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Abstract: The characteristics of aerosol optical depth (AOD) over the Tibetan Plateau (TP) were
analyzed using 8-year (from January 2007 to December 2014) Cloud-Aerosol LiDAR and Infrared
Pathfinder Satellite Observation (CALIPSO) level 2 aerosol layer products. Firstly, the overall feature
of AOD over the Tibetan Plateau was investigated, including the seasonal diversities of AODS (the
sum of AODs from all aerosol layers), and A (the amounts of aerosol layers). Then we deeply studied
the characteristics of AOD within the lowest aerosol layer over TP, including the seasonal variations
of AOD1 (The AOD of the first aerosol layer), HB1 (the height of the first aerosol layer base), TL1

(the thickness of the first aerosol layer) and PAOD1 (The AOD proportion of the first aerosol layer).
The AODS was generally low (<0.2) in the main body of TP in each season. The value of A was
lower (~1–1.5) than other areas around the TP, indicating that the main body of TP generally had
only one aerosol layer. The HTT (height of the highest aerosol layer top) was higher in spring (~8 km)
and summer (~9 km), and lower in fall (~6.5 km) and winter (~6.5 km). The PAOD1 was high in
each season except spring. The high PAOD1 values (>0.9) indicated that the aerosols were mainly
concentrated in the lowest layer in summer, fall, and winter in the main body of TP. In spring,
the PAOD1 value was relatively low (~0.7–0.85) and the distribution exhibited obvious differences
between the southern (~0.85) and the northern (~0.75) TP, which appeared to be consistent with A.
Most of the aerosol loads in summer were concentrated in the lowest aerosol layer with high aerosol
loads. Most of the aerosol loads in fall and winter were also concentrated in the lowest aerosol layer,
but with low aerosol loads.

Keywords: aerosol layers; AOD; height of the highest aerosol layer top; CALIPSO; Tibetan Plateau

1. Introduction

Located in eastern Eurasia, the Tibetan Plateau (TP), with an average elevation of about 4000 m,
is the highest region on earth [1,2]. There are several large, high mountain ranges including the
Himalayas, the Transhimalaya, the Nyainqentanglha, and the Kunlun located in the TP [3]. Due to
special topographic features, the surface can absorb a large amount of solar radiation, which can affect
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the surface heat flux of water [4,5]. The thermal forcing of the TP can greatly influence and control the
east and the south Asian monsoon systems [6,7]. Several deserts, including the Taklamakan Desert in
the north, the Gobi Desert in the east, and Middle Eastern desert in the southwest, surround the TP. The
high dust aerosol content in the desert is likely to affect the aerosol composition and concentrations of
the TP [8,9]. The Indo-Gangetic plain, located to the south of the TP, has high aerosol content and also
influences the aerosols of the TP [2]. Therefore, studying the optical and distribution characteristics of
aerosols over TP is important [10–14].

The TP plays a central role in climatology of the region, and it was chosen as an ideal location
to monitor the long-term changes of the global environment and evaluate various impacts caused by
human activities [12–14]. Experiments on the aerosol characteristics of the TP have been conducted in
several previous studies [8,14–19], for example, the Taklamakan and Gobi deserts become the main
sources of dust aerosols which can be transported to the surrounding areas in spring, including the
TP [20–22]. Under the action of prevailing southwest winds, these aerosols sometimes can also be
transmitted to the central TP from South Asia [23]. The Himalayas prevent most black carbon (BC)
aerosols from entering into the TP, but the Yarlung Tsangpo River valley can act as a channel for
transmission of pollutants [24]. In addition, a natural north-south divide of aerosols exists in the
middle of the TP [25–28]. During the monsoon season, the southern and northern regions of the TP are
controlled by different climate systems resulting in variations in the characteristics of aerosols over the
north and south TP [25–27]. The main aerosol types were dust and polluted dust over the TP [28–31],
and the peripheral natural and local sources of aerosol emissions over TP could greatly impact the
regional atmospheric environment [9,29,30], for example, in South Asia, the atmospheric brown cloud
phenomenon results from burning biomass and fossil fuel consumption can lead to environmental
degradation [32,33]. In TP, carbon aerosols can reduce the amount of surface solar radiation, heating
the atmosphere and reducing the hydrologic cycle [32]. Nevertheless, previous aerosol work in TP was
mainly focused on dust-derived elements and their deposition fluxes, more investigation is needed to
understand the aerosol compositions and its effects on regional and global climate. Therefore, it is still
very important to study the aerosol characteristics and related environmental effects in TP [10–12].

