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Abstract: To better reduce image speckle noise while also maintaining edge information in synthetic
aperture radar (SAR) images, we propose a novel anisotropic diffusion algorithm using weighted
Euclidean distance (WEDAD). Presented here is a modified speckle reducing anisotropic diffusion
(SRAD) method, which constructs a new edge detection operator using weighted Euclidean distances.
The new edge detection operator can adaptively distinguish between homogenous and heterogeneous
image regions, effectively generate anisotropic diffusion coefficients for each image pixel, and filter
each pixel at different scales. Additionally, the effects of two different weighting methods (Gaussian
weighting and non-linear weighting) of de-noising were analyzed. The effect of different adjustment
coefficient settings on speckle suppression was also explored. A series of experiments were conducted
using an added noise image, GF-3 SAR image, and YG-29 SAR image. The experimental results
demonstrate that the proposed method can not only significantly suppress speckle, thus improving
the visual effects, but also better preserve the edge information of images.

Keywords: synthetic aperture radar; speckle filtering; Euclidean distance; edge detection; anisotropic
diffusion

1. Introduction

Image speckle noise, caused by synthetic aperture radar (SAR) coherent imaging systems,
is unavoidably distributed in SAR images. In an SAR image, speckle noise presents a granular
appearance, which masks details and creates difficulties for both visual and automatic interpretations
of SAR data [1]. Therefore, developing an effective method of image speckle reduction is
critical for facilitating many SAR image post-processing tasks, such as information extraction and
target identification.

Many filters have been developed to reduce SAR image speckle noise, and they can be divided
into two main categories. The first type of speckle suppression is based on multi-look processing
technology during imaging process [2]. In multi-look processing, several sub-look images derived
from a corresponding sub-aperture imaging system are averaged separately to suppress speckle.
This averaging process is simple, and is effective for suppressing speckle. However, a significant
drop in resolution is a non-negligible drawback of multi-look processing. To overcome this drawback,
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a second, more widely used approach, is applied after the imaging process. This post-imaging filtration
primarily includes spatial filtering, transform domain filtering, and anisotropic diffusion filtering.

The best known spatial image filters include the Lee filter [3], Kuan filter [4], Frost filter [5],
and their improved, corresponding filters [6–10]. These spatial filters perform well at removing
the effects of noise; however, they are heavily affected by the choice of the local window size and
orientation [1]. A good speckle filter should possess properties of speckle reduction as well as feature
preservation. Transform domain filters, with wavelet transform [11,12], curvelet transform [13,14],
and shearlet transform [15,16] as the main filtration methods, can effectively suppress high-frequency
noise, and take into account the homogeneous area of speckle suppression, while also preserving edge
details. However, to accomplish this, the algorithm first needs to decompose and reconstruct both the
spatial domain and the transform domain. The operational and computational complexities are large,
and the pseudo-Gibbs phenomenon is easily formed at the same time. The anisotropic diffusion filter,
which is based on partial differential equations (PDE), can better reduce speckle noise and preserve
edge information. Many filters by anisotropic diffusion have been proposed to-date, and they are
widely used for image filtering, edge detection, and image segmentation.

Perona and Malik [17] proposed a non-linear PDE, the P-M method, for smoothing images on a
continuous domain. The P-M method uses a gradient operator to identify image gradient changes
caused by noise and image edges. It then removes small gradient changes caused by noise using
nearest neighboring weighted averaging, while retaining the large gradient changes caused by edges.
This method was the first to achieve good results using anisotropic diffusion to smooth image noise
(i.e., additive noise). However, applying the P-M method to SAR images with multiplicative speckle
noise, makes it more difficult to obtain the desired effect. Additionally, when the image is contaminated
by strong noise, the gradient change caused by the noise may be larger than that caused by the image
edge. In this case, the gradient as an edge detection operator may cause the edge to be blurred or the
noise suppression to be insufficient. To solve this problem, Yu and Acton [18] proposed the speckle
reducing anisotropic diffusion (SRAD) algorithm, and successfully expanded the SRAD method to
SAR imaging. The SRAD method is a modification of the P-M method that can improve the edge
detection accuracy by incorporating the instantaneous variation coefficient into an improved edge
detection operator. The accuracy of edge detection is the key to anisotropic diffusion filtering [19].
Aja-Fernández and Alberola-López [20] proposed a detail preserving anisotropic diffusion (DPAD)
algorithm that further improves upon the SRAD edge detection operator by using a different diffusion
function (based on Kuan’s filter). Liu et al. [21] have since proposed an adaptive window anisotropic
diffusion (AWAD) algorithm capable of adaptively adjusting the size and direction of the window
according to the image structure, which can better detect the edge information of the image.

