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Abstract: Scene classification, aiming to identify the land-cover categories of remotely sensed
image patches, is now a fundamental task in the remote sensing image analysis field.
Deep-learning-model-based algorithms are widely applied in scene classification and achieve
remarkable performance, but these high-level methods are computationally expensive and
time-consuming. Consequently in this paper, we introduce a knowledge distillation framework,
currently a mainstream model compression method, into remote sensing scene classification to
improve the performance of smaller and shallower network models. Our knowledge distillation
training method makes the high-temperature softmax output of a small and shallow student model
match the large and deep teacher model. In our experiments, we evaluate knowledge distillation
training method for remote sensing scene classification on four public datasets: AID dataset,
UCMerced dataset, NWPU-RESISC dataset, and EuroSAT dataset. Results show that our proposed
training method was effective and increased overall accuracy (3% in AID experiments, 5% in
UCMerced experiments, 1% in NWPU-RESISC and EuroSAT experiments) for small and shallow
models. We further explored the performance of the student model on small and unbalanced datasets.
Our findings indicate that knowledge distillation can improve the performance of small network
models on datasets with lower spatial resolution images, numerous categories, as well as fewer
training samples.

Keywords: knowledge distillation; scene classification; convolutional neural networks (CNNs);
remote sensing; deep learning

1. Introduction

With the rapid development of remote sensing (RS) techniques, a large number of algorithms have
been proposed to automatically process massive earth observation data. Scene classification is the one
of fundamental procedures of RS images analysis and of much importance in many RS applications,
such as land-use/land-cover (LULC) [1–4], agriculture [5–8], forestry [9,10], and hydrology [11].

The core task of scene classification is to identify the land-cover type of remotely sensed
image patches automatically. Numerous supervised machine learning algorithms have been used
in scene classification. These algorithms can be categorized into the following three types [12]:
low-level, mid-level and high-level methods. Low-level methods first extract low-level hand-crafted
features, including SIFT (scale invariant feature transform) [13,14], HOG (histogram of oriented
gradients) [15], structural texture similarity [16], LBP (local binary patterns) [17], Gabor descriptors [18],
etc. Features extracted by methods are utilized to train shallow classifiers such as Support Vector
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Machines (SVMs) [19] or K-Nearest Neighbor algorithms (KNNs) [20] to identify the categories of
scene images. These scene classification methods based on low-level features are efficient on some
structures and arrangements, but cannot easily depict the highly diverse and non-homogeneous
spatial distributions in images [21].Mid-level methods build scene representations by coding
low-level local attributes. The bag-of-visual-words (BoVW) model is one of the most frequently
used approaches [22]. To improve the classification accuracy, various low-level local descriptors
are combined as complemented features in the standard BoVW model [23], Gaussian mixture model
(GMM) [24], and other pyramid-based models [25–27] for scene classification. In addition, topic models
are introduced to combine visual semantic information to encode higher order spatial information
between low-level local visual words [28–32]. High-level methods are based on deep learning (DL)
models. DL models achieve the state-of-the-art in image recognition, speech recognition, semantic
segmentation, object detection, natural language processing [33–36], and RS image scene classification.
Many classic DL models in the field of computer vision (CV) have been shown to be effective in RS scene
classification [12,37–44]. Most are based on deep convolutional neural network (CNN) models, such as
AlexNet [45], CaffeNet [46], VGGNet [47], deep residual networks (ResNet) [48] and DenseNets [49].
Among these approaches, the CNN-based high-level models outperform the state-of-the-art for scene
classification tasks in remote sensing [50]. They can deal with scenes that are more complex and achieve
higher overall accuracy by learning deep visual features from large training datasets, in contrast to
shallow models and low-level methods that rely on manual feature extraction [51].

However, deep CNNs contain more parameters to train, thus they cost more computational
resources and time on training and predicting. For example, a 102-convolutional-layer CNN model,
which contains 42.4 M parameters, costs 14 ms to classify a 224 × 224 × 3 scene image while a simple
4-convolutional-layer CNN model costs 8.77 ms and only contains 1 M parameters, as detailed in
Section 3.1 of this paper. This is an unacceptable cost of time and storage space in special situations,
such as embedded devices [52–54] or during on-orbit processing [55]. In contrast, a small and shallow
model is fast and uses little space, but will not yield accurate and precise results when trained directly
on ground truth data [33].

Under these circumstances, model compression techniques become imperative. Generalized
model compression improves the performance of a shallow and fast model by learning a cumbersome,
but better performing model, or by simplifying the structure of the cumbersome network. There are
three mainstream types of model compression algorithms: network pruning, network quantization
and Teacher-Student Training (TST). Network pruning is a technique that reduces the size of networks
by removing neurons or weights that are less important based on certain standard [52,56–58],
while network quantization attempts to reduce the precision of weights or features [59–61]. In contrast,
TST methods impart knowledge from a teacher model into a student model by learning distributions
or outputs of some specific layers [62–70].