Despite their low content, aerosols over TP have unique characteristics [34]. In this study, the
seasonal characteristics and vertical distributions of aerosol layers over TP were studied based on the
Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO). The accurate optical
thickness, layer amount, the height of the lowest aerosol layer base, and the height of the highest
aerosol layer top were first investigated using the CALIPSO data across eight years. It was found that
only one aerosol layer existed in the main body of the TP. Subsequently, we also studied the lowest
aerosol layer aerosol optical depth over the TP, specifically its proportion and the layer thickness.

2. Materials and Methods

CALIPSO satellite was launched on 28 April 2006, with the sun-synchronous orbit. The orbit
altitude is 705 km and the orbital inclination is 98◦. CALIPSO is part of the “A-train” constellation with
a repeat cycle of 16 days. CALIPSO passes the equator at 13:30 LST (local solar time) [35]. It provides
high-resolution vertical profile information for aerosols and clouds which can be used to study the
effect of aerosols and clouds on climate forcing as well as direct and indirect cloud feedback [35,36].
The Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP), a type of double wavelength
orthogonal polarization elastic backscatter LiDAR, is carried on CALIPSO. Its working wavelengths
are 532 nm and 1064 nm, and the 532 nm wavelength is equipped with a polarized channel. The
repetition frequency of the laser is 20.16 HZ and the Q-switch can provide ~20 ns pulse width. The
original laser wavelength is 1064 nm with pulse energy of 220 mJ. After doubling the frequency, the
laser can generate a wavelength of 532 nm with pulse energy of 110mJ. A beam expander device was
installed to reduce the divergence angle of the laser beam. CALIOP can work continuously on a global
scale to provide high temporal-spatial resolution information on clouds and aerosols [37].
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CALIPSO level 1 product includes LiDAR calibration data and level 2 data was obtained using
automatic layer detection algorithm based on level 1 data [35,36]. The level 2 aerosol layer products
had a horizontal resolution of 5 km and described the spatial position and the classification information
of aerosol layers such as aerosol subclasses [31,38]. Level 2 aerosol profile products mainly provided
the vertical profile information for backscatter, polarization, and extinction coefficients of the feature
layer [37]. In this study, level 2 aerosol layer products were used. The level 2 products can store up to
eight layers of information for aerosols and 10 layers of information for clouds.

Parameters used in this study include layer amounts, the height of the lowest aerosol layer base,
the height of the highest aerosol layer top and the aerosol layer optical depth at each aerosol layer
at 532 nm with an uncertainty less than 3, because the aerosol optical depth less than 3 was precise
and can meet the requirements in this study [37,38]. Additionally, the null values and values less than
or equal to zero were eliminated. The data were resampled to 1◦ × 1◦ grid. We used the dataset on
cloud-free conditions (30%) for day and night, and the resampling method was the mean values of
each valid sample in the 1 × 1 deg grid. The study area was located at 25◦~45◦N and 65◦~110◦E. This
area covered the entire TP, the Tarim basin, and the northern Indian peninsula (Figure 1). We defined
four seasons: spring (March to May), summer (June to August), fall (September to November), and
winter (December to February). The detailed description of used parameter is shown in Table 1.
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Figure 1. The geographical locations of the TP.

Table 1. Description of used parameters in this study.