From the SRAD method described and its related improvements, it can be seen that the accuracy
of edge detection in the anisotropic diffusion filtering method has an important influence on noise
suppression results. However, edge detection in the above methods mainly relies upon the estimation
of the mean and variance of homogeneous regions. This is of particular importance because it is very
difficult to accurately estimate the variance and mean value of the homogeneous regions caused by
distributed speckle noise. To solve this problem, Li et al. [22] proposed an Image Entropy Anisotropic
Diffusion (IEAD) method based on image entropy. This method uses image entropy to construct
a new edge detection operator, which can circumvent the need for mean and variance estimates,
thereby improving edge detection capability. However, to obtain accurate image entropy values,
large sample sizes are needed, yet if sample sizes are too large, the possibility of heterogeneous
regions will increase; this makes the exact number of samples needed more difficult to determine.
To further address these above problems, the key is to develop a more efficient edge detection operator.
Zhang Chuang et al. [23] used Euclidean distances to effectively detect edge information of images,
providing a new possibility for constructing an edge detection operator. To overcome the limitations
of the anisotropic diffusion-based de-noising methods described above, and combined with the
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application of Euclidean distance edge detection, a new speckle reduction method based on weighted
Euclidean distance anisotropic diffusion (WEDAD) is proposed.

2. Materials and Methods

2.1. Speckle Suppression Based on Anisotropic Diffusion

2.1.1. Multiplicative Speckle Model

Speckle is generally assumed to be a typical multiplicative noise that can seriously diminish the
quality of SAR images [10,24,25]. The effect of speckle noise on SAR data can be described as:

IO(x, y) = IT(x, y) · N(x, y) (1)

where (x, y) is the pixel position, IO is the observed image noise, IT is the noise-free signal, and N is the
multiplicative noise that is assumed to be distributed as a Gamma distribution with a mean (x) = 1 [24].

2.1.2. Speckle Reducing Anisotropic Diffusion

SRAD anisotropic diffusion can be modeled as follows:

∂I(x, y; t)/∂t = div[c( f ) · ∇I(x, y; t)]
I(x, y; 0) = I0(x, y), (∂I(x, y; t)/∂n)|∂B = 0

(2)

where t is time, I0 is the initial noisy image, div is the divergence operator, ∇ is the gradient operator,
∂B is the boundary of B, n is the unit vector perpendicular to the boundary, and c(f ) is the diffusion
coefficient (see Equations (3) and (4)).

The diffusion coefficient is the core of anisotropic diffusion that determines the diffusion scale. It is
an “edge-stopping” and non-negative, monotonically decreasing function, which can be alternatively
expressed as:

c( f ) =
1

1 + [ f 2(x, y; t)− f02(t)]/T
(3)

or
c( f ) = exp

{
−
[

f 2(x, y; t)− f0
2(t)

]
/T
}

(4)

where T is the threshold of the diffusion coefficient, f 0(t) is the coefficient of variation over a
homogeneous area at the time, and f (x, y; t) is the instantaneous variation coefficient, which can
be estimated using the following equation:

f (x, y; t) =

√√√√ (1/2)(|∇I|/I)2 − (1/42)(|∇2 I|/I)2

[1 + (1/4)(|∇2 I|/I)]2
(5)

where ∇2 the Laplace operator.
As can be seen in Equations (3) and (4), when f 2(x, y; t) − f 0(t) is far greater than the threshold of

diffusion coefficient T, the value of c(f ) tends to zero, and the diffusion stops. When f 2(x, y; t) − f 0(t) is
far less than T, the value of c(f ) approaches 1, and diffusion is a complete filter. Therefore, the selection
of the threshold has an effect on speckle reduction. The formula for calculating the threshold given in
the SRAD algorithm is as follows:

T = f0
2(t) · (1 + f0

2(t)) (6)

where

f0(t) =
√

var[z(t)]
mean[z(t)]

(7)



Remote Sens. 2018, 10, 722 4 of 20

where var[z(t)] and mean[z(t)] are the mean and variance of homogeneous regions at time t, respectively.
To automatically determine f 0(t), the estimated formula is as follows:

f0(t) ≈ f0 exp(−ct) (8)

where c is a constant, f 0 value of 1/
√

N.

2.1.3. Improved Algorithm Based on SRAD

Aja-Fernández and Alberola-López [20] proposed the DPAD algorithm, which uses the Kuan
filter coefficient instead of the original diffusion coefficient of the SRAD algorithm; it is as follows:

c( f ) =
1 + 1/ f 2(x, y; t)
1 + 1/ f 2(u; t)

(9)

where
f 2(u) = σ2/u2 (10)

f 2(x, y) = var[I(x, y)]/mean[I2(x, y)] (11)

where σ2 and u denote the variance and mean of the noise, respectively. It should be noted that the
estimation of the noise variation coefficient f 2(u) has a critical influence on the result of the algorithm.

