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Abstract: The Upper Zambezi River Basin (UZRB) delineates a complex region of topographic, soil
and rainfall gradients between the Congo rainforest and the Kalahari Desert. Satellite imagery shows
permanent wetlands in low-lying convergence zones where surface–groundwater interactions are
vigorous. A dynamic wetland classification based on MODIS Nadir BRDF-Adjusted Reflectance
is developed to capture the inter-annual and seasonal changes in areal extent due to groundwater
redistribution and rainfall variability. Simulations of the coupled water–carbon cycles of seasonal
wetlands show nearly double rates of carbon uptake as compared to dry areas, at increasingly
lower water-use efficiencies as the dry season progresses. Thus, wetland extent and persistence
into the dry season is key to the UZRB’s carbon sink and water budget. Whereas groundwater
recharge governs the expansion of wetlands in the rainy season under large-scale forcing, wetland
persistence in April–June (wet–dry transition months) is tied to daily morning fog and clouds, and by
afternoon land–atmosphere interactions (isolated convection). Rainfall suppression in July–September
results from colder temperatures, weaker regional circulations, and reduced instability in the lower
troposphere, shutting off moisture recycling in the dry season despite high evapotranspiration
rates. The co-organization of precipitation and wetlands reflects land–atmosphere interactions that
determine wetland seasonal persistence, and the coupled water and carbon cycles.

Keywords: dynamic wetlands; spectral reflectance; gross primary productivity; rainfall gradients;
Upper Zambezi River Basin

1. Introduction

Wetlands make up less than 9% of global land area, yet they are the largest terrestrial biological
source of carbon and the largest source of methane emissions worldwide [1]. Acting as storm buffers
and sites of groundwater recharge, wetlands are sensitive to environmental changes, particularly in
response to precipitation events and temperature fluctuations [2]. Changes in rainfall or groundwater
contributions can alter the areal extent, persistence, and integrity of wetlands and subsequently result
in the loss of important wetland functions, such as the capacity to store and filter water, as well as
the ability to balance carbon storage and greenhouse gas emissions [1,3–5]. As such, describing the
changes of wetland areal extent in response to meteorological conditions and subsurface discharge
is important for understanding the coupled water–carbon cycles, and land–atmosphere interactions,
among other areas of research [6].

Globally, wetland inventories lack the information necessary to locate and maintain wetland areas,
and wetland loss is documented poorly since few countries have accurate maps of wetland areas for
the past century or so (e.g., [7]). Roughly half of the world’s wetland areas have been lost due to human
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activities, and many existing wetlands are degraded from drainage, agriculture, and dam construction,
among other uses [1,8]. Therefore, it is increasingly important to accurately map wetlands dynamically,
particularly in order to target wetland restoration and conservation efforts. The Upper Zambezi River
Basin (UZRB) in Sub-Saharan Africa is an area of complex topography and hydrometeorology where
interactions between the Angola High Plateau (AHP), the Inter-tropical Convergence Zone (ITCZ),
and the Congo Air Boundary Zone (CABZ) determine the spatial and temporal distribution of water
resources, and inter-annual climate variability likely maps to the variability observed in vegetation
and wetland density [9]. However, long-term records and detailed spatial observations of surface
water, groundwater, and boundary layer water, carbon and energy fluxes are scarce for this region.

In order to accurately describe spatiotemporal changes in ecosystem water availability,
surface–groundwater interactions must be considered at the floodplain scale. Characterization of
surface–groundwater interactions in the UZRB requires dynamic identification of ephemeral wetland
areas that expand to store water during the wet season, and recede with aquifer discharge in the
dry season. Methods for determining the spatial and temporal variation of wetlands using remote
sensing observations include: delineating wetland extent with active [10–17] and passive microwave
sensors [18,19]; classifying wetland areas with optical imagers including Landsat ETM+, SPOT, ASTER,
and MODIS [20–27]; and inferring wetland area from indices derived from infrared satellite bands
sensitive to water, for example, the Normalized Difference Water Index (NDWI) [28,29]. The spectral
wavebands of microwave sensors and optical imagers tend to miss smaller scale features when
used to delineate wetlands and have difficulty distinguishing narrow wetlands, canopy density, and
the spectral signatures of other land cover classes [24,30,31]. Indices constructed from visible and
infrared satellite reflectance bands highlight specific surface properties like greenness and water
content [28,29,31]. While these indices are unable to distinguish effectively between different wetland
types or vegetation species, they map the physical surface characteristics that are indicative of wetlands.
We propose a combined approach where four different indices constructed from the visible and infrared
surface reflectances are treated as predictors for wetlands within a logistic regression model that allows
for dynamic wetland mapping.