Abbreviation Content Unit

Lon longitude
Lat latitude

AODN The AOD of the nth aerosol layer; N = 1, 2, . . . , 7, 8
AODS The sum of AODs from all aerosol layers
HTN The height of the nth aerosol layer top; N = 1, 2, . . . , 7, 8 km
HBN The height of the nth aerosol layer base; N=1, 2, . . . , 7, 8 km
HHT The height of the highest aerosol layer top km
TLN The thickness of the nth aerosol layer; N = 1, 2, . . . , 7, 8 km

A The amounts of all aerosol layers
PAODN The AOD proportion of the nth aerosol layer; N = 1, 2, . . . , 7, 8
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3. Results and Discussion

3.1. The Overall Characteristics of Aerosol Optical Depth (AOD) and Aerosol Layers over the TP

Figure 2 showed the seasonal maps of the samples for TP in this study. It can be observed that
the sample values were low in the main body of TP for each season. The sample values were high in
Indian Ganges River basin, especially in fall and winter. The sample values of the Tarim and Qaidam
basins were medium and become larger in fall and winter. The sample values might be related to our
quality control rules, regional terrain, and environment, which can lead to low sample values in the
main body of the TP [14,39]. Figure 3 showed the seasonal maps of the AODS over the TP. In this study,
the AODS represented the sum of AOD for each aerosol layer excluding the molecular part. Figure 3
showed seasonal variations in AODS observed in the study area. The seasonal mean AODS for the
~8-year study period were 0.25, 0.28, 0.21, and 0.19 in spring, summer, fall, and winter, respectively for
the whole TP. These results were consistent with those of Xu et al. [22]. In the study by Xu et al. [22],
the AOD values for spring and summer were less than ~0.50 over the TP, and the AOD values for fall
and winter were less than 0.25, which were a little higher than our results [28]. This difference could be
attributed to the equipment differences between CALIPSO and a multi-angle imaging spectrometer. In
our study, the AOD was high over the Tarim basin in spring (~0.65) and summer (~0.55) and became
low in fall and winter, but still higher than the main body of the TP. The underlying surface cover type
was the Taklamakan Desert and the main aerosol type in the Tarim basin was dust. High dust aerosol
load can lead to high AOD, especially during sandstorm outbreaks in the spring season [28].
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gridded at 1◦).

In Figure 3, the AODS was generally low (<0.2) in the main body of the TP in each season, because
fewer aerosol loads existed there and the TP acted as a natural barrier leading to low aerosol load in the
main body of the TP [13,40]. The highest AODS was found over the Qaidam basin in spring (~0.3) and
summer (~0.3), which was consistent with the results of Xu et al. [22]. Frequent dust storms existed in
the Tarim basin in spring and dust aerosols could be transported to the main body of TP, especially
to the Qaidam basin, thus contributing to the high AODS [28,34,41–43]. Fossil fuel combustion and
industrial emissions also existed over the Qaidam basin and could potentially contribute to the high
aerosol loads [42,44,45]. High AODS values observed over the entire northern Indian peninsula in
spring (~0.55) and particularly in summer (~0.75). In fall (~0.65) and winter (~0.5), high AODS mainly
existed on the southern edge of the TP. Unlike the Tarim basin, the aerosol types in the Indo-Gangetic
plain were mainly polluted continental aerosols, smoke, and polluted dust [28,34,46]. In the northern
Indo-Gangetic plain, the occurrence of polluted dust was higher than the dust [28,40]. Additionally,
higher smoke aerosols also occurred in the adjacent regions of the southern edge of the TP [13,28].
High local anthropogenic emissions leading to high aerosol loading in the Indo-Gangetic plain are also
likely to contribute to the high AODS [2,28,47].