Liu et al. [21] proposed the AWAD algorithm to improve speckle reduction by adaptively changing
the size of the filter window on the basis of SRAD. The height and width of the filter window can be
obtained using Equations (12) and (13):

h =
a

g1 + 1
(12)

w =
a

g2 + 1
(13)

where h and w denote the height and width of the filter window, a is the scale parameter, and g1 and g2

denote the maximum and minimum direction derivatives of pixel.
Additionally, the AWAD algorithm defines a new diffusion function:

c( f ) =
1√

1 + ( f (x, y; t)− T)2
(14)

Li et al. [22] proposed an IEAD algorithm to introduce the concept of image entropy into the
image edge detection to improve the instantaneous variation coefficient of SRAD as follows:

f (x, y; t) = − ∑
t∈η(x,y)

P(x, y; t) log P(x, y; t) (15)

where η(x, y) is the neighborhood point of pixel (x, y), and P(x, y; t) represents the ratio of the number
of current pixel values to the total number of pixels in the sliding window.

2.2. Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion

Euclidean Distance Edge Detection

Euclidean distance is a widely used metric across many disciplines; in the field of image processing,
it represents a mathematical expression of the approximate degree between two pixels. The smaller
the Euclidean distance, the higher the similarity between the two entities being compared; conversely,
the larger the Euclidean distance, the lower the degree of similarity. Additionally, when the Euclidean
distance between two regions is used as a similarity description, rather than the Euclidean distance
between two pixels, the differences among pixels will be magnified [23]. This has the benefit of
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making heterogeneous region in the image area easier to find, thus providing an opportunity for the
introduction of Euclidean distance in the anisotropic diffusion. The Euclidean distance between two
regions is as follows:

d =
h

∑
α=−h

w

∑
β=−w

|Ik(xk + α, yk + β)− Il(xl + α, yl + β)|2 (16)

where, d is the Euclidean distance of two pixels, h and w denote the calculation area window height
and width of 1/2, and k and l denote the kth region and the lth region, respectively.

To further describe the degree of similarity between a given pixel relative to its neighbors,
the pairwise Euclidean distances between the pixel and every other pixel in the neighborhood is
calculated separately according to Equation (16). The average value of the sum of all pairwise Euclidean
distances of all the pixels in the region may then be taken and used to define a new edge detection
operator, which serves as the approximate description of the pixel point within the surrounding
neighborhood. The calculation for the Euclidean distance edge detection operator is shown in Figure 1,
and the specific steps are as follows:
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Figure 1. Euclidean distance edge detection operator calculation.

Step 1: As shown in Figure 1, create a processing window (the window size is (2M + 1)× (2N + 1))
at the image pending calculation point (xN, yM).

Step 2: In the processing window, create a center window (the window size is m × n and m × n is
smaller than (2M + 1) × (2N + 1) at the image pending calculation point (xN, yM).

Step 3: In the processing window, create the m × n size of the corresponding moving window
centered on the upper left starting pixel (x0, y0).

Step 4: According to Equation (16), calculate the Euclidean distance between the center window
and the corresponding moving window.

Step 5: In the processing window, from left to right and from top to bottom, move the
corresponding moving windows sequentially by pixels, and refer to Step 4 to calculate the Euclidean
distances of the center window and the corresponding moving windows one by one.

Step 6: Calculate the average of the Euclidean distances of all the regions obtained in the processing
window (see Equation (17)) and assign it to the image pending calculation point (xN, yM).
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D =
1

(2N + 1)(2M + 1)

2N

∑
i=0

2M

∑
j=0

sqrt
(

d(i,j)
)

(17)

Step 7: The calculation of the complete pixel of the entire image is complete (i.e., the edge detection
operator has now been computed).

2.3. Weighting Methods

Section 2.2 describes the use of the Euclidean distance between regions as an edge detection
operator. In the windowing process, the effect of each pixel in the window on the center point pixel
is considered to be equivalent, and that is not, in fact, the case. Since the detection of the edge point
depends on its neighbors, the contribution of the point-to-edge detection that is closer to the position
of the edge point is greater. Gaussian weighting and non-linear weighting can be applied to weight
each point in the window.

2.3.1. Gaussian Weighting

The Gaussian weight function is defined as follows:

wG =
1
N

e−
d2

h2 (18)

where d is the weighted position distance from the center, h controls the exponential function decay
speed, and N plays a normalizing role. Taking a 5 × 5 window as an example, the Gaussian weights of
the points in the window are as shown in Figure 2a.

2.3.2. Non-Linear Weighting

The non-linear weight function is defined as follows:

wNL =
1
N
·max

{(
1−

∣∣∣∣ d
σ

∣∣∣∣), 0
}

(19)

where

σ =

√
m× n + 1√
m× n− 1

(20)

where m and n denote the size of window. Taking a 5 × 5 window as an example, the non-linear
weights of the points in the window are as shown in Figure 2b.
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(b) non-linear weight.

From Figure 2, it can be seen that both the Gaussian weighting method and the non-linear
weighting method yield higher weights to the regions closest to the center point. Taking a 5 × 5 window



Remote Sens. 2018, 10, 722 7 of 20

as an example, the non-linear weighted center point weight is 0.3903, which is greater than the Gaussian
weighted center point weight (0.3183). However, in the farther window regions, the Gaussian weight
is slightly higher than the non-linear weight.

