been shown to yield a height-to-
biomass relationship which produces accurate biomass stock estimates (root mean squared error,
RMSE = 19.8 t ha−1; nRMSE = 8%; R2 = 0.96; [12]). To obtain TCH10 from the simulated lidar point
cloud, CHM was produced by taking the height of the highest lidar return falling into each 10 m × 10 m
area as pixel value. Next, all pixel values were averaged to obtain one TCH10 value for each hectare.
AGB of the simulated forest stands was aggregated at the 1 ha scale. Changes in observed AGB (called
∆AGBobserved) and changes in TCH10 (called ∆TCH10) over each 5-year interval were calculated for
each simulated hectare (Figure 1, see Appendix A for equivalent analysis for 10- and 25-year intervals).
The total number of analyzed 1 ha forest-stands was 28,736.

2.5. Texture Calculations

A variety of texture metrics were derived from the simulated CHM rasters (10 m resolution) to
capture vegetation surface variability. We used a 3 × 3 pixel moving window (30 m × 30 m), only
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considering the direct neighbors for each pixel, and then averaged those textures over each hectare.
First-order texture metrics are independent of the spatial arrangement of pixel values within the moving
window. The following first-order texture metrics were derived (using the raster package in R [64]):
standard deviation, skewness, kurtosis, slope, topographic ruggedness index (TRI), topographic
position index (TPI) and roughness of the nine pixel values in the moving window. Second-order
texture metrics are based on the grey-level co-occurrence matrix (GLCM)—in other words, they
consider how often certain pixel values occur next to each other [65]. To obtain a limited set of discrete
grey-levels for GLCM texture calculations, the original CHM values were rounded (5 m classes).
The following GLCM metrics were calculated (using the glcm package in R): homogeneity, contrast,
dissimilarity, entropy and angular second moment (ASM). Directionality in the co-occurrence pattern
was not considered (circular version). It is important to note that all texture metrics are independent of
the absolute pixel values. The texture metrics depend only on the differences in values between focal
pixel and neighbor pixels. Thus, they can be derived from a CHM (terrain-normalized) or a DSM (not
terrain-normalized) alike (assuming that the contribution of terrain variability is much smaller than
the contribution of canopy surface variability to DSM variability at the given 30 m × 30 m moving
window scale).

2.6. Biomass Change Estimation

Three different approaches for ∆AGB estimation were tested with the simulated dataset: (i) the
direct approach; (ii) the indirect approach and (iii) an enhanced direct approach involving canopy
texture information (dir+tex, Figure 2).
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Figure 2. Inputs and principles of the three different approaches to derive biomass change (∆B) over
time from observed canopy heights (H) or height change (∆H) and canopy texture, respectively. H
refers to mean top-of-canopy height, obtained by averaging the CHM, indicated by red line. The direct
approach and the dir+tex approach do not require absolute canopy height information, thus DSM can
be used instead of CHMs.
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2.6.1. Direct Approach

A linear regression model with slope m and intercept n was fit between simulation-derived
∆AGBobserved and ∆TCH10 (Equation (4)) and used for ∆AGBdirect predictions.

∆AGBdirect = m·∆TCH10 + n (4)

2.6.2. Indirect Approach

For each simulated forest stand (1 ha) and simulation year, the AGB stock (t ha−1) was estimated
using an established TCH10-to-AGB power law relationship (Equation (5)) with coefficients a = 0.4
and b = 1.81, derived in a previous study [12].

AGB = a· TCH10b (5)

∆AGBindirect was calculated as the difference between AGB stocks at the beginning (t1) and end
(t2) of the time interval [Equation (6)].

∆AGBindirect = AGBt2 − AGBt1 = a· TCH10t2
b − a· TCH10t1

b (6)