In Figure 4, each pixel represents the seasonal mean of aerosol layers amounts at 1◦ spatial
resolution during the ~8 years of the study period. In the main body of the TP, the values of aerosol
layer amounts were lower (~1–1.5) than other areas around the TP for each season. This could be due
to the low aerosol loadings in the high-altitude terrain. Additionally, this phenomenon also indicated
that the main body of the TP had only one layer of aerosol for most of the time. The value of aerosol
layer amounts in spring was ~1.8, which was higher than other seasons due to frequent dust events in
the Tarim basin [28]. As a result, the dust could climb over the northern edge of TP to arrive at the main
body of the TP due to atmospheric circulation, thus leading to a high value of aerosol layer amounts in
the Tarim basin and the main body of TP. Northern areas of the TP could be used as an alternative
channel for aerosols transport from the troposphere to the stratosphere in spring and dust aerosols
can be transported easily from the northern edge to the main body of TP in spring and summer. On
the other hand, polluted dust also existed over the TP and had a relatively larger thickness in spring
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and summer, which could have contributed to the relatively high aerosol layer amounts over the main
body of TP in spring [28].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 16 
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The value of aerosol layer amounts in the Tarim basin (~2.2) and the Indian Ganges River basin
(~2.8) were high in spring and summer and relatively low (~2) in fall and winter. The Tarim basin and
the Indian Ganges River basin, unlike the main body of the TP, did not have a plateau-like mountainous
terrain, the aerosol load was much higher than that in TP. Additionally, the atmospheric convection is
known to be stronger in warm seasons, leading to higher occurrences of atmospheric stratification,
especially in the monsoon season [48,49]. In summer, more smoke existed over the Indo-Gangetic
plain and the less-soluble aerosol composition can be lifted up to the troposphere [47]. Subsequently,
this part of aerosol can be transported away from the Indo-Gangetic plain under the action of strong
upper tropospheric winds. This phenomenon could also contribute to high aerosol layer amounts in
the Indian Ganges River basin in summer.

It was interesting to note that the aerosol layer amounts in the main body of TP were slightly
higher in spring than in summer, however, as shown in Figure 3, AODS was a little lower in spring
than in summer. This phenomenon revealed that the mean AOD in each aerosol layer was a little
lower in spring than in summer. In summary, AODS and the aerosol layer amounts in the TP were
higher in spring and summer than in the other seasons, which was mainly due to seasonal variations
of atmospheric conditions and characteristics of the regional aerosol distributions [28].

Figure 5 showed the seasonal variations of the height of the lowest aerosol layer base over TP;
it was much higher in the main body of TP than that in the surrounding regions in each season, due
to the high-altitude terrain in the TP. The height of the lowest aerosol layer base in the main body of
the TP was high in summer (~7 km) and relatively low in fall (~5.5 km) and winter (~5.5 km). The
height of the lowest aerosol layer base in Indian Ganges River basin was below 2 km in each season
and did not show obvious seasonal variations. The height of the lowest aerosol layer base showed
slight seasonal variations in the Tarim basin, where the summer (~3 km) and spring (~2.5 km) had
higher values than fall (~1 km) and winter (~1 km). The height of the lowest aerosol layer base was
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~4 km in spring, summer, and fall over the Qaidam basin and were a little low in winter (~3.5 km),
thus exhibiting values lower than those over the main body of the TP.
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Figure 5. Seasonal maps of the lowest aerosol layer base over the TP: (a) spring, (b) summer, (c) fall,
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Figure 6 showed the heights of the highest aerosol layer top in each season, which was ~8 km,
~9 km, ~6.5 km, and ~6.5 km in spring, summer, fall, and winter, respectively. The highest values were
observed in summer, followed by spring. Xu et al. [22] reported dust as the main aerosol type in the
main body of the TP. The dust layer had the greatest depth in spring (11–12 km), followed by summer
(8–10 km). The dust and polluted dust layers had more thickness in spring and summer and had
relatively low altitudes (less than 8 km) over the TP in fall and winter, which was consistent with our
results [28]. Frequent dust activities and low precipitation can be conducive to transport of aerosols to
the upper troposphere and the stratosphere over the northern TP [13,28]. Vernier et al. [50] showed
that the non-volcanic aerosol layers can reach up to the altitude of 13~18 km over the TP during the
Asian summer monsoon [50,51]. On the other hand, smoke from local emissions had high loads in
the central TP in summer and smoke layers could also suspend at an altitude of 12 km over the TP in
summer, likely contributing to the high value of aerosol layer height in summer [28].