Understanding the role of the wetland vegetation in the water budget of the UZRB is crucial
for evaluating the impact of changes in wetland extent on land–atmosphere interactions. It is of
particular importance to evaluate how seasonal precipitation impacts the persistence of wetlands
through the dry season and, in turn, how persistent wetlands support environments favorable to
rainfall processes. These areas serve as an additional moisture source for vegetation undergoing
photosynthesis and evapotranspiration. Thus, inter-annual and inter-seasonal variability in wetland
extent have implications for both the carbon and water cycles. This manuscript aims to show how
changes in wetland extent relates to local precipitation patterns and how ephemeral wetland persistence
impacts the coupled water–carbon cycles.

2. Data and Methods

2.1. Study Area

The UZRB serves as the headwater catchment of the fourth largest river in Africa, provides
essential freshwater resources to arid and semi-arid regions within its boundaries, and recharges the
Northern Kalahari Aquifer (Figure 1). This aquifer directly underlies this region and impacts vegetation
growth in the floodplains via nonlinear interactions between surface water and groundwater [32].
MODIS Normalized Difference Vegetation Index (NDVI) data show the inter-annual variability in
breaks in vegetation (Figure 2). Shallow (~3 m active depth) and clayey soils in the UZRB give way to
seasonal waterlogging, especially along drainage lines, favoring the establishment of wetlands [32].
Woodland savanna, grasslands and miombo dominate the UZRB’s diverse ecosystem, marking a
complex transition zone between the Congo tropical rainforest and the Kalahari Desert that reflects
spatial rainfall gradients.
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Figure 1. Location of the Upper Zambezi River Basin (UZRB) within the African continent with 
topographic data and stream networks at 15 arc sec spatial resolution from USGS HydroSHEDS 
(https://hydrosheds.cr.usgs.gov/data.php). (a) Digital elevation map of the African continent with box 
highlighting area in panel (b). (b) Digital elevation map of UZRB river basin with stream networks 
displayed. Gray lines indicate country borders. 

 
Figure 2. Maps of the UZRB study region. (a) Land cover for 2009 derived from MODIS MCD12Q1 
and simplified to represent southern Africa. The black rectangle shows the outline of the inset panels 
on the right side of the figure. (b–e) The Normalized Difference Vegetation Index (NDVI) for a wet 
(b,c) and dry (d,e) period in 2005 and 2009 showing the variability in vegetation around the wetlands. 
NDVI was derived from the MODIS MCD43B4 data as described in Section 2.3.1. The ZM-Mon 
(Mongu, Zambia) CarboAfrica site location is displayed. 

The UZRB’s diverse ecosystems ranges from wet and dry miombo forest in the northern 
mountains to savanna and grassland in the south, in accordance with the latitudinal transition from 
humid to semi-arid and arid regional climate. Wet miombo comprises dry evergreen forest, swamp 
forest, evergreen riparian forest, and wet dambos (shallow wetlands) and occurs where mean annual 
precipitation exceeds 1000 mm/year, while dry miombo occurs where annual rainfall is below 1000 
mm/year and consists of dry deciduous forest, deciduous riparian forest, and dry dambos [33]. The 
wet miombo also tends to have higher canopy heights, around 15 m tall. There is high spatial 

Figure 1. Location of the Upper Zambezi River Basin (UZRB) within the African continent with
topographic data and stream networks at 15 arc sec spatial resolution from USGS HydroSHEDS
(https://hydrosheds.cr.usgs.gov/data.php). (a) Digital elevation map of the African continent with
box highlighting area in panel (b). (b) Digital elevation map of UZRB river basin with stream networks
displayed. Gray lines indicate country borders.
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Figure 2. Maps of the UZRB study region. (a) Land cover for 2009 derived from MODIS MCD12Q1
and simplified to represent southern Africa. The black rectangle shows the outline of the inset panels
on the right side of the figure. (b–e) The Normalized Difference Vegetation Index (NDVI) for a wet (b,c)
and dry (d,e) period in 2005 and 2009 showing the variability in vegetation around the wetlands. NDVI
was derived from the MODIS MCD43B4 data as described in Section 2.3.1. The ZM-Mon (Mongu,
Zambia) CarboAfrica site location is displayed.