2.6.3. Enhanced Direct Approach (Dir+Tex)

We used the random forest machine learning algorithm [66] to predict ∆AGBdir+tex from ∆TCH10
(like in the direct approach) in combination with the CHM texture metrics. Random forest is an
ensemble method based on regression trees. To train the algorithm, an ensemble of regression trees
(here, 1000) is fit. Each single tree is trained using only a subset of the full training data and using only
a subset of available predictor variables. A prediction of a random forest is generated by averaging
the predictions obtained from all single regression trees. We used the model selection procedure
developed by Murphy et al. [67] to obtain a parsimonious set of a few meaningful predictor variables
(using the rfUtilities package in R). The goal of the procedure is to find the model that maximizes
explained variability, minimizes the mean squared error (MSE) and needs the lowest possible number
of predictor variables. In the procedure, random forest models are iteratively fit to the data, starting
with all predictor variables. During each iteration, predictors are ranked by decreasing relative
importance (contribution to MSE reduction), and predictors falling below an importance threshold are
dropped before the next iteration. We used deciles from 0.1 to 1 as importance thresholds. Additionally,
we chose a parsimony threshold of 0.05, meaning that in the end, from all models for which MSE
was only 5% or less above the MSE of the very best model, the model with the smallest number of
predictors was chosen as the most parsimonious and hence best model. The model selection was
applied using the whole dataset.

The three different approaches for ∆AGB prediction were evaluated based on how well predictions
fit observations (i.e., ∆AGBobserved derived directly from the FORMIND output) and corresponding
goodness-of-fit statistics, such as R2, RMSE and bias (mean residual value). To avoid overfitting of
the machine learning model in the dir+tex approach, the dataset was split into five similarly sized
groups, and five random forest models were trained with 80% of the data, respectively. The predictions
were then made for the remaining 20% test data, which were not part of the training dataset (5-fold
cross-validation).

2.7. Evaluation Experiments by Bootstrapping

To assess how prediction accuracy depends on forest height, we conducted a bootstrapping
analysis of the simulated dataset. We iterated through forest height classes i from 5 to 50 m in 1 m
steps. For each height class i, the simulated dataset was subset, selecting all stands for which the stand
height at the initial year (TCH10t1) was inside the height class i with a class width of 10 m (i.e., i − 5 m
< TCH10t1 < i + 5 m). From all available stands in each height class i, 1000 stands were randomly
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sampled with replacement. Estimations of ∆AGB were derived for the 1000 sample stands using (i) the
indirect; (ii) the direct and (iii) the dir+tex approach. These ∆AGB estimates were compared against
the actual ∆AGBobserved values of each stand to calculate and record R2, RMSE and bias. The whole
sampling procedure was repeated 100 times for each height class.

2.8. Application on TanDEM-X Data

To finally test the derived models on real world data, we used imagery derived from the TanDEM-X
satellites over BCI in the years 2011 and 2015. TanDEM-X is a radar interferometer with SAR providing
single-pass interferometric [68,69] and polarimetric interferometric [70] data at X-band [71]. The data
have been acquired in a bistatic configuration, with a practically zero temporal baseline and a spatial
baseline corresponding to a height of ambiguity of about 47 m for the 2011 and 70 m for the 2015
acquisition. Canopy height was calculated from interferometric TanDEM-X data at HH polarization
(horizontal transmit and horizontal receive) in combination with a lidar DTM (acquired in 2009 [12,62])
needed as reference for the terrain topography below the trees. The single inversion steps are described
in detail in Kugler et al. [72]. Here, the Single-Pol Inversion was applied. The forest layer was
modeled as a random volume (random distribution of scatterers) over a ground layer, as described
by Attema and Ulaby [73] and Treuhaft et al. [74]. This random volume over ground model (RVoG)
assumes that the backscattering at X-band along forest height can then be described by an exponential
backscatter function in which the backscattered power decreases from the tree tops to the ground.
Furthermore, Kugler et al. [72] assumed that the interferometric measurement at X-band contains
only backscattering from the vegetation layer (no backscattering from the ground below the forest).
With these preconditions and with the ground information from the lidar DTM, we constructed CHMs
of 10 m resolution from the TanDEM-X data for the years 2011 and 2015. TCH10 was derived at
1 ha scale for the 50 ha inventory plot for both years. ∆AGB was estimated from ∆TCH10 using the
three approaches. As ground-truth, AGB at 1 ha scale was calculated from DBH measurements of
the BCI census data of 2010 and 2015 using the same tree allometries as in FORMIND [Equation (3)].
Inventory-based ∆AGB was compared against the three TanDEM-X-based ∆AGB estimates.