The height of the highest aerosol layer top had strong season variations in the Tarim basin, where
the summer (~6.5 km) and spring (~6 km) had higher values than fall (~4 km) and winter (~3.5 km).
Xu et al. [22] showed that dust can be generated and lofted over Tarim basin and be extended to
6–8 km over the northern Indian peninsula in spring. In the Indian Ganges River basin, the summer
(~6 km) and spring (~5 km) had higher values than fall (~3.5 km) and winter (~2.5 km). The height of
the highest aerosol layer top had strong seasonal variations in the Indian Ganges River basin. This was
different from the results of the height of the lowest aerosol layer base in Figure 5, which did not have
obvious seasonal variations in the Indian Ganges River basin. Xu et al. [22] reported that the aerosol
types in the Indian Ganges River basin were mainly smoke and polluted dust. The height of the smoke
aerosol layer in summer in the Indian Ganges River basin was higher than in other seasons, while the
height of the polluted dust layer was less than 4 km in fall and winter [28].
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Figure 6. Seasonal maps of the highest aerosol layer top over the TP: (a) spring, (b) summer, (c) fall,
and (d) winter over the eight-year data period from January 2007 to December 2014 (The AOD is at
532 nm and the map is gridded at 1◦).

3.2. The Characteristics of the Lowest Aerosol Layer over the TP

Since the main body of the TP has only one layer of aerosol for most time and the aerosol near the
earth’s surface in the planetary boundary layer has important effects on radiative forcing and human
health [52–54]. It was valuable and interesting to study the characteristics of the lowest aerosol layer
over the TP. Figure 7 showed the seasonal maps of the lowest aerosol layer AOD (AOD1) over the
TP. The AOD1 also showed certain seasonal variations, which was similar with the AODS as shown
in Figure 3. The AOD1 values were lower than the AODS. In the main body of the TP, the AOD1

was generally low (<0.1) across the four seasons. This could be attributed to the low aerosol loading
on-plateau, especially in the lowest layer. The AOD1 was also high over the Tarim basin in spring (~0.5)
and summer (~0.4) and became lower in fall (~0.2) and winter (~0.2). The lowest layer, mainly in the
Taklamakan Desert, was near the underlying surface over the Tarim basin. High dust aerosol loading
in the lowest layer can lead to high AOD1, especially in spring [28,46]. As shown in Figure 7, the AOD1

had high value in Indo-Gangetic plain in each season, especially in summer (~0.5). In fall (~0.4) and
winter (~0.4), high AOD1 mainly existed in the southern edge of TP. Additionally, high aerosol loading,
including polluted continental aerosols, smoke, and polluted dust, existed in Indo-Gangetic plain. The
higher occurrence of smoke existed in the southern edge of adjacent areas of TP. High aerosol loading
in the Indo-Gangetic plain in the lowest aerosol layer could have contributed to the higher AOD1 in
this case [2,28,47].



Remote Sens. 2018, 10, 696 9 of 17

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 16 

 

was easy for aerosols to be transported to the northern TP than the southern TP. Additionally, the 

Kunlun and Tanggula mountains in the main body of TP acted as natural barriers which resist 

aerosols when they pass across the northern edge. Subsequently, it was difficult for the aerosols to 

spread further southward. Consequently, the aerosol loading is higher in the northern TP than the 

southern TP [55,56]. On the other hand, the northern and southern Asian monsoonal system meet 

around 34~35°N in central TP [28]. The atmospheric circulation was in favor of dust entrainment, 

vertical lofting, and horizontal transport [8]. The vertical atmospheric circulations and strong 

updrafts can promote the aerosols to separate into more layers in the northern TP in spring. To 

summarize, the terrain and wind can lead to the high aerosol layer amounts in the northern TP and 

can result in the low PAOD1 in the northern TP in spring. In summer, the aerosol load was also 

relatively high (shown in Figure 3) in the main body of the TP. The high PAOD1 meant that most 

aerosol loads concentrated in the lowest aerosol layer in summer with high aerosol loads. On the 

contrary, in fall and winter, the aerosol load was low (shown in Figure 3) in the main body of TP, but 

the PAOD1 were still high in both seasons. This phenomenon showed that most aerosol loads also 

concentrated in the lowest aerosol layer in fall and winter. 