The UZRB’s diverse ecosystems ranges from wet and dry miombo forest in the northern mountains
to savanna and grassland in the south, in accordance with the latitudinal transition from humid to
semi-arid and arid regional climate. Wet miombo comprises dry evergreen forest, swamp forest,
evergreen riparian forest, and wet dambos (shallow wetlands) and occurs where mean annual
precipitation exceeds 1000 mm/year, while dry miombo occurs where annual rainfall is below
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1000 mm/year and consists of dry deciduous forest, deciduous riparian forest, and dry dambos [33].
The wet miombo also tends to have higher canopy heights, around 15 m tall. There is high spatial
variability in regional vegetation as seen by damp forests and grasslands growing only kilometers away
from dry badlands, which reflects large spatial variability in precipitation as well as in hydrogeology
and surface–groundwater interactions. Natural and anthropogenic burning are prevalent in this region.
The intensity and frequency of fires determines species prevalence as certain types of miombo are more
sensitive or resistant to fires, and a dynamic relationship exists in the development of successive tree
canopies that then control the effects of fire [34]. The dominant ecosystems in the UZRB exhibit spatial
heterogeneity that reflects topographic and rainfall gradients. The MODIS yearly land cover product
(MCD12Q1) over the region shows that wetlands develop preferentially in low-lying convergence
zones where dynamical interactions among hydrological and ecohydrological processes, including
surface–groundwater interactions, are most vigorous.

The annual rainfall, which increases with altitude and latitude, ranges from around 200 mm in a
dry year in the southernmost part of the UZRB to 1400–1600 mm in the northwest around the AHP.
The altitude-latitude rainfall patterns are governed by the migration of major climate boundaries. The
Benguela ocean current flows northward along the western coast of Africa and creates dry conditions
along the coast of Angola. The ITCZ shifts northward during the dry season (July/August) and
southward during the wet season (January) and the CABZ separates easterly and westerly flows and
corresponds to a moist, thermally unstable air mass that delivers heavy rainfall to the region [35]. The
Angola Low pressure center falls over the Angola highlands during the wet season and is associated
with heavy rainfall in Southern Africa [36]. During the wet season, the presence of the ITCZ, CABZ,
and the Angolan Low in the vicinity of the study region controls rainfall delivery within the UZRB [37].
Inter-annual variability in the relative positions of these boundary zones during the wet season can
have huge impacts on spatial and temporal precipitation distributions [36]. Further, the presence of
the CABZ extends the rainy season in the area around the AHP once the ITCZ moves northward [38].

2.2. Data

2.2.1. Land Surface Properties

The MODIS MCD43B4 Aqua and Terra combined Nadir BRDF-Adjusted Reflectance (NBAR)
product corrected for sun and view angle effects was used to generate a dynamic wetland dataset for
the UZRB [39]. These data are available at a 1 km spatial and 8-day temporal resolution with seven
wavebands in the infrared and visible ranges of the electromagnetic radiation spectrum (Table 1).
Other data sets include the quality control product, MODIS MCD43B2, at the same spatial and
temporal resolutions [40], and land cover classes following the International Geosphere-Biosphere
Programme (IGBP) system, MODIS MCD12Q1 land cover type product [41]. The land cover data
is a stationary product available for each year from 2002 to 2013 at 500 m resolution. Vegetation
phenology information retrieved from the MODIS Terra MOD15A2 product provides Fraction of
Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) reconstructed from surface
reflectance also at 1 km resolution every 8 days [42]. Finally, the MODIS MOD17A2 GPP product
(version 55) was obtained for comparison against model results [43].

Table 1. MODIS instrument specifications and tasseled cap coefficients from [44].

Band Light Wavelength (nm) Brightness (wb) Greenness (wg) Wetness (ww)

1 Red 620–670 0.4395 −0.4064 0.1147
2 Near-infrared (NIR1) 841–876 0.5945 0.5129 0.2489
3 Blue 459–479 0.2460 −0.2744 0.2408
4 Green 545–565 0.3918 −0.2893 0.3132
5 Near-infrared (NIR2) 1230–1250 0.3506 0.4882 −0.3122
6 Mid-infrared (MIR1) 1628–1652 0.2136 −0.0036 −0.6416
7 Mid-infrared (MIR2) 2105–2155 0.2678 −0.4169 −0.5087
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All MODIS data products were projected into Universal Transverse Mercator using the MODIS
Reprojection Tool [45]. Except for MOD17A2 GPP which is already corrected for cloud contamination,
the non-static data were then gap-filled, cloud corrected and smoothed using a Savitzy-Golay filter
in TIMESAT [46]. The static MCD12Q1 land cover data were spatially interpolated using a nearest
neighbor algorithm to the same 1 km grid as the MCD43B4 data before selecting the training data.
FPAR and LAI data were interpolated to the 5 km and 1-h resolution of the DCHM-V (Duke Coupled
Hydrology Model with Vegetation).