3. Results

3.1. Simulation Results

In total, the simulated forest dataset consisted of 28,736 ha. For each of these 1 ha stands,
the changes in biomass and height were recorded over a 5-year interval. Biomass increased on 72.6%
(20,868 ha) and decreased on 27.4% (7868 ha) of the stands. Height increased on 74.9% (21,522 ha),
decreased on 25% (7186 ha) and stayed equal on 0.1% (28 ha) of the stands. The maximal biomass gain
was 83.7 t ha−1 and the maximal biomass loss was −428.6 t ha−1. The maximal height gain was 10.3 m
and the maximal height loss was −42.6 m.

To establish a direct relationship between height change ∆TCH10 and biomass change ∆AGB,
a linear regression model was fit between the two variables (Figure 3) with a significant slope term
of 9.38 (p < 0.001) and an insignificant intercept of 0.14 (p = 0.218). This matches the expectation that
a change of zero in forest height should, on average, also result in zero change in biomass. Forcing
the regression through the origin did not change the slope term. The R2 was 0.878 and the RMSE was
18.7 t ha−1 (5 year)−1. Figure 3 shows the scatterplot, with colors indicating the TCH10 of each stand
at the initial year. Low, early successional stands (blue) tend to show large ∆TCH10 values associated
with small ∆AGB values, whereas high, old-growth forests (red) tend to show small ∆TCH10 values
associated with large ∆AGB values. Results for the analyses of 10- and 25-year time intervals can be
found in Appendix A (Figure A2).

The derived ∆TCH10-to-∆AGB relationship was used to estimate ∆AGB from ∆TCH10 following
the direct approach. Alternatively, ∆AGB was estimated for each hectare following the indirect
approach and the dir+tex approach. Statistics were derived for the linear relationship of prediction vs.
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observation. The direct approach resulted in R2 = 0.878 (RMSE = 18.7 t ha−1 (5 year)−1). The indirect
approach resulted in a R2 = 0.945 (RMSE = 12.61 t ha−1 (5 year)−1). The cross-validation of the dir+tex
approach resulted in a R2 = 0.947 (RMSE = 12.42 t ha−1 (5 year)−1). Figure 4 shows the 1:1-plots for the
different approaches.
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between first and second measurement and (b,c) the frequency distributions of both variables.
Each point represents a 1 ha forest-stand. Colors indicate the initial height (TCH10) of each stand.
The black line represents the linear regression model.

In the random forest model selection procedure for the dir+tex approach, nine predictor variables
were selected to form the most parsimonious model (Figure A3, Appendix A). ∆TCH10 was identified
clearly as the most important predictor variable, followed by first-order texture variables skewness,
topographic position index and kurtosis. Second-order (GLCM-based) texture metrics were of
minor importance.

The derived models for ∆AGB estimation were evaluated for forests with different heights
(bootstrapping analysis). We explored height gains and losses separately (Figure 5). According to the
R2 values (Figure 5a–c), the linear trend between prediction and observation is weak for stands with
low canopy heights (TCH10 < 10 m) but the R2 values reach around 0.9 for all stands with TCH10
≥ 10 m. However, if losses are regarded separately, stands need to have an initial height ≥ 25 m to show
such high R2 values. If gains are regarded separately, the linear trend is generally less pronounced,
with maximal observed R2 values being around 0.5. Overall, the R2 patterns are similar for the direct,
the indirect and the dir+tex approach with a slight increase from low to high stands.

In contrast to the R2 patterns, RMSE patterns are quite distinct among the approaches. RMSE
values for the direct approach (Figure 5d) are large for low and high stands and have a minimum at
intermediate stand heights around 25 m (40 m in case of losses). For the indirect approach (Figure 5e),
RMSE values stay constant at around 10 t for stands with heights < 30 m and increase slightly for
stands with heights ≥ 30 m. For the dir+tex approach (Figure 5f), the RMSE pattern for gains is similar
to the indirect approach. For losses, the pattern is similar to the direct approach but with smaller
RMSE values.
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Figure 4. The 1:1-plots of estimated ∆AGB versus observed ∆AGB following (a) the direct; (b) the
indirect and (c) the dir+tex approach. Each point represents a 1 ha forest-stand. Colors indicate initial
height (TCH10) of each stand. Black lines represent linear regression models.