 

Figure 7. Seasonal maps of the lowest aerosol layer AOD (AOD1) over the TP: (a) spring, (b) summer, 

(c) fall, and (d) winter over the eight-year data period from January 2007 to December 2014 (The AOD 

is at 532 nm and the map is gridded at 1°). 

In the Tarim and the Indian Ganges River basins, the PAOD1 were primarily lower than those in 

the main body of the TP for all seasons, except winter. The aerosol layer amounts were high in the 

off-plateau terrains, which lead to the low PAOD1. On the other hand, the PAOD1 was lower in the 

Indian Ganges River basin in comparison with Tarim basin in each season. This meant that the aerosol 

layer amounts were higher in the Indian Ganges River basin than those in the Tarim basin in each 

season as shown in Figure 3. In winter, high PAOD1 values existed not only in the main body of TP 

but also in the Tarim and the Indian Ganges River basins. PAOD1 in the main body of TP was almost 

equal to that in the Tarim basin in winter. This revealed that the aerosol layer amounts were low and 

the whole aerosols almost existed in the lowest layer with low aerosol loads (Figure 7), leading high 

PAOD1 in winter. 

Figure 7. Seasonal maps of the lowest aerosol layer AOD (AOD1) over the TP: (a) spring, (b) summer,
(c) fall, and (d) winter over the eight-year data period from January 2007 to December 2014 (The AOD
is at 532 nm and the map is gridded at 1◦).

Figure 8 showed the seasonal maps of AOD proportion of the lowest aerosol layer (PAOD1) over
TP. In the main body of TP, the PAOD1 value was generally high in each season excepted spring. The
high proportion value (>0.9) indicated that the aerosols were mainly concentrated in the lowest layer
in summer, fall, and winter. In spring, the proportion value was relatively low (~0.7–0.85) and the
distribution exhibited obvious differences between the southern and northern TP. The northern TP
had low values (~0.75) and the southern TP had high values (~0.85). The demarcation runs from east
to west across the TP and it was located at 33~35◦N in the center of the TP, which appeared to be in
accord with the aerosol layer amounts in Figure 4. This phenomenon revealed that the northern TP
had more aerosol layers than the southern TP in spring. In the northern TP, above the lowest aerosol
layer, higher aerosol layers existed, which could have led to the low PAOD1. The northern part of TP
had lower altitudes and the southern edge of TP had relatively high altitudes [28,40]. Therefore, it was
easy for aerosols to be transported to the northern TP than the southern TP. Additionally, the Kunlun
and Tanggula mountains in the main body of TP acted as natural barriers which resist aerosols when
they pass across the northern edge. Subsequently, it was difficult for the aerosols to spread further
southward. Consequently, the aerosol loading is higher in the northern TP than the southern TP [55,56].
On the other hand, the northern and southern Asian monsoonal system meet around 34~35◦N in
central TP [28]. The atmospheric circulation was in favor of dust entrainment, vertical lofting, and
horizontal transport [8]. The vertical atmospheric circulations and strong updrafts can promote the
aerosols to separate into more layers in the northern TP in spring. To summarize, the terrain and wind
can lead to the high aerosol layer amounts in the northern TP and can result in the low PAOD1 in the
northern TP in spring. In summer, the aerosol load was also relatively high (shown in Figure 3) in
the main body of the TP. The high PAOD1 meant that most aerosol loads concentrated in the lowest
aerosol layer in summer with high aerosol loads. On the contrary, in fall and winter, the aerosol load
was low (shown in Figure 3) in the main body of TP, but the PAOD1 were still high in both seasons.
This phenomenon showed that most aerosol loads also concentrated in the lowest aerosol layer in fall
and winter.
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Figure 8. Seasonal maps of the proportion of the lowest aerosol layer AOD (PAOD1) over the TP:
(a) spring, (b) summer, (c) fall, and (d) winter over the eight-year data period from January 2007 to
December 2014 (The AOD is at 532 nm and the map is gridded at 1◦).