TST is easily confused with transfer learning. In transfer learning, we first train a base model on a
certain dataset and task, and then transfer the learned features to another target network to be trained
on different target dataset and task [71,72]. A common use of transfer learning in the field of remote
sensing is to fine-tune an ImageNet-pretrained model on a remote sensing dataset [2,40,73]. In a TST
process, however, the teacher and student models are trained on the same dataset.

Knowledge distillation (KD) is one kind of TST method, first defined in [63]. In that paper, authors
distill knowledge from an ensemble of models into a single smaller model via high-temperature softmax
training. In this paper, we introduce the KD into remote sensing scene classification for the first time to
improve the performance of small and shallow network model. We then conducted experiments on
several public datasets to verify the effectiveness of KD and make a quantitative analysis to explore
the optimum parameter settings. We will also discuss performance of KD on different types of datasets.
In addition, we tested whether knowledge can still be distilled in the absence of a certain type of
training samples or in the absence of sufficient training data sets. For convenience in our work,
we simplified the KD training process by only learning from one cumbersome model. The rest of this
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paper is organized as follows. Section 2 will describe the teacher-student training method and our
knowledge distillation framework. In Section 3, results and analysis of experiments on several datasets
are detailed. Our conclusion and future work are discussed in Section 4.

2. Method

As a special case of teacher-student training (TST), knowledge distillation (KD) imitates
high-temperature softmax output from the cumbersome teacher model, serving as our training
framework. In this section, we first describe the different TST methods, and introduce the KD training
methods we adopted in our research.

2.1. Teacher-Student Training

TST is one of the mainstream model compression methods. In TST processing, a cumbersome
pre-trained model is regarded as a teacher, the untrained small and shallow model is a student.
The student model not only learns hard target from the ground truth data, but also matches its output
to the output of the teacher model. This is because the output of a softmax layer (soft target) contains
more information than one-hot labeled dataset (hard target).

A general TST process first trains the cumbersome model directly on dataset and then train the
student model by minimizing the following loss function using mini-batch stochastic gradient descent
(MSGD) [74] method:

LTST(X) = λ · H1(S(X), YGT) + H2(S∗(X), T∗(X)) (1)

where X denotes a batch of input data, S(X) is the softmax output of student model, YGT is the ground
truth label corresponding to the input X, and S∗(X) and T∗(X) are the output of a certain layer in
student model and teacher model, λ is a non-negative constant. The first term in this loss function
is a ground truth constraint. If λ = 0, the supervised information is only provided by the teacher
model, instead of the ground truth data. If λ goes higher, the output probability distribution of the
trained student model is more like the teacher model. H1(X,Y) and H2(X,Y) in Equation (1) can be
any common loss functions, such as mean squared error (MSE) or categorical crossentropy (CE):

MSE(x, y) =
1
m

m

∑
i=1

d

∑
k=1

(xik − yik)
2 (2)

CE(x, y) = − 1
m

m

∑
i=1

d

∑
k=1

[xik log (yik) + (1 − xik) log (1 − yik)] (3)

where m denotes the batch size, d denotes the size of input vector x, and xik indicates the kth element
of the ith input samples.

The simplest and the naive method in TST matches the output probability distribution of the last
softmax layer (MS) in the student model to the teacher model. In this case, S∗(X) = S(X) and T∗(X)

is the softmax output of the teacher model. Thus, the loss function of MS mode can be defined as:

LMS(X) = λ · CE(S(X), YGT) + CE(S(X), T(X)) (4)

To better impart knowledge from teacher to student, Bucilua, C., et al. [62] proposed the matching
logits (ML) method. Logits are the inputs to the final softmax layer of a network. Here, the discrepancy
among categories in the logits form is more significant than the probabilities form. As a result, the CE
of the second term in the loss function are replaced by MSE because the value of a logit can be any real
number. The loss function in ML mode now becomes:

LML(X) = λ · CE(S(X), YGT) + MSE(Slogits(X), Tlogits(X)) (5)
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where Slogits(X) and Tlogits(X) are the logits output of their model. In that work, the authors conducted
several experiments and verified that the ML mode could improve small models by learning from
model ensembles in simple machine learning tasks.

In addition to these methods as mentioned, various researchers in the field have proposed other
means for TST training. Huang, Z., et al. [69] proposed an idea of matching the distributions of neuron
selectivity patterns (NST) between two networks, where a new loss function through minimizing the
maximum mean discrepancy (MMD) is designed to match these distributions. In [70], the authors
compressed wide and shallow networks into thin but deeper networks, the FitNet, by learning
intermediate-level hints from teacher’s hidden layers. Yim [68] transfers the knowledge distilled
from the flow between layers, computed by the inner product between features, and generated
into the FSP matrix. Different from the previous methods, Chen, T., et al. [64] accelerates the
training of a larger network by transferring knowledge from a network to the new larger network.
Lopez-Paz, D., et al. [66] combines knowledge distillation with privileged information [75], deriving
into a generalized distillation.