We can apply two weighting methods to calculate the Euclidean distance edge detection operator.
In Step 6 of Euclidean distance edge detection operator calculation, the Euclidean distances from
different center points (Calculated according to Equation (16)) contribute different computational
weights to the edge detection operators. The closer to the center point, the greater the contribution to
the Euclidean distance edge detection operator calculation. Applying Gaussian weights and non-linear
weights, Equations (16) and (17) can be updated as follows:

d =
h

∑
α=−h

w

∑
β=−w

w2
(α,β)|Ik(xk + α, yk + β)− Il(xl + α, yl + β)|2 (21)

D =
2N

∑
i=0

2M

∑
j=0

w(i,j)sqrt
(

d(i,j)
)

(22)

where w(i,j) denotes the weight at the point (i, j) in the processing window using either the Gaussian
weighting method or non-linear weighting.

2.4. Method and Processes

The method of WEDAD still uses PDE of SRAD; the main difference compared with SRAD lies in
the improvement of the edge detection operator. The WEDAD method uses the Euclidean distance
to measure the similarity between pixels, and then achieves an anisotropic diffusion edge detection
operator. The novel edge detection operator can be described as:

fx,y = Dx,y (23)

where x and y are the current pixel position, and Dx,y is the Regional Euclidean distance calculated
according to Equations (21) and (22) at position of (x, y) in the SAR image.

The diffusion threshold Tx,y can be obtained as follows:

Tx,y =
2N

∑
i=0

2M

∑
j=0

wx,y Ii,j (24)

The diffusion function is:
c( f ) =

1√
1 + ( fx,y − Tx,y)

2
(25)

The essence of the anisotropic diffusion algorithm is to solve partial differential equations.
The solving method employed here is the Jacobi iterative algorithm [18], where ∆t and ∆h are small
enough time steps and space steps, respectively. The discrete coordinates of time and space are thus
denoted as follows:

t = n∆t , n = 0, 1, 2, . . .
x = i∆h , i = 0, 1, 2, . . . , H − 1
y = j∆h , j = 0, 1, 2, . . . , W − 1

(26)

This method is applied as follows:
Step 1: Calculate the value of the edge detection operator f of the image pixel-by-pixel according

to Equation (21), Equation (22), and Equation (23);
Step 2: Calculate the anisotropic diffusion threshold T according to Equation (24);
Step 3: Then calculate the diffusion coefficient c(f ) of image pixels one-by-one according to

Equation (25);
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Step 4: Next calculate the divergence of {f } c(fx,y) ∇I(x, y; t) in the PDE (Equation (2)), the formula
is as follows:

dn
x,y =

1
∆h2

[
cn

x+1,y(In
x+1,y − In

x,y) + cn
x,y(In

x−1,y − In
x,y) +cn

x,y+1(In
x,y+1 − In

x,y) + cn
x,y(In

x,y−1 − In
x,y)
]

(27)

Step 5: Finally, calculate the value of the differential equation, which is approximated as follows:

In+1
x,y = In

x,y + k · ∆t
4

dn
x,y (28)

where k is the adjustment coefficient, which effectively adjusts the filter effect. The adjustment
coefficient has been previous described [26,27].

2.5. Evaluation Methods

To evaluate the effect of speckle suppression, the following evaluation indices were used in
the experiment.

1. Equivalent Number of Looks (ENL) [28,29]. ENL reflects the degree of speckle suppression,
and the formula is as follows:

ENL = E2/var (29)

where E and var are the mean and the variance, respectively, of the image homogeneous area after
speckle suppression. A larger ENL indicates that the noise suppression effect is better.

2. Radiate resolution (RS) [30] is a measure of the grayscale resolution capability of SAR systems.
It quantitatively represents the ability of an SAR system to distinguish target backscatter coefficients.
A smaller RS indicates that the noise suppression effect is better, and the formula for RS is as follows:

RS = 10 log10

(
1 +

1√
ENL

)
(30)

3. In a homogeneous region, the ratio of the standard deviation of the image to the mean value is
an accurate measure of the intensity of speckle noise. When this value, called the speckle noise index
(SNI) [31], is smaller, it indicates that the noise suppression effect is better. SNI can be expressed by
the formula:

SNI =
√

var/E (31)

4. Normalized Mean (NM) [2] is the ratio of the filtered mean value of a region to the average
value of the same region before filtering. The formula for NM is as follows:

NM =
EAF
EBF

(32)

where EAF and EBF denote the average value after and before filtering in the same region, respectively.
NM is a useful criterion for evaluating whether or not a filter provides an unbiased estimate. The closer
the normalized mean is to 1, the closer it is to an unbiased estimate, which means that the original
information is well-preserved.