In the Tarim and the Indian Ganges River basins, the PAOD1 were primarily lower than those in
the main body of the TP for all seasons, except winter. The aerosol layer amounts were high in the
off-plateau terrains, which lead to the low PAOD1. On the other hand, the PAOD1 was lower in the
Indian Ganges River basin in comparison with Tarim basin in each season. This meant that the aerosol
layer amounts were higher in the Indian Ganges River basin than those in the Tarim basin in each
season as shown in Figure 3. In winter, high PAOD1 values existed not only in the main body of TP
but also in the Tarim and the Indian Ganges River basins. PAOD1 in the main body of TP was almost
equal to that in the Tarim basin in winter. This revealed that the aerosol layer amounts were low and
the whole aerosols almost existed in the lowest layer with low aerosol loads (Figure 7), leading high
PAOD1 in winter.

Additionally, it was necessary to further calculate the lowest aerosol layer thickness (TL1) over
the TP considering the lowest aerosol layer base (Figure 5). Figure 9 shows the maps of TL1 over the
TP in each season. The TL1 revealed certain seasonal variations in the study region. The TL1 were
lower in the main body of the TP than that in the Tarim and the Indian Ganges River basins for all
seasons except winter. The TL1 in the main body of the TB was ~1.5 km, ~1.5 km, ~1 km, and ~1 km in
spring, summer, fall, and winter, respectively. The TL1 were higher in both Indian Ganges River basin
(~2.3 km) and the Tarim basin (~1.8 km) in summer, followed by spring. This could be due to higher
aerosol loadings and strong atmospheric convection in spring and summer. In the lowest aerosol layer,
aerosols can be easily lifted in the upper atmosphere in summer and spring. The TL1 values were all
below 1 km and had no obvious difference in winter for the whole study area, which might be due to
the cold climate there.
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Figure 9. Seasonal maps of the lowest aerosol layer thickness (TL1) over the TP: (a) spring, (b) summer,
(c) fall, and (d) winter over the eight-year data period from January 2007 to December 2014 (The AOD
is at 532 nm and the map is gridded at 1◦).

3.3. The Correlations of Aerosol Properties over the TP

To better understand the spatiotemporal characteristics of aerosols over TP, the correlations
between the aerosol parameters in different seasons and sub-regions were investigated. In this part,
we divided the TP into three sub-regions: TB (Tarim Basin), MTP (The main body of TP) and IGB
(Indo-Gangetic Basin) to conduct the analysis. Figure 10 showed the correlation between AOD1 and
TL1, generally, there were logarithmic positive correlations in above three sub-regions, indicating that
the thicker the TL1, the greater the AOD1 values. This was consistent with our routine understanding,
because AOD is the integral of the extinction coefficient at distance, the thicker the TL1, the larger the
integral distance, and then the greater the AOD values.
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Figure 10. The correlations between AOD1 and the lowest aerosol layer thickness (TL1) over TP. (a) is
for TB, (b) for MTP, and (c) for IGB.
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In the TB sub-region, the correlation coefficients were larger in spring (0.85) and summer (0.85),
and relative smaller in fall (0.62) and winter (0.50). The reason may be the higher aerosol loadings in
spring and summer (Figure 3), resulting in larger AOD1 values (Figure 7); the TL1 also increased with
the dust aerosols, leading to a good positive correlation between TL1 and AOD1. In the IGB sub-region,
there was a similar situation as that in TB, the R2 of spring (0.78) and summer (0.88) was larger, and
it was smaller in fall (0.14) and winter (0.70), because IGB was also polluted by the aerosol loadings
(including polluted continental aerosols, smoke in the lowest aerosol layer) in summer and spring
(Figure 7). In MTP region, the correlation coefficients were less than 0.4 in each season, which may due
to the relatively lower aerosol loadings in this area (Figures 3 and 7).