2.2. Knowledge Distillation Framework

2.2.1. Knowledge from Probability Distribution

The last output layer of neural networks is the softmax layer that transforms the logits zi into a
probability pi via:

pi = so f tmax(zi) =
exp(zi)

∑j exp(zj)
(6)

However, the normal softmax output always leads to an approximate one-hot vector. An example
is shown in Table 1 and Figure 1, which indicates that normal softmax (temperature = 1) made the
probability of C2 class tends to one and others tend to zero. The entropy of the output also tends to zero.
In practice, a remote sensing scene image consists of several categories of pixels. Thus, information for
non-maximum probability categories provides additional supervision for training.
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Figure 1. An example of categorical probability distributions of high-temperature softmax output with
different temperature. C1∼C6 denote six categories. The input logit data are listed in the last row of
Table 1. When T = 1 (normal softmax), the probability of C2 tends to 1 and others tend to 0. If T goes
higher, the categorical distribution tends to be more consistent.
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Table 1. An example of high-temperature softmax output with different temperature.

Temperature C1 C2 C3 C4 C5 C6 Entropy 1

1 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 0.0523 0.8566 0.0022 0.0320 0.0160 0.0409 0.8764
200 0.1338 0.5416 0.0275 0.1046 0.0741 0.1183 1.9934
500 0.1687 0.2951 0.0896 0.1529 0.1331 0.1606 2.4898

logits −304.63 −25.01 −620.91 −353.81 −422.91 −329.22
1 Log2-based entropy.

To improve the discrimination ability and generalizability of a model, Hinton, G., et al. [63]
introduced high temperature softmax function instead of normal softmax or logits. High temperature
softmax function was first used in the field of reinforcement learning [76], denoted as:

pi =
exp(zi/T)

∑j exp(zj/T)
(7)

where T is the temperature. The normal softmax is a special case if T = 1.
Softmax with high temperature could increase the entropy of the categorical vector which helps to

learn more knowledge from the probability distribution of a complex scene. An example of categorical
probability distributions of high-temperature softmax output with different temperature is shown in
Table 1 and Figure 1. C1∼C6 denote six categories, and the example input logit data are listed in the
last row of the table. When T = 1 (normal softmax), the probability of C2 tends to 1 and others tend
to 0. If T goes higher, the entropy of the categorical distribution becomes higher. It can be inferred from
this example that if the student model learns high-temperature softmax output from the teacher model,
it will distill more knowledge of categorical probability distribution. The experiments in Section 3 will
verify this inference.

2.2.2. KD Training Process

By introducing the high-temperature softmax into our framework in former subsection, we divide
the whole training process of knowledge distillation into two procedures. First, train the teacher model
directly on dataset, which is shown in Figure 2a. The target is to let T(X), the softmax output of the
teacher model, fit the ground truth YGT . Then, distill the knowledge via high-temperature softmax,
as shown in Figure 2b. The student model outputs two branches: high-temperature softmax outputs
distill knowledge from the teacher model and the normal softmax outputs learn to match the ground
truth label. Thus, the total loss of KD process LKD(X) is:

LKD(X) = λ · CE(S(X), YGT) + CE(ST(X), TT(X)) (8)

where ST and TT(X) denote the T-temperature softmax output of the student model and the
teacher model respectively. In extreme conditions, such as lacking of training samples, the teacher’s
high-temperature output can even provide supervision to the student model without any ground truth
data (set λ = 0). In prediction or production environment, the trained student model only outputs
normal softmax result, as shown in Figure 2c.

As the higher-temperature softmax output from the teacher model contains different information
than the ground truth dataset, our KD framework provides the student model with more categorical
information in scene classification tasks.
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Figure 2. (a) Train the teacher model directly on dataset; (b) The process of KD training. The student
model output two branches: high-temperature softmax output distill knowledge from the teacher
model and the normal softmax output learn to match the ground truth label; (c) In prediction mode or
production environment, the trained student model only output normal softmax result.

3. Experimental Results and Analysis

In this section, to test the performance of our distillation framework, we conducted several
experiments on four remote sensing scene classification datasets: AID dataset [51] (Figure 3a),
UCMerced dataset [22] (Figure 3b), NWPU-RESISC dataset [77] (Figure 3c) and EuroSAT dataset [2]
(Figure 3d). The general information of each dataset is listed in Table 2.

(a) (b)

(c) (d)

Figure 3. Sample images in (a) AID dataset; (b) UCMerced dataset; (c) NWPU-RESISC dataset;
and (d) EuroSAT dataset
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Table 2. General information of datasets.

Dataset Resolution Size Category Count Training Samples Validation Samples Test Samples

AID 0.5–8 m 600 × 600 30 5000 2507 2493
UCMerced 0.3 m 256 × 256 21 1050 525 525

NWPU-RESISC 0.2–3 m 256 × 256 45 15,750 7875 7875
EuroSAT 10–60 m 64 × 64 10 16,200 5400 5400

For each dataset, we first train a large deep network model and a small shallow one by direct
training methods. Then we train the small model by our proposed KD methods. For comparison,
other model compression methods including ML were also processed, and we analyzed in detail
the experimental results (The implementation of the framework was based on Keras 2.1.1 [78] and
TensorFlow 1.4.0 [79]).

3.1. Experiments on AID Dataset

To evaluate the performance and robustness of our proposed KD framework for remote sensing
image scene classification, we first designed and conducted several experiments on the AID dataset.