Finally, when we look at the systematic biases of the ∆AGB predictions, the indirect approach
does not show any pronounced bias over the entire height range (Figure 5h). The direct approach leads
to considerable systematic biases when estimating ∆AGB from height gains and losses (Figure 5g).
Gains are overestimated by up to 60 t for the lowest forest stands and underestimated by up to −20 t
for the highest stands. Losses are negatively biased by up to −50 t for low stands and positively biased
by up to 20 t for high stands. The biases are around zero for stands around 35 m height. The biases for
the dir+tex approach are higher than the ones for the indirect approach but much lower than the ones
for the direct approach (Figure 5i). Gains are unbiased for stands up to 40 m height. Biases of losses
show a similar but less pronounced pattern to the direct approach.



Remote Sens. 2018, 10, 731 11 of 23
Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 23 

 

 
Figure 5. Prediction statistics of the three approaches plotted over stand heights. R2 (a–c), root mean 
squared error (RMSE, d–f) and bias (g–i) were calculated from 1000 samples in each stand height 
class. Solid lines represent the mean and dashed lines represent the minima and maxima of 100 
bootstrapping replicates. Sampling was done using the full dataset (“All”, black) and using 
exclusively stands with positive (“Gains”, blue) or negative (“Losses”, red) height changes, 
respectively. 

3.2. Theoretical Considerations about the ΔH-to-ΔAGB Relationship 

For a better understanding of the observed biases, in particular, the height-dependent biases of 
the direct approach, we made the following theoretical considerations. For simplicity, we replaced 
TCH10 with H. The problem with assuming a linear relationship between ΔH and ΔAGB is that the 
underlying H-to-AGB relationship is nonlinear and can be described, for example, by a power law 
(Equation (7) with parameters a and b from Equation (5)). The relationship between height change 
and biomass change at any given height can be derived from the first derivative of Equation (7) (see 
Equation (8) and Equation (9)). AGB =  a ∙ Hୠ (7) dAGBdH =  a ∙ b ∙ Hୠିଵ (8) 

∆AGB =  a ∙ b ∙ Hୠିଵ ∙ ∆H (9) 

Equation (9) describes the relationship between ΔAGB and ΔH, which depends also on H (which 
is unknown in case of missing DTM). Thus, the magnitude of ΔAGB is not only dependent on ΔH, 
but also on the absolute height H of a stand. For any given stand height H, the ΔH-to-ΔAGB 
relationship can be expressed with a linear model, but the slope of the linear model is different for 
each possible H (Figure 6a). If we assume that H lies inside the range from 0 to 55 m, the marked area 
in the plot encloses all possible ΔH–ΔAGB combinations (black envelope resembling the shape of a 
propeller). Stands of a given initial height move along power law-shaped trajectories over time (e.g., 
open circles for 10 m and filled circles for 30 m initial height in Figure 6a). The possible gains for a 
certain time interval are constrained by the forest’s growth rate, while losses can be large even within 
short time periods, due to the stochastic occurrence of mortality and disturbance events. For 5-, 10- 
and 25-year intervals, the simulations show the subspace of observable ΔH–ΔAGB combinations 

Figure 5. Prediction statistics of the three approaches plotted over stand heights. R2 (a–c), root mean
squared error (RMSE, d–f) and bias (g–i) were calculated from 1000 samples in each stand height class.
Solid lines represent the mean and dashed lines represent the minima and maxima of 100 bootstrapping
replicates. Sampling was done using the full dataset (“All”, black) and using exclusively stands with
positive (“Gains”, blue) or negative (“Losses”, red) height changes, respectively.

3.2. Theoretical Considerations about the ∆H-to-∆AGB Relationship

For a better understanding of the observed biases, in particular, the height-dependent biases of the
direct approach, we made the following theoretical considerations. For simplicity, we replaced TCH10
with H. The problem with assuming a linear relationship between ∆H and ∆AGB is that the underlying
H-to-AGB relationship is nonlinear and can be described, for example, by a power law (Equation (7)
with parameters a and b from Equation (5)). The relationship between height change and biomass
change at any given height can be derived from the first derivative of Equation (7) (see Equations (8)
and (9)).