5. The edge keeping index (EKI) [29] is used to measure the ability of the speckle suppression
method to preserve the edges of the image. The formula is as follows:

EKI =
EGVAF
EGVBF

(33)

where EGVAF and EGVBF denote the gradient value of edge region after and before filtering in the
same region, respectively. The closer the edge keeping index is to 1, the better the original information
has been preserved.
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3. Results and Discussion

3.1. Experiment on an Image with Added Speckle Noise

To verify the reliability and validity of the proposed algorithm, multiplicative noise was first
added to an original optical image (Figure 3), and each de-noising method based on anisotropic
diffusion was applied. The de-noising algorithms were: SRAD, DPAD, AWAD, IEAD, and WEDAD,
respectively. In the de-noising processing, the time step was 0.1, and the number of iterations was
50 [22]. The diffusion coefficient in the SRAD model was Equation (3), where f 0 = 1, and c = 1/6.
In the DPAD method, the sliding window size was 5 × 5, and the noise variation coefficient estimation
used an averaging estimation operator [20]. In the AWAD method, the sizes of the selected windows
were 3 × 3, 5 × 3 and 3 × 5, respectively, depending on the size of the direction gradient. In the
IEAD method, the window size was 5 × 5. In the WEDAD method, the window size of the Euclidean
distance edge detection operator calculation was 5 × 5, and Gaussian weighting with 5 × 5 window
size was used. Finally, the adjustment coefficient k was 1.0. The experimental results are shown in
Figure 4.
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From the experimental results, it can be seen that the image filtered by SRAD in Figure 4b has
a smoother effect; however, the de-noising image becomes relatively blurry. This is because the
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instantaneous coefficient of variation in the algorithm is easily interfered with by strong noise, and this
affects the accuracy of edge detection. Compared with the SRAD algorithm, the DPAD algorithm
improves the noise variation coefficient estimation method, and is also effective at improving the edge
maintenance capability, as shown in Figure 4c. The AWAD algorithm adaptively controls the size and
direction of the window. The IEAD algorithm uses image entropy to invert the homogenous area and
the heterogeneous area. Both of them can improve the edge detection ability, and can obtain a relatively
high edge retention during the de-noising process, as shown in Figure 4d,e. The WEDAD algorithm
uses weighted Euclidean distance values to reflect the pixel differences and adaptively completes the
edge detection, obtaining better edge detection results. The visual effect of this method is the best of
those tested, as shown in Figure 4f.

To better demonstrate the capabilities of the algorithm proposed in this paper, we used
five objective evaluation criteria (see Section 2.5) to reveal the advantages of the WEDAD algorithm.
Table 1 shows the objective evaluation values of each de-noising algorithm for noisy images.

Table 1. Objective evaluation of different de-noising methods.

Methods ENL RS (dB) SNI NM EKI

Ideal Value - - - 1.000 1.000
None 6.859 1.405 0.382 - -
SRAD 12.345 1.088 0.285 0.754 0.741
DPAD 11.718 1.113 0.292 0.753 0.732
AWAD 11.672 1.115 0.293 0.752 0.755
IEAD 11.816 1.109 0.291 0.753 0.753

WEDAD 16.403 0.958 0.247 0.784 0.780

From the objective evaluation criteria shown in Table 1, it can be demonstrated that the WEDAD
method shows better performance on five evaluation criteria. The value of ENL of the selected
homogeneous area using the WEDAD was 16.403, which is 2.39 times greater than the ENL with no
de-noising method, and it is much higher than the value of ENL of the same homogeneous area using
the other four algorithms. The WEDAD method also has a lower RS (0.958 dB) and SNI (0.247) than
the other four algorithms. Therefore, combining the above three objective evaluation criteria (ENL,
RS, and SNI), it can be concluded that the WEDAD method has a significantly better effect on speckle
suppression than the other four algorithms. For the other two objective evaluation criteria (NM and
EKI), the WEDAD also exhibited higher values, which further indicates that it can better preserve
edge information than the other four algorithms. Finally, when comparing the value of ENL with no
de-noising method, all five methods have a higher value, which clearly shows that all of these methods
can effectively suppress speckle to some degree. Among them, the SRAD method has the second
largest ENL, which indicates it can better reduce speckle than DPAP, AWAD, and IEAD. However,
the EKI using SRAD is lowest, and therefore the edge retention performance of SRAD is the worst.
There is no significant difference in the speckle suppression capabilities of DPAD, AWAD, and IEAD.
In these three methods, IEAD can better reduce speckle, and AWAD can better keep edge information.