3.1.1. Dataset Description

The AID dataset is a large-scale public data set for aerial scene classification, provided by [51].
It contains 10,000 manually labeled remote sensing scene images from around the world. All images
in the AID dataset were collected from Google Earth (https://www.google.com/earth/). Each is
600 × 600 pixels with RGB three spectral bands. The task in our experiments was to classify all scene
images into thirty categories. The specific categories are: airport, bare land, baseball field, beach,
bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial, meadow,
medium residential, mountain, park, parking, playground, pond, port, railway station, resort, river,
school, sparse residential, square, stadium, storage tanks, and viaduct.

The dataset was divided into three parts for each category: training data (around 50%), validation
data (around 25%) and test data (around 25%). Considered from computational resources, all images
were re-sampled from 600 × 600 × 3 to 224 × 224 × 3 pixels. In total, there were 5000 images in the
training dataset, 2507 as validation data and 2493 in the test dataset.

In the experiments, overall accuracy (OA), kappa coefficient (K) [80], precision (P), recall (R) and
F1-score (F1) of the test dataset were adopted as the accuracy assessment metrics. By introducing the
confusion matrix, a table with two rows and two columns that reports the number of true positives
(tp), false positives ( f p), false negatives ( f n), and true negatives (tn), we can define these assessment
metrics as follows. Overall accuracy (OA) is defined as the number of correctly predicted images
divided by the total number of predicted images, denoted as:

OA =
Ntrue

N
(9)

while Ntrue denotes the number of correctly predicted images, and N stands for the total number of
predicted images. Precision (P) and recall (R) for one-class classification are then defined as:

P =
tp

tp + f p
, R =

tp
tp + f n

(10)

and F1-score is the harmonic mean of the precision and recall, which can be calculated by:

F1oneclass =
2

1/R + 1/P
= 2 · P · R

P + R
(11)

when it turns to multi-class situation, we use weighted F1-score as our metric:

https://www.google.com/earth/
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F1 =
K

∑
k=1

w(k) · F1k
oneclass, w(k) =

nk
N

(12)

while weight w(k) is determined by the number of samples of each category, F1k
oneclass is

correspondingly calculated in each category. Kappa coefficient (K) is another metric that measures
inter-rater agreement for categorical items, in multi-class situation, K is defined as:

K =
OA − Pe

1 − Pe
(13)

where Pe is the hypothetical probability of chance agreement, calculated as:

Pe =
1

N2 · ∑
k

nk1nk2 (14)

where k denotes the number of categories, and nki is the number of times rater i predicted category k.

3.1.2. Structure of Networks and Direct Training

We choose the classic 101-layer deep residual network (ResNet-101) [48] as the teacher model
(The structure of ResNet-101 can be found at https://github.com/KaimingHe/deep-residual-
networks and http://ethereon.github.io/netscope/#/gist/b21e2aae116dc1ac7b50). For comparison,
we designed a shallow and simple CNN with four convolutional layers and only one fully connected
layer. To prevent over-fitting, we add a Dropout layer [81] between the convolutional layers and fully
connected layers. The specific structure of the student model is detailed in Appendix A.1.

Both two models were trained by the common back-propagation (BP) algorithm [82] with a batch
size of 24. We adopted Adadelta [83] as the weights updating optimization method. Each model was
trained for 100 epochs. All the experimental results on AID dataset were processed on a desktop PC
with Intel Core i7 6700K (4C8T), 32GB RAM and Nvidia GeForce GTX1080 Ti (11264MB memory).
After training one epoch, the validation OA (VOA) will be recorded and the model achieved the
highest VOA was used to make a final accuracy assessment on the test dataset. In our experiments,
we used the following data augmentation policies for generalization purpose:

• random scaling in the range [0.8, 1.2];
• random rotation by [−30, 30] degrees;
• random vertically and horizontally flipping.

3.1.3. KD Training and Results

To analyze the knowledge distillation (KD) methods discussed in Section 2, we conducted a series
of experiments by training the student model via KD with different T (1, 5, 10, 20, 50 and 100) and
λ (1 and 0.1) parameters. For comparative purposes, we also did experiments by directly training
and matching logits (ML) training the student model on the training dataset. The complete results
are listed in Table 3 (The items in bold in each table mean the optimum results of all.). In addition to
accuracy assessment metrics, we also recorded the FPS (frames per second) values in Table 3.

There were three key findings as shown in Table 3:

1. KD training is effective. It could increase OA by approximately 3%, compared to the direct
training way. However, ML training did not seem to work or even reduce the OA. For further
analysis, we draw the validation loss curves and VOA curves of these three types of training
methods, which are shown in Figure 4a,b. From training curves, we could find that direct training
leads to faster convergence (50 epochs) but falls into local optima while KD training could always
reduce the loss.