AGB = a·Hb (7)

dAGB
dH

= a·b·Hb−1 (8)

∆AGB = a·b·Hb−1·∆H (9)

Equation (9) describes the relationship between ∆AGB and ∆H, which depends also on H (which
is unknown in case of missing DTM). Thus, the magnitude of ∆AGB is not only dependent on
∆H, but also on the absolute height H of a stand. For any given stand height H, the ∆H-to-∆AGB
relationship can be expressed with a linear model, but the slope of the linear model is different for each
possible H (Figure 6a). If we assume that H lies inside the range from 0 to 55 m, the marked area in the
plot encloses all possible ∆H–∆AGB combinations (black envelope resembling the shape of a propeller).
Stands of a given initial height move along power law-shaped trajectories over time (e.g., open circles
for 10 m and filled circles for 30 m initial height in Figure 6a). The possible gains for a certain time
interval are constrained by the forest’s growth rate, while losses can be large even within short time
periods, due to the stochastic occurrence of mortality and disturbance events. For 5-, 10- and 25-year
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intervals, the simulations show the subspace of observable ∆H–∆AGB combinations (colored envelopes
in Figure 6b). The simulation data exceed the black propeller, particularly around the coordinate origin.
The explanation is that the black propeller envelope only applies under the assumption of an exact
power law relationship between H and AGB without variability in the H-to-AGB relationship.
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Figure 6. Theoretical considerations on the relationship between height change and biomass change.
(a) The slopes of the relationship for different initial stand heights. The black envelope covers
all possible change combinations if the initial height is restricted to the range of 0–55 m and the
height-to-biomass relationship is an exact power law. The (open and closed) circles mark trajectories of
different forest stands with a given start height (10 and 30 m); (b) the envelopes of simulated data for
different time intervals and the empirical data from the Barro Colorado Island (BCI) 50 ha plot.

3.3. Results for the 50 ha Plot

The CHMs of the BCI 50 ha plot derived from TanDEM-X data of 2011 and 2015 (Figure A4,
Appendix A) served to test the three ∆AGB estimation models which had been fit with simulation
data. At the 1 ha scale, the mean TCH10 over the 50 ha was 31.0 m (± 3.4 m SD) in 2011 and 30.3
m (±3.9 m SD) in 2015. Distributions of canopy height (TCH10) in both years and canopy height
change (∆TCH10) within the 4 years are given in Figure 7a–c. The distribution of biomass change
(∆AGB) calculated from the inventory data is given in Figure 7d. There was a slight loss in average
canopy height (mean ∆TCH10 = −0.6 m ± 2.6 m SD), but a slight gain in average biomass (mean
∆AGB = 3.3 t ha−1 ± 16.6 t ha−1 SD). When plotted against each other, ∆AGB and ∆TCH10 of the BCI
plot scatter closely around the coordinate origin in Figure 6b (blue points), showing neither strong
gains nor losses.

The TanDEM-X-derived ∆AGB estimates from all three approaches did not show any significant
correlation with the observed ∆AGB derived from the forest inventory data from censuses in 2010
and 2015, with R2 values close to zero (Figure 8 and Table 1). The estimates of ∆AGB from the three
approaches were, however, closely correlated among each other with R2 values ≥ 0.96 (Table 1). Thus,
within the narrow range of height changes observed in the BCI plot over the short time interval of
4 years, the three different approaches produced very similar predictions. However, the observed
height changes do not reflect the changes in AGB adequately, hence, none of the approaches resulted
in ∆AGB estimates that could be confirmed by the ground-truth data.

Figure 9 shows ABG stocks plotted over TCH10 at 1 ha scale for both years. The arrows illustrate
the changes between 2011 and 2015 in both attributes. There is no clear link in the sense that an increase
or decrease in AGB is accompanied with an increase or decrease of canopy height, respectively. On 23



Remote Sens. 2018, 10, 731 13 of 23

hectares, AGB and canopy height changed in the same direction, whereas on the remaining 27 hectares
they changed in opposite directions. This explains the difficulties in estimating ∆AGB.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 23 
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Figure 8. The 1:1 plot of predicted ∆AGB (based on TanDEM-X-derived ∆TCH10) versus observed
∆AGB (based on forest inventory data) at 1 ha scale for the BCI 50 ha plot and the time interval between
2011 and 2015. Colors represent the direct (black); the indirect (red) and the dir+tex (blue) approach.

Table 1. R2 values for the 1:1 relationships of ∆AGB predictions from TanDEM-X data following the
three different approaches vs. inventory-based ∆AGB and against each other.