To further demonstrate the performance capabilities of each method, we obtained the ratio images,
as mentioned in [28], as the pointwise ratio between the original SAR image and de-noised SAR images.
Given a perfect de-noising, the ratio image should contain only speckle [25,28]. However, geometric
structures and details correlated to the original image were found, indicating that not only noise but
also some information of interest is removed. To better show the difference in the effectiveness of each
algorithm, we enhanced the true ratio image by 10 times (as is shown in Figure 5).
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Figure 5. The ratio images generated by different de-noised methods: (a) Ratio image between the
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It can be seen in Figure 5 that the 10× magnified ratio images generated by the above five speckle
suppression methods all include geometric structures or details correlated to the original image,
which indicates that all of these de-noising methods destroy the original edge information of the
image to some degree. In fact, edge retention and speckle removing are effectively opposite processes.
At present, there is no speckle suppression method that completely maintains edge information.
However, the effect of preserving the edge was not the same across all methods. Taking the red
box region 1 in the image as an example, we may compare Figure 5a (an ideal ratio image) with
Figure 5f, which used WEDAD, and has very weak geometric structures and details in spite of the high
magnification. Conversely, Figure 5b–e all exhibit strong geometric structures and details compared to
both Figure 5a,f. These results further suggest that WEDAD has a better de-noising effect than the
other four methods.

3.2. Experiment on Actual SAR Images

In addition to the independent validity assessment described above, we also tested the proposed
algorithm in actual SAR image de-noising processing. GF-3 and YG-29 images were selected, as is
shown in Figure 6. Figure 7 shows the resulting de-noised GF-3 images using different noise
suppression algorithms. The partial enlargements from Figure 7 is shown in Figure 8. Ratio images
generated by different de-noised methods for the GF-3 SAR images are shown in Figures 9 and 10.
Figure 11 shows the resulting de-noised YG-29 images using different noise suppression algorithms.
The partial enlargements from Figure 11 is shown in Figure 12. Ratio images generated by different
de-noised methods for the YG-29 SAR images are shown in Figure 13. Tables 2 and 3 show the objective
evaluation values of each de-noising algorithm for noisy images. The relevant parameter settings of
each algorithm are consistent with Section 3.1.
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Figure 7. The GF-3 images using different de-noising methods: (a) No filtering method; (b) SRAD;
(c) DPAD; (d) AWAD; (e) IEAD; (f) WEDAD.

Table 2. Objective evaluation of different de-noising methods on GF-3 synthetic aperture radar
(SAR) image.

Methods ENL RS (dB) SNI NM EKI

Ideal Value - - - 1.000 1.000
None 3.631 1.832 0.525 - -
SRAD 17.822 0.923 0.237 0.809 0.774
DPAD 22.498 0.831 0.211 0.806 0.788
AWAD 18.996 0.897 0.229 0.805 0.794
IEAD 18.182 0.915 0.235 0.799 0.764

WEDAD 30.405 0.724 0.181 0.807 0.795
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It can be seen in Figure 7 that speckle noise has been smoothed out to varying degrees. To better
demonstrate the effect of each de-noised speckle method on a GF-3 image, the red box in Figure 7
was enlarged (Figure 8). Figure 8b uses the SRAD algorithm, and further enlarges the red rectangle.
It can be seen that SRAD images are relatively blurry, and that intensity information is incoherent.
The overall result of DPAD filtering is better. However, there remain some areas that have not been
completely smoothed (see Figure 8c red circle box enlargement). From the further enlarged view of the
red rectangular box in Figure 8e, it can be seen that some of the brighter points remained as a result of
the IEAD de-noising method. Visually, the AWAD and WEDAD filtering results are relatively good,
with WEDAD filtering being the best.
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From the objective evaluation criteria shown in Table 2, it can be seen that the algorithm proposed
in this paper generally performs better than the other four algorithms. The ENL of the de-noised GF-3
image using WEDAD was 30.405, which is 8.37 times greater when compared with no de-noising
method. The ENL of SRAD, IEAD, and AWAD are relatively lower than DPAD and WEDAD,
which suggests that WEDAD and DPAD have respectively better speckle reduction effects. From the
result of RS and SNI, the same conclusion was made. From the result of NM and EKI, SRAD has the
highest NM and a lower EKI, which means that SRAD exhibits better information retention overall,
but poor preservation of local edge details. This results from the incoherent intensity information.
The result of EKI using IEAD was the lowest, which suggests that this method has a relatively poor
performance with respect to edge preservation. This is consistent with Figure 8e. WEDAD has the
highest value of EKI and the second highest value of NM (approaching the maximum), which is
illustrative of a better edge preservation performance. Overall, WEDAD exhibited the best relative
performance for both edge preservation and speckle reduction.
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image by SRAD; (b) ratio image by DPAD; (c) ratio image by AWAD; (d) ratio image by IEAD; (e) ratio
image by WEDAD.
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Figure 10. The partially enlarged views of ratio images from Figure 9. (a1) partially enlarged view of
region one in the ratio image by SRAD. (b1) partially enlarged view of region one in the ratio image by
DPAD. (c1) partially enlarged view of region one in the ratio image by AWAD. (d1) partially enlarged
view of region one in the ratio image by IEAD. (e1) partially enlarged view of region one in the ratio
image by WEDAD. (a2) partially enlarged view of region two in the ratio image by SRAD. (b2) partially
enlarged view of region two in the ratio image by DPAD. (c2) partially enlarged view of region two
in the ratio image by AWAD. (d2) partially enlarged view of region two in the ratio image by IEAD.
(e2) partially enlarged view of region two in the ratio image by WEDAD.
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Due to the ratio images in Figure 9 being magnified 10 times, we can see details with relative
clarity. In fact, the difference between these images is much smaller than those shown in Figure 9,
and they are difficult to visually distinguish. In the absence of true ratio images, we can only compare
the horizontal differences between the algorithms. We can see that Figure 9e has relatively darker and
more uniform appearance than Figure 9a–d, which suggests that WEDAD has the smallest ratio value,
and thereby has the best edge preservation performance. To better show the difference in the details,
we further magnified the two red rectangular window regions in Figure 9 (see Figure 10). From the red
rectangle and yellow oval box of region one in Figure 10, we can see that SRAD and DPAD remove the
most textural information, and that WEDAD removes the least. From the red rectangle box of region
two in Figure 10, we can see that SRAD and IEAD remove the most texture information, and that
WEDAD still removes the least. The above ratio images also demonstrate the better performance
of WEDAD.
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A holistic review of Figure 11 reveals that all five of these algorithms can remove speckle to some
extent. To compare the differences in detail processing of each algorithm, a cluster of strong points
in the red rectangular box in Figure 11 was enlarged for display (Figure 12). The de-noising results
shown in Figure 12 for this area differ among the methods employed. The SRAD method continues to
blur the edge information in the red box area of Figure 12b. Both the DPAD method and IEAD method
have poor inhibition of the strong points (see Figure 12c,e). The AWAD method and the WEDAD
method have better edge preservation performance of these strong points. Figure 12d is darker than
Figure 12f. Pixel brightness reflects retention of intensity information. Therefore, WEDAD retains
stronger intensity information than AWAD. In summary, WEDAD has better de-noising and edge
preservation performance.