2. The student model learned more knowledge from the teacher model via higher temperature
softmax output. Different from T, the effect of λ parameter is not clear. When T is 1, 5, 50,

https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
http://ethereon.github.io/netscope/#/gist/b21e2aae116dc1ac7b50
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or 100, the bigger λ the better OA achieved. However, if T is set to 10 or 20, the smaller λ value
performed better. To further analyze λ, we drew four subfigures in Figure 5 to demonstrate the
relationship between our four metrics and the temperature T. The curves shows that the trend of
VOA are similar to other metrics whether λ = 0.1 or λ = 1 on AID dataset.

3. From a macro point of view, KD training methods could improve the performance of a network
model, in terms of OA, K or F1. In test data evaluation, it even surpassed the deep teacher model
by 60% higher speed and using only 2.4% model parameters.

Table 3. Results of Knowledge Distillation training experiments on AID dataset.

VOA OA K F1 FPS Parameters

student model

direct training 0.8466 0.8295 0.8234 0.8299

113.96 1,012,830

ML training

λ

1 0.7140 0.7084 0.6980 0.7098
100 0.8161 0.8087 0.8018 0.8070

KD training

T λ

1 1 0.8373 0.8448 0.8392 0.8438
1 0.1 0.8289 0.8287 0.8226 0.8282
5 1 0.8516 0.8480 0.8426 0.8484
5 0.1 0.8524 0.8363 0.8305 0.8348

10 1 0.8500 0.8367 0.8309 0.8352
10 0.1 0.8560 0.8580 0.8530 0.8593
20 1 0.8416 0.8355 0.8297 0.8347
20 0.1 0.8484 0.8383 0.8326 0.8353
50 1 0.8404 0.8335 0.8276 0.8336
50 0.1 0.8400 0.8307 0.8247 0.8308

100 1 0.8536 0.8484 0.8430 0.8478
100 0.1 0.8444 0.8311 0.8251 0.8304

teacher model (ResNet-101) 0.8888 0.8524 0.8471 0.8542 71.31 42,437,278

0 20 40 60 80
epochs

100

6 × 10 1

2 × 100

3 × 100

lo
ss

 (l
og

)

normal training
KD training (T=10, =0.1)
ML training ( =100)

(a)

0 20 40 60 80
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0.60

0.65

0.70
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0.80

0.85

VO
A

normal training
KD training (T=10, =0.1)
ML training ( =100)

(b)

Figure 4. The training curves of the student model in AID experiments. From training curves, we
could find that direct training (blue curves) leads to faster convergence but falls into local optima after
50 epochs, while KD training (orange curves) could always reduce the loss. (a) validation loss curve in
logarithmic coordinate system; (b) validation OA curve.
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(a) VOA (b) OA

(c) K (d) F1

Figure 5. KD training results of different temperature and λ on AID dataset. These four subfigures
demonstrated the relationship between four metrics and the temperature T, according to Table 3.
The curves shows that the trend of VOA are similar to other metrics whether λ = 0.1 or λ = 1 on
AID dataset.

3.1.4. KD Training on Small Dataset

If a student model could learn knowledge from a teacher model via KD training on the complete
dataset, it should also work on a small part of the dataset. To verify this idea, we implemented
extra experiments of KD training on a small part of AID dataset. We took 20% training samples
(1000 images) and 20% validation data (507 images) of the original AID dataset and evaluated accuracy
on the complete test dataset.

The results are shown in Table 4. As shown, small dataset lead to a shorter training time (It includes
validation time.) but poorer training results. However, the KD training was still better than direct
training under such conditions. In addition, if we decreased λ, the weight of the first term in the loss
function (Equation (8)), the generalizability of the student model would be greatly enhanced.

Table 4. Results of training the student model on part of AID dataset

Dataset Training Method VOA OA K F1 Training Time per Epoch (s)

100% direct training 0.8466 0.8295 0.8234 0.8299 128.1

20%
direct training 0.7219 0.5872 0.5728 0.5929

32.0KD training (T = 10, λ = 0.1) 0.7298 0.6554 0.6432 0.6567
KD training (T = 10, λ = 1.0) 0.7416 0.6221 0.6089 0.6234

3.1.5. Remove One Category

Instead of training on a small dataset, we then removed all image samples of the “airport” category
in training data and validation data in this experiment. The test results after KD training (T = 10 and
λ = 0.1) 100 epochs, are shown in Table 5.
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Table 5. Results of Knowledge Distillation training experiments on AID dataset without Airports.

Category Name Direct Training KD Training without Airport Fine-Tuned on Unlabeled Data

P R F1 P R F1 P R F1

airport 0.7359 0.8667 0.7959 0.9130 0.2333 0.3717 0.7234 0.7556 0.7391

average 0.8421 0.8295 0.8299 0.8461 0.8363 0.8306 0.8588 0.8420 0.8438

From the results, in the absence of “airport” samples, the KD training process still achieved better
F1-score than direct training on complete dataset. From the point of view of the distilled model, it has
never seen “airport” before. However, it got high precision (0.913), although the recall is very low (0.2333).
If we continued to fine-tune the student model only 10 epochs on the unlabeled data (2493 images with
90 airports, all labels were removed when fine-tuning) via KD, the F1-score of Airport class increased
from 0.3717 to 0.7391 and the average F1-score increased by approximately 1.7%.