Direct Indirect Dir+Tex

Inventory 0.006 0.007 0.003
Dir+Tex 0.966 0.946 -
Indirect 0.991 - -
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Figure 9. Aboveground biomass (AGB) plotted over canopy height (TCH10) for the two different years.
Each point represents 1 ha of the BCI 50 ha plot. Arrows represent the change in both attributes over
the 4-year interval. Colors of the arrows indicate whether AGB and TCH10 changed in the same (blue)
or opposite (red) direction.

4. Discussion

Our results provide insight into the relationship between canopy height and biomass change over
time for a tropical lowland rainforest. Understanding this relationship is crucial to quantify forest
carbon losses and gains with remote sensing data. Using forest simulations, including disturbances,
we could produce a large dataset covering a wide range of stand structures and successional stages.
With this dataset, we were able to compare the performance of three different approaches to estimate
biomass change.

4.1. Performance of the Approaches

In comparison, the indirect approach performed better than the direct approach. The former
led to more precise and unbiased ∆AGB estimations over the full range of possible height changes.
Nevertheless, looking only at the statistics for the whole dataset, both approaches showed high R2

values. However, the colors indicating the initial height in the 1:1-plot (Figure 4a) and the bootstrapping
results (Figure 5) reveal that the direct approach only worked well in a window of forest heights
around 30 m, while for low and high stands it produced strongly biased results. Analyzing gains
and losses further revealed the asymmetry in the ∆H–∆AGB relationship, due to slow, continuous
growth and abrupt, stochastic mortality, and its effect on statistics that quantify prediction accuracy.
The biases of the direct approach for low and high stands can be explained by the nonlinearity of the
H–AGB relationship, leading to different slopes in the ∆H–∆AGB relationship, depending on stand
height. The development of an enhanced direct approach, which avoids such bias and allows accurate
estimations, even in the absence of information about H, was the goal behind the dir+tex approach.
The textural information should compensate for the missing information about H. It was shown that
estimations of ∆AGB from the dir+tex approach were nearly as unbiased and of similar accuracy to
those from the indirect approach.

In this study, we did not test the robustness of the approaches with regard to the time interval,
that is, whether it is possible to calibrate an approach based on observations over a certain time interval
and then apply it for predictions over a different time interval. For the indirect approach, the interval
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is irrelevant, because it is based on two independent biomass stock estimates. For the direct approach,
estimates depend on the slope of the ∆H–∆AGB relationship, which was similar for 5-, 10- and 25-year
intervals (9.38, 9.99, 10.51). In the dir+tex approach, the only variable depending on the interval is
∆H (like in the direct approach), while all texture variables only describe the state of the forest at the
initial point of the interval. Hence, we expect all three approaches to be fairly robust for variable
time intervals. The length of the time interval does, however, influence the frequency distribution of
observable changes, with large gains being only possible over longer time intervals and large losses
being more frequent over longer time intervals (Figure A2).

4.2. Comparison with Other Studies

In an earlier study comparing the indirect and direct approach on BCI, Meyer et al. [28] used
data acquired in 1998 with the Laser Vegetation Imaging Sensor (LVIS, large footprint) and discrete
return small footprint lidar data from 2009 (11-year interval). They could not find a direct ∆H–∆AGB
relationship at the 1 ha scale (R2 < 0.1) and using the indirect approach they reported large estimation
uncertainties. They considered the different sensor types as a major reason for the missing direct
∆H–∆AGB relationship. In another study using data from two successive LVIS campaigns in 1998 and
2005 (7-year interval) at La Selva, Costa Rica, Dubayah et al. [27] found a direct ∆H–∆AGB relationship
(R2 = 0.65, RSE = 10.54 t ha−1 or excluding secondary forests R2 = 0.5, RSE = 8.86 t ha−1) using a
two-predictor model based on changes in height quantiles ∆RH50 and ∆RH100. The statistics of
that relationship are in the order of magnitude of what was observed for gains in our simulations.
Several comparative studies in boreal [24,75] and subtropical [23] forests reported ∆AGB estimations
to be more accurate when obtained from the direct approach as opposed to the indirect approach.
Others, covering tropical Asia [76] or temperate North America [25], only tested the indirect approach.
In two studies, we found scatterplots that indicate a different slope in the ∆H–∆AGB relationship for
secondary (disturbed) sites than for old-growth (undisturbed) sites (Figure 8 in [27] and Figure 9F
in [25]). This is in agreement with our simulation results and the explanation given in Figure 6.