From Table 3, WEDAD has the highest ENL, the lowest RS and SNI, which means that WEDAD
has a better de-noising performance. The NM value of WEDAD is also optimal. In terms of EKI,
DPAD has the best performance. However, the ENL of DPAD is the lowest, which means that DPAD
shows better preservation of the local edge details, but poor performance in speckle reduction. The EKI
of AWAD, IEAD, and WEDAD are similar and close to the optimal value. The ENL of AWAD and
IEAD are obviously lower than WEDAD. From these objective evaluation criteria, WEDAD has better
de-noising and edge preservation performance for the YG-29 SAR image.

Table 3. Objective evaluation of different de-noising methods on the YG-29 SAR Image.

Methods ENL RS (dB) SNI NM EKI

Ideal Value - - - 1.000 1.000
None 3.431 1.875 0.540 - -
SRAD 25.026 0.791 0.200 0.783 0.762
DPAD 15.596 0.980 0.253 0.782 0.790
AWAD 22.094 0.838 0.213 0.784 0.787
IEAD 21.526 0.848 0.216 0.775 0.788

WEDAD 34.576 0.682 0.170 0.789 0.788
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Figure 13. The ratio images generated by different de-noised methods on YG-29 SAR image: (a) Ratio
image by SRAD; (b) ratio image by DPAD; (c) ratio image by AWAD; (d) ratio image by IEAD; (e) ratio
image by WEDAD.
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Figure 13 further compares the performance of each algorithm. Figure 13a–d all have some
relatively bright areas, which illustrates that these areas have higher ratio values. Referring to the
ideal ratio image (see Figure 5a), this is obviously not a good de-noising effect. The WEDAD method
can obtain relatively dark ratio images (see Figure 13e), which demonstrates the better de-noising
performance compared to the other algorithms. Additionally, it can be seen from the partially-enlarged
view of the rectangular window in Figure 13, that at the strong points, in addition to the WEDAD
method, the ratio images obtained by other methods have preserved some edge information.

By de-noising the actual images, the results show that the WEDAD has better speckle
suppression and edge preserving performance. It therefore appears to be a more effective
speckle-suppression algorithm.

3.3. The Influence of Weighting Methods on Euclidean Distance Anisotropic Diffusion (EDAD)

The Gaussian weighting method was used in the above experiments. We then specifically
analyzed the effects of non-linear weights and Gaussian weights. No weighting method, the non-linear
weighting method, and the Gaussian weighting method were used to reduce speckle in the added-noise
image, and GF-3 and YG-29 SAR images. The relevant parameter settings of the WEDAD algorithm
are consistent with Section 3.1. Table 4 shows the objective evaluation (ENL and EKI) of different
weighting methods for the EDAD method.

Table 4. Objective evaluation of different weighting methods on the EDAD method.