3.1.6. The Relationship between the Optimal Temperature and the Number of Categories

In KD training process, the temperature (T) is a significant factor. When T = 1, the output
probability vector tends to an one-hot vector. However, if T approaches infinity, the output probability
of all categories tends to the same, which made the student model hard to learn from the teacher model.
Intuitively, the more categories, the more information the probability vector contained in the outputs
of a model. Therefore, it is easy to speculate that the optimal temperature for KD training is negatively
related to the number of categories.

To evaluate the relationship between the optimal temperature and the number of categories,
we conducted extra KD training experiments on three subsets of the AID dataset. These three AID
subsets contain 25, 20, and 15 categories separately, constructed by removing 5, 10, and 15 categories
in the original AID dataset. In experiments, the λ is a constant with a value of 0.1 and the range
of temperature T is [1, 100]. The structure model and the teacher model are the same as before,
except their output softmax layers (The output of the last softmax layer has the same size as the
number of categories).

Results of these experiments are shown in Table 6. According to the metrics (OA, K, and F1-score),
the optimal temperature for KD training is 10 for the complete AID dataset, 50 for the 25-category
subset, 100 for the 20-category and 15-category subset. It is obvious that the optimal T increased as
number of categories decreased on AID dataset, which verified our speculation.

Table 6. Results of Knowledge Distillation training experiments with different numbers of category
and temperatures on AID dataset.

Student Model T
30 Categories 25 Categories 20 Categories 15 Categories

OA K F1 OA K F1 OA K F1 OA K F1

direct training 0.830 0.823 0.830 0.840 0.833 0.840 0.870 0.863 0.870 0.878 0.869 0.876

KD training

1 0.829 0.823 0.828 0.837 0.830 0.837 0.863 0.856 0.863 0.884 0.875 0.883
5 0.836 0.831 0.835 0.837 0.830 0.833 0.872 0.865 0.872 0.869 0.860 0.869
10 0.858 0.853 0.859 0.846 0.839 0.846 0.868 0.861 0.867 0.879 0.870 0.879
20 0.838 0.833 0.835 0.841 0.835 0.841 0.871 0.864 0.870 0.880 0.871 0.880
50 0.831 0.825 0.831 0.851 0.845 0.850 0.870 0.863 0.871 0.871 0.861 0.870

100 0.831 0.825 0.830 0.839 0.832 0.839 0.873 0.866 0.873 0.890 0.882 0.890

teacher model 0.852 0.847 0.854 0.870 0.865 0.871 0.880 0.874 0.880 0.894 0.886 0.893

3.1.7. Evaluating Our Proposed KD Method on AID Dataset

We detailed a series of experiments to evaluate KD training framework on AID dataset. As shown
by the results, we found that KD could increase OA than direct training and ML training, and achieved
the optimum performance when T = 10 and λ = 0.1. We then did same experiments on only 20% of
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training data in the AID dataset. It also showed that KD training was still better than direct training.
From these results, we infer that our framework could still distill knowledge of a certain category
even there is no sample from that category. In addition, the student model got better results by
continuous fine-tuning on unlabeled samples via unsupervised KD training. This further verifies that
the knowledge of the probability distribution within classes can be effectively distilled. Moreover,
we found the optimal temperature for KD training is negatively related to the number of categories on
AID dataset.

3.2. Additional Experiments

To evaluate the effectiveness and applicability of KD framework, we conducted additional
experiments on three different datasets of remote sensing scenes: UCMerced dataset, NWPU-RESISC
dataset and EuroSAT dataset.

3.2.1. Experiments on UCMerced Dataset

The UCMerced dataset is a widely-used remotely sensed image scene dataset, which consists
of a total of only 2100 image patches each of size 256 × 256 with a ground sample distance (GSD)
of 0.3 m and covering 21 land-cover classes [22]. Images in UCMerced dataset were extracted from
the USGS National Map Urban Area Imagery collection for various urban areas around the country.
We split UCMerced dataset into three parts: 1050 images for training, 525 images for validating and
525 images for testing, respectively. Due to a relatively small number of training samples, we adopt
two four-convolutional-layer CNN models as the teacher model and the student model to avoid
overfitting. The specific structures of two models are shown in Appendix A.2. The other training
settings are the same as the AID experiments discussed in Section 3.1.

As we can see from Table 7, KD training seems to be effective on UCMerced dataset as almost
all KD experiment results point to be better than the direct training result of the student model.
In accordance with all the metrics, KD training achieves its optimal performance when T = 100 and
λ = 1. Similar to our experiment results on small AID dataset, KD method is still practicable to
small datasets.

Table 7. Results of Knowledge Distillation training experiments on UCMerced dataset.