As soon as the goal is to cover a wide range of successional stages, including disturbed stands,
the nonlinear H–AGB relationship leads to H-dependent biases in the linear ∆H–∆AGB relationship.
The condition for an unbiased direct approach would be that the underlying H–AGB relationship
is linear. In past studies, the direct approach has worked better in boreal sites (coniferous forests)
and worse in tropical sites (broadleaved forests). Hence, the differences in crown shapes and forest
structure between those forest types might lead to a more linear H–AGB relationship in coniferous
forests, making them more suitable for the direct approach.

Recently, there have been attempts to generalize the height-to-biomass relationships, accounting
for differences between geographical regions and forest types [15,77]. These relationships are, however,
not linear, but power laws. Thus, the linear relationship that has been found in some studies in the
past might be an effect of either small plot sizes, causing large variability [30,78], or a limited sampling
of successional stages, not covering the full spectrum of H–AGB combinations.

A linear H–AGB relationship is a strict criterion for the application of a method. Many forests may
not fulfill this criterion and for large-scale mapping of AGB changes (from height changes), a method
independent of such a requirement should be preferred. With the proposed dir+tex approach, we found
a method that works independently of knowledge about absolute canopy height. Biomass changes
are estimated based on height change and local canopy texture at the initial point in time. Predictions
showed similar accuracies to the indirect approach. Biases were somewhat larger than for the indirect
approach but much smaller than for the direct approach. This texture-assisted approach could therefore
be applied to multitemporal DSM data for which no exact underlying DTM is available and hence
CHM creation is impossible. This applies to global DSMs, originating from different spaceborne sensor
systems (SRTM, TanDEM-X) [29–31] and to DSMs derived photogrammetrically from digital stereo
imagery [37,79].
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4.3. Outcome of TanDEM-X Application

Despite the good performance of the three approaches on the simulation dataset, none of them
were able to produce accurate predictions of biomass change for the BCI 50 ha plot, based on canopy
height change derived from TanDEM-X data. The main difference between the simulated data and the
TanDEM-X data was that the forest in the simulations was exposed to a disturbance regime causing
dramatic changes in canopy height and biomass, while no such disturbances occurred on the BCI
plot within the observed time interval. Thus, the changes observed on the BCI plot are only a subset
of possible changes for a 5-year interval (Figure 6b). BCI only represents old-growth dynamics with
small changes in canopy height and biomass, while the simulations cover the entire range of possible
changes. We suspect that there are two main reasons for the difficulties in predicting ∆AGB from
TanDEM-X-derived ∆TCH10 on the BCI plot: (i) the variability unexplained by the prediction models
and (ii) the uncertainty in canopy height estimates.

Regarding the unexplained variability (i), the bootstrapping results tell us that for an old-growth
forest, like on the BCI plot, with an average height TCH10 = 30 m, the average estimation error for
∆AGB over a 5-year interval is around 10 t ha−1 for all three approaches (e.g., for the indirect approach
RMSE = 9.5 t ha−1). This is a high uncertainty, given that the standard deviation of ∆AGB from the
BCI inventory was only 16.6 t ha−1 and the mean ∆AGB was only 3.3 t ha−1. The high R2 values in the
direct ∆H–∆AGB relationship of the simulated data were caused by the large losses. Since such losses
did not occur on BCI, the R2 for the BCI plot should be expected to be much lower. In the simulations,
the average R2 for gains only was 0.35 for a 30 m high stand. Even this value can be expected to be too
optimistic for the BCI plot, as the simulated gains include areas of recovery after disturbances, which
were also not present in the BCI plot. Thus, the intrinsic variability in canopy height and biomass
alone leads to a very weak ∆H–∆AGB relationship for old-growth forests. The simulations did not
account for the uncertainty in canopy height estimates from remote sensing, which is yet another factor
influencing the results from the BCI plot.