In addition, the maximum TL1 in winter (Figure 10) was much smaller (~2 km) than that in
other three seasons (Figure 9), and the AOD1 was also low in winter over TB. However, the AOD1 in
winter was larger than the other three seasons (with the same TL1 values), which indicated that the
concentration of the extinction coefficient profile of aerosol in winter was greater than that in other
three seasons. In the same way, the concentration of the extinction coefficient of TB in summer was
lower than that of winter, but the maximum TL1 is larger (~5 km) in summer, which resulted in a larger
AOD1 in summer over TB. This phenomenon was also evident in IGB, the maximum TL1 in spring
and summer were larger (~5 km), while the TL1 in fall and winter were smaller (3 km). However,
AOD1 in fall and winter was larger than that in other three seasons, indicating that the concentration
of the extinction coefficient profile of aerosols in fall and winter was greater than that of the other
three seasons.

Figure 11 showed the correlations between A and PAOD1, there were significant logarithmic
negative correlation (R2 were larger than 0.97) in TB, MTP and IGB regions, indicating that the higher
the A, the lower the PAOD1. It was easy to understand that the more aerosol layers, the greater the
AODS. Since PAOD1 was defined as the quotient of AOD1 and AODS, the larger the denominator
AODS, the smaller the PAOD1. There were obvious positive linear correlations between A and HHT in
all sub-regions of TP (Figure 12), R2 values reached 0.8 in each season for above regions. This revealed
that the more aerosol layers (A), the higher the HHT, because the more aerosol layers (A), the thicker
of the aerosol layer in the whole atmosphere, resulting in the higher HHT.
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4. Conclusions

The optical and distribution characteristics of the aerosol layers, especially the lowest aerosol
layer over TP were studied in this study. The seasonal variations of the aerosol all layers AOD, layer
amounts, the height of the lowest aerosol layer base, the height of the highest aerosol layer top, the
lowest aerosol layer AOD, and its proportion and the lowest layer thickness were investigated over
the TP using eight years CALIPSO level 2 layer product.

The AODS was generally low (<0.2) in each season in the main body of TP because fewer
aerosols existed on-plateau than off-plateau. The value of aerosol layer amounts showed that the main
body of the TP mostly had only one aerosol layer for most of the time. Aerosol particles existed at
lower altitudes in fall and winter than spring and summer. This could be due to strong atmospheric
convection in spring and summer and dust aerosols can be easily lifted in the upper atmosphere in
summer and spring.

In the main body of TP, the AOD1 was generally low (<0.1) in the four seasons. This was due
to low aerosol loading on-plateau, especially in the lowest layer. The PAOD1 was generally high
in all seasons, except spring. The high PAOD1 value (>0.9) indicated that the aerosols were mainly
concentrated in the lowest layer in summer, fall, and winter. In spring, the PAOD1 value was relatively
low (~0.7–0.85) and the distribution exhibited obvious differences between the southern and northern
TP. The demarcation runs east to west across the TP and it was located at 33–35◦N in the middle of
the plateau, which appeared to be in accord with the aerosol layer amounts. In summer, most of the
aerosol loads concentrated in the lowest aerosol layer with high aerosol loads. In fall and winter, most
of the aerosol loads concentrated in the lowest aerosol layer with low aerosol loads. The correlations
between the aerosol parameters in different seasons indicated that the AOD1 had positive and negative
correlations with the lowest aerosol layer thickness and layer amount, respectively, and the highest
aerosol layer top was positively related with the layer amount over different sub-regions of TP. In all,
our above study could provide certain scientific understandings on aerosol optical properties over
the TP.
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