OA K F1 FPS Parameters

student model

direct training 0.6838 0.6680 0.6710

334.40 66,933
KD training

T λ

1 1 0.6933 0.6780 0.6918
1 0.1 0.7105 0.6960 0.7079
5 1 0.7200 0.7060 0.7201
5 0.1 0.6933 0.6780 0.6820

10 1 0.7124 0.6980 0.7092
10 0.1 0.6990 0.6840 0.6871
20 1 0.6838 0.6680 0.6787
20 0.1 0.7067 0.6920 0.7063
50 1 0.7181 0.7040 0.7098
50 0.1 0.7067 0.6920 0.6993

100 1 0.7352 0.7220 0.7338
100 0.1 0.6724 0.6560 0.6691

teacher model 0.8438 0.8360 0.8402 137.12 3,658,389

3.2.2. Experiments on NWPU-RESISC Dataset

NWPU-RESISC is a large-scale benchmark dataset for remote sensing scene classification, covering
45 scene classes with 700 images in each class. Images within each class are with a size of 256 × 256
pixels in the red-green-blue(RGB) color space, while the spatial resolution of those images vary from
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about 30 to 0.2 m per pixel. The 31,500 images, extracted by experts from Google Earth, cover more
than 100 countries and regions all around the world. 15,750 of them are training samples, 7875 of them
are validation samples, and the rest 7875 images are test samples. The teacher model and the student
model are the same as the experiments on AID dataset, except the output layers.

Results of KD training experiments on NWPU-RESISC dataset are recorded in Table 8.
Performances of KD training methods with different settings of T and λ seem to be close on
NWPU-RESISC dataset, it performs better when T = 5 and λ = 0.1. Different from those datasets
with fewer categories, NWPU-RESISC contains 45 classes, including land-use and land-cover classes,
which is challenging with high within-class diversity and between-class similarity. KD method proves
to be effective on NWPU-RESISC dataset with 45 categories.

Table 8. Results of Knowledge Distillation training experiments on NWPU-RESISC dataset.

OA K F1 FPS Parameters

student_model

direct training 0.7896 0.7848 0.7894

303.67 1,389,165
KD training

T λ

1 1 0.7911 0.7864 0.7904
1 0.1 0.7705 0.7653 0.7705
5 1 0.7945 0.7899 0.7923
5 0.1 0.8000 0.7955 0.7983

10 1 0.7945 0.7899 0.7940
10 0.1 0.7926 0.7879 0.7912
20 1 0.7939 0.7892 0.7933
20 0.1 0.7873 0.7825 0.7862
50 1 0.7907 0.7860 0.7891
50 0.1 0.7893 0.7845 0.7880

100 1 0.7915 0.7868 0.7907
100 0.1 0.7912 0.7865 0.7892

teacher model (ResNet-101) 0.8703 0.8674 0.8692 88.90 42,468,013

3.2.3. Experiments on EuroSAT Dataset

EuroSAT dataset is another widely-used scene classification dataset based on medium-resolution
satellite images covering 13 different spectral bands, and consisting of 10 different land-use and
land-cover classes. It contains 27,000 images, each image patch measures 64 × 64 pixels, with a ground
sample distance (GSD) varying from 10 to 60 m. Data in EuroSAT dataset is gathered from satellite
images of cities in over 30 European countries. Like previous experiments, EuroSAT dataset was split
into three parts: 16,200 images for training, 5400 images for validating and 5400 images for testing,
respectively. In experiments, we only exploited red, green, blue three spectral bands as the input of
networks. The teacher model and the student model (Appendix A.1) are the same as the experiments
on AID dataset, except the output layers.

Table 9 shows the results of KD training experiments on EuroSAT dataset. All of these models
easily achieve outstanding OA over 90%, and KD training model reaches optimum when T = 100 and
λ = 1. Compared with datasets such as AID and NWPU-RESISC, KD methods still seem to work well
on EuroSAT dataset that contains smaller-patch-size and lower-spatial-resolution images.

3.2.4. Discussions

Through conducting additional experiments on three other different datasets of remote sensing
images with different settings of T and λ, we evaluate the effectiveness of KD method and find that it
ends up with different results on different datasets. In general, KD method is practicable to datasets
with lower spatial resolution images, numerous categories, as well as fewer training samples.
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Table 9. Results of Knowledge Distillation training experiments on EuroSAT dataset.

OA K F1 FPS Parameters

student model

direct training 0.9333 0.9258 0.9336

440.00 511,050
KD training

T λ

1 1 0.9363 0.9291 0.9360
1 0.1 0.9363 0.9291 0.9362
5 1 0.9376 0.9305 0.9376
5 0.1 0.9300 0.9221 0.9299

10 1 0.9352 0.9279 0.9352
10 0.1 0.9335 0.9260 0.9334
20 1 0.9389 0.9320 0.9388
20 0.1 0.9283 0.9203 0.9286
50 1 0.9320 0.9243 0.9319
50 0.1 0.9391 0.9322 0.9389
100 1 0.9430 0.9365 0.9429
100 0.1 0.9398 0.9330 0.9397