Uncertainty in X-band-derived tropical forest heights (ii) has been reported to lie in a range from
1 to 6 m [72,80]. The precise numbers may vary depending on the sensor configuration, the height
metrics and the spatial scale considered. In our study, the main limitation of the TanDEM-X-derived
heights arose from the suboptimum spatial baselines available, that were practically too large for
the forest heights within the study site, leading to a low interferometric coherence (Figure A5) and
to rather inaccurate forest heights. Note that the limited penetration capability at the X-band was
circumvented by using lidar-derived topographic information. The observed height changes on the
BCI plot were small (standard deviation of 2.6 m for ∆TCH10 at hectare-scale and mean ∆TCH10 of
−0.6 m) in comparison to the large uncertainty.

Thus, the two reasons—(i) variability in the ∆H-∆AGB relationship and (ii) uncertainty in canopy
height estimates—lead to a low signal-to-noise ratio and explain why the presented approaches are
insufficient for the detection of small changes in AGB in an undisturbed old-growth tropical rainforest.
Further sources of uncertainty are the variability in tree geometry at the individual level, which is
simplified in the forest model by allometric equations, as well as temporal mismatch (between census
and remote sensing acquisition) errors in the census data and geolocation errors.

4.4. Perspectives

The presented approaches to estimate biomass changes at 1 ha scale based on 10 m resolution
vegetation height changes are best suited for monitoring changes due to disturbances, degradation and
growth. They could serve to map biomass changes caused by these processes from TanDEM-X data at
a regional scale. They cannot detect small changes associated with old-growth forest dynamics. Future
research efforts should focus on reducing the uncertainty in biomass change estimates. Uncertainty
in the prediction models can be reduced—for example, by considering data at finer horizontal
resolution, the full vertical signal distribution, the multitude of variables that can describe forest
structure and individual-tree-based approaches [26]. The uncertainty in height estimations due to the
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variability in the remote sensing data can be reduced by fitting trends to dense time series of multiple
acquisitions [80]. Future research should also try to disentangle the processes and compartments
behind biomass dynamics (including also belowground biomass) by quantifying the contributions
of wood productivity, mortality, foliage and fine root turnover [81]. Upcoming spaceborne missions
(e.g., GEDI, BIOMASS, Tandem-L) and the increasing data collections from airborne campaigns (lidar,
SAR, photogrammetry) will provide the measurements to advance in this direction. Data fusion
will help to use the available data most effectively, with each individual mission contributing to
a different aspect (e.g., by providing detailed vertical foliage distributions and ground elevation
at points in space (GEDI), or wall-to-wall measurements of SAR backscatter from woody biomass
components (BIOMASS, Tandem-L)). Forest models will help to understand and interpret new remote
sensing observations.

5. Conclusions

In this study, we analyzed different approaches for estimating aboveground biomass change in
a tropical rainforest from observed changes in mean top-of-canopy height. With forest simulations,
it was possible to generate and analyze data covering a much wider range of changes than is usually
available from field data. Goodness-of-fit statistics (R2, RMSE and bias) for the ∆AGB estimations
were computed over the full range of possible stand heights, also demonstrating an asymmetry
between gains and losses. It was found that a direct, linear ∆H-to-∆AGB relationship only provides
accurate predictions under limited conditions and can lead to large prediction biases when applied
over a wide range of stand heights. The indirect approach, which builds on the H-to-AGB stock
relationship, can be used to avoid such biases, but it is dependent on accurate measurements of
canopy height. A third approach, based on random forest machine learning, was found to provide
similar prediction accuracies to the indirect approach. The latter did not require canopy height as
input. Instead, canopy height change in combination with a set of canopy texture metrics served as
predictors. The simulation-derived approaches were not sensitive enough to detect small biomass
changes based on TanDEM-X data for a 50 ha plot in Panama. Further research is required to improve
our ability to detect even small changes in biomass with remote sensing. The presented approaches
with their accuracies of around ±13 t ha−1 are nevertheless well suited for monitoring of forest biomass
changes at large scales. In summary, the study demonstrated the potential of using a forest model
for improving the understanding and interpretation of multitemporal remote sensing data and for
evaluating different approaches.
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Figure A2. Simulated data showing the ∆TCH10-to-∆AGB relationship for (a) a 10-year and (b) a 25-year
time interval between first and second measurement. Each point represents a 1 ha forest-stand. Colors
indicate the initial height (TCH10) of each stand. The black line represents the linear regression model.
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