Images Weighted Methods
ENL

EKI
Region 1 Region 2 Region 3 Region 4 Region 5

Added Speckle
Noise

None 16.623 61.024 21.968 45.185 17.431 0.748
Non-linear 16.049 62.981 21.649 44.6 16.451 0.782
Gaussian 16.403 64.239 21.687 44.406 16.643 0.780

GF-3
None 15.831 31.073 21.720 30.665 24.526 0.790

Non-linear 15.858 31.118 21.763 30.674 24.548 0.794
Gaussian 15.861 31.133 21.760 30.683 24.538 0.795

YG-29
None 21.471 17.576 18.213 17.638 15.407 0.788

Non-linear 21.523 17.599 18.222 17.651 15.461 0.788
Gaussian 21.511 17.642 18.247 17.645 15.455 0.788

Five homogeneous areas were selected to calculate ENL. From the results of using different
weighting methods on the added-noise image, we found that the ENL without using any weighting
method had the most optimal values; however, its EKI was the lowest. When using the non-linear
weighting and the Gaussian weighting methods, the EKI increased from 0.748 to 0.782 and 0.780,
respectively. In the GF-3 SAR image de-noising process using weighting, we found that the ENL using
any weighting method was higher than the method with no weighting in all five homogeneous areas.
The values of EKI using the two weighting methods were not much different, and both of them were
higher than the method using no weighting. When processing of image YG-29 using the different
weighting methods, the same conclusion as processing the GF-3 SAR image was obtained for the value
of ENL, which demonstrates that both the Gaussian weighting and non-linear weighting methods
have higher ENL than the method with no weighting. In terms of EKI, these three weighting methods
(including no weighting) have the same value, which means the same edge preservation performance.

Based on the above experiments, it can be seen overall that the method proposed in this paper
after the weight function used can generally improve the quality of the speckle filtering. There is no
significant difference between the non-linear weights and Gaussian weights.

3.4. The Influence of Adjustment Coefficient on WEDAD

Different time steps and space steps were set, and the corresponding filtering effect was different.
The adjustment coefficient k in Equation (28) can effectively balance the influence of setting the time
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step and space step to the right side of the equation. To obtain the optimal value of adjustment
coefficient k, relevant experiments were performed for the three images shown in Figures 3b and 6.
Using the WEDAD method, the relevant parameters were set in accordance with Section 3.1, with a
time step of 0.1 and a space step of 1. The value of k ranged from 0 to 3 in steps in 0.1. In addition,
the objective evaluation (ENL and EKI) were chosen to evaluate the effect of de-noising using different
values of k. Figure 14 shows the results of the influence of adjusting the coefficient on different
speckle images.
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Figure 14. The influence of the adjustment coefficient on different speckle images: (a) the influence of
the adjustment coefficient on added noise image; (b) the influence of the adjustment coefficient on the
GF-3 SAR image; (c) the influence of the adjustment coefficient on the YG-29 SAR image.

From Figure 14, it can be seen that different values of k have an obvious effect on all three images.
In EKI of the three images, there is a maximum of 1 when k is 0. This is because no filtering is
actually performed at this time. When the value of k increases, the overall value of EKI tends to
decrease, which means that the edge retention performance decreases. In ENL of the three images,
there is a minimum when k is 0. As the value of k increases, the overall value of ENL tends to also
increase, which means that the speckle reduction performance increases. Therefore, we can find that
the increment of the value of k leads to the two objective evaluations tending to move away from the
optimal value. These two opposite results also demonstrated that the inhibition of speckle and edge
maintenance are contradictory bodies. In addition, in order to obtain better edge retention and speckle
suppression at the same time, it is necessary to reasonably determine the value of k. Based on the better
evaluation value relative to the other methods (SRAD, DPAD, AWAD, and IEAD), it is recommended
that the value of adjustment coefficient k be approximately 0.9.

4. Conclusions

In this paper, speckle suppression by weighted Euclidean distance anisotropic diffusion was
proposed. The presented method used weighted Euclidean distances to avoid the problems of
accurately estimating the mean and variance of speckle noise, and overall, it achieved better speckle
suppression while preserving important edge information. Noise was first added to the original
images, and then GF-3 and YG-29 SAR images were collected for use as experimental data. Several
conclusions can be drawn from the results presented herein:

1. The proposed method can effectively reduce speckle noise while also better preserving edge
information. Compared to other general anisotropic diffusion methods (SRAD, DPAP, AWAD,



Remote Sens. 2018, 10, 722 19 of 20

and IEAD), the values of ENL, RS, SNI, NM, and EKI using WEDAD all exhibited optimal or
near-optimal values, and were the best overall.

2. The proposed method using the Gaussian weighting or non-linear weighting has a better
performance of speckle reduction and edge preservation when compared with the method
without any weighting method.

3. By setting the adjustment coefficient (the value of adjustment coefficient k is recommended as
approximately 0.9), edge retention and speckle reduction can be effectively balanced to achieve
relatively good results.

We can conclude that the proposed method has a good noise suppression effect on the added-noise
image, GF-3 SAR image, and YG-29 SAR image. However, the algorithm in this paper has not yet been
applied to other kinds of coherent images. Our future work will therefore focus on the universality of
the algorithm.
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