teacher model (ResNet-101) 0.9474 0.9415 0.9471 98.93 42,396,298

4. Conclusions

In this work, we introduced knowledge distillation framework to improve the performance of
small neural networks in the field of remote sensing scene image classification. The core concept
behind this framework is to let the small model learn the categorical probability distribution from the
pre-trained and well-performed cumbersome model via matching high-temperature softmax output.
To evaluate this framework, we conducted several experiments on the AID datasets. The experimental
results showed that the KD framework was effective and increased overall accuracy (3% in AID
experiments, 5% in UCMerced experiments, 1% in NWPU-RESISC and EuroSAT experiments) for small
models and knowledge could be well distilled via high-temperature softmax. In experiments on AID
dataset, we also found that the KD training framework helped to train networks on small or unbalanced
datasets. In addition, based on the experimental results on AID dataset, we initially concluded that if
the dataset contains fewer categories, the KD framework needs a larger temperature-value T to achieve
better results. Moreover, to test the effectiveness and applicability of our framework, we conducted
experiments on three different datasets of remote sensing scenes: UCMerced dataset, NWPU-RESISC
dataset and EuroSAT dataset. The results of these additional experiments show that KD method can
improve the performance of small network models on datasets with lower spatial resolution images,
numerous categories, as well as fewer training samples.

In the future, we plan to investigate how to integrate KD framework with other model
compression methods. Another interesting opportunity for future work is to apply KD framework to
other fields of remote sensing, such as semantic segmentation and object detection.
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Appendix A. The Model Structures Used in This Paper

Appendix A.1. The Student Models in Experiments on AID, NWPU-RESISC, and EuroSAT Datasets

The structure of the student CNN model in experiments on AID dataset is shown in Table A1,
which has 1,012,830 parameters inside. It contains four convolutional layers, maxpooling layers,
a dropout layer and a fully-connected layer. The student models in experiments on NWPU-RESISC
and EuroSAT datasets are the same as it, except the last softmax layer. The output of the last softmax
layer has the same size as the number of categories.

Table A1. The structure of the student CNN model in experiments on AID dataset.

Layer type Attributes Output Size Parameters

Input 224, 224, 3 0
Conv2D filters: 64, kernel size: (3, 3), activation: ReLU 224, 224, 64 1792

MaxPooling2D pool size: (2, 2) 112, 112, 64 0
Conv2D filters: 64, kernel size: (3, 3), activation: ReLU 112, 112, 64 36,928

MaxPooling2D pool size: (2, 2) 56, 56, 64 0
Conv2D filters: 128, kernel size: (3, 3), activation: ReLU 56, 56, 128 73,856

MaxPooling2D pool size: (2, 2) 28, 28, 128 0
Conv2D filters: 128, kernel size: (3, 3), activation: ReLU 28, 28, 128 147,584

MaxPooling2D pool size: (2, 2) 14, 14, 128 0
Flatten 25,088 0

Dropout drop rate: 0.3 25,088 0
Dense units: 30 30 752,670

Softmax 30 0

Total 1,012,830

Appendix A.2. The Teacher Model and the Student Model in Experiments on UCMerced Dataset

The structure of the teacher model and the student model in experiments on UCMerced dataset
are shown in Tables A2 and A3 respectively. The teacher model flattens the 2D feature maps into 1D
features by fully-connected layers, while the student model exploits the Global Average Pooling (GAP)
policy [84] to save parameters.

Table A2. The structure of the teacher CNN model in experiments on UCMerced dataset.

Layer Type Attributes Output Size Parameters

Input 224, 224, 3 0
Conv2D filters: 64, kernel size: (3, 3), activation: ReLU 224, 224, 64 1792

MaxPooling2D pool size: (2, 2) 112, 112, 64 0
Conv2D filters: 128, kernel size: (3, 3), activation: ReLU 112, 112, 128 73,856

MaxPooling2D pool size: (2, 2) 56, 56, 128 0
Conv2D filters: 256, kernel size: (3, 3), activation: ReLU 56, 56, 256 295,168

MaxPooling2D pool size: (2, 2) 28, 28, 256 0
Conv2D filters: 512, kernel size: (3, 3), activation: ReLU 28, 28, 512 1,180,160

MaxPooling2D pool size: (2, 2) 14, 14, 512 0
Flatten 100,352 0

Dropout drop rate: 0.3 100,352 0
Dense units: 21 21 2,107,413

Softmax 21 0

Total 3,658,389
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Table A3. The structure of the student CNN model in experiments on UCMerced dataset.

Layer Type Attributes Output Size Parameters

Input 224, 224, 3 0
Conv2D filters: 32, kernel size: (3, 3), activation: ReLU 224, 224, 32 896

MaxPooling2D pool size: (2, 2) 112, 112, 32 0
Conv2D filters: 32, kernel size: (3, 3), activation: ReLU 112, 112, 32 9248

MaxPooling2D pool size: (2, 2) 56, 56, 32 0
Conv2D filters: 64, kernel size: (3, 3), activation: ReLU 56, 56, 64 18,496

MaxPooling2D pool size: (2, 2) 28, 28, 64 0
Conv2D filters: 64, kernel size: (3, 3), activation: ReLU 28, 28, 64 36,928

MaxPooling2D pool size: (2, 2) 14, 14, 64 0
Dropout drop rate: 0.3 14, 14, 64 0
Conv2D filters: 21, kernel size: (1, 1) 14, 14, 21 0

GlobalAveragePooling2D 21 1365
Softmax 21 0

Total 66,933
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