2.2.2. Meteorological Forcing and Ancillary Data

Atmospheric forcing datasets were acquired for modeling purposes from the European Centre for
Medium-Range Weather Forecasts (ECMWF) meteorological reanalysis data (ERA-Interim) available
at 6-h intervals at 0.703◦ [47]. These data include air temperature, air pressure, wind velocity, specific
humidity, and downward shortwave and long wave radiation. Precipitation accumulation data were
provided at 3-h and ~25 km resolution by the Tropical Rainfall Measuring Mission (TRMM) 3B42
version 7 and instantaneous vertical rainfall profiles from TRMM 2A25 at 5 km horizontal and 250 m
vertical resolution [48]. All forcing data were interpolated to the 5 km and 1-h model resolution using
nearest neighbor.

Temporally invariant (ancillary) data are used to determine regional soil characteristics. Soil
texture for the study area was extracted from the Harmonized World Soil Database at 30 arc sec spatial
resolution [49]. The soil texture map was spatially interpolated using nearest neighbor to the 5 km
model resolution. Soil parameters corresponding to saturated hydraulic conductivity, porosity, field
capacity, and wilting point were determined from a look-up table based on the soil texture data [50–52].

2.3. Wetland Probability Mapping Algorithm

Wetland probability maps were created using a logistic regression model that combines indices
derived from the surface reflectance data that are sensitive to surface greenness and water content.
The model was trained on the MODIS MCD12Q1 IGBP land cover classes over a three-year window
(2010–2012). All indices were derived from the MODIS MCD43B4 NBAR surface reflectance data. The
indices and logistic regression model are described here. Identification of flooded areas by way of
building indices from MODIS reflectance data has been used previously [32,53]; however, here we
build off of the methodology developed by [32] and evaluate the effectiveness of individual indices
before building the regression model.

2.3.1. NIR and NDVI

The near-infrared (NIR) band is represented by wavelengths between 841 nm and 876 nm on
the MODIS instrument. This waveband is centered on a non-absorptive region in the water vapor
spectra that minimizes interference (i.e., absorption) by atmospheric water vapor and allows for remote
sensing of land surface reflectance [54,55]. The reflectance of NIR increases during vegetation growing
seasons [56], tracing the plant life cycle [57]. This occurs because chlorophyll contained in leaves
reflects near-infrared light, while absorbing visible red light. These properties are exploited in the
NDVI, a measurement of greenness that represents a combination of vegetation properties, including
leaf chlorophyll content, leaf area, structure, and canopy cover. NDVI is a ratio that returns index
values between−1 and 1. Reflectance data from the MODIS instrument (specifications listed in Table 1)
were used to calculate NDVI with the following equation [58]:

NDVI =
NIR1 − red
NIR1 + red

. (1)

Generally, values of NDVI ranging from 0.30 to 1.00 indicate vegetation, with higher values
corresponding to greener areas. Negative values and low, positive values represent water and different
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soils, respectively [59]. NDVI is more sensitive to vegetation cover than it is to bare soil characteristics,
but its calculation does not completely remove the effects of background soil reflectance [60].

2.3.2. NDWI

The Normalized Difference Water Index (NDWI) measures surface water content based on the
spectral reflectance properties of water [61]. There are various ways to calculate NDWI using a
combination of visible green, near-infrared, or mid-infrared wavelengths. We use a modified NDWI
equation proposed by [62] that emphasizes open water features by utilizing the visible green and
mid-infrared reflectance bands [61]:

NDWI =
green − MIR1

green + MIR1
. (2)

Since water reflects visible green light and absorbs mid-infrared wavelengths, NDWI values
above or equal to 0 correspond to water, while negative values represent non-water surfaces [62].
This index is effective in reducing vegetation, soil, and built-up land noise, but may provide slight
overestimates in water content [61].

2.3.3. Tasseled Cap Transformation

The Tasseled Cap (TC) transformation separates spectral features in MODIS NBAR reflectance data
that relate to different land surface properties. The transformation consists of a principal component
analysis performed on the MODIS NBAR data to define initial axes, and then subsequent rotations to
separate non-vegetated, vegetated, and water and snow features [63]. The rotated components are
expressed as a linear combination of the seven reflectance bands with weights as defined in Table 1:

TCx = wx1(red) + wx2(NIR1) + wx3(blue) + wx4(green) + wx5(NIR2) + wx6(MIR1) + wx7(MIR2), (3)

where x corresponds to either brightness (b), greenness (g) or wetness (w).
The first set of coefficients developed from the TC transformation define the TC Brightness

index and are sensitive to changes in total reflectance, as well as physical properties influencing total
reflectance [63,64]. Based on a sensitivity analysis, soil variability is unambiguous, but differences in
vegetation density do not greatly alter TC Brightness [64]. Index values are positive, ranging from 0 to
around 0.75. Values closer to 0 correspond to water and/or barren areas, while values in the mid- to
upper range characterize savanna regions; forests and cropland are represented throughout the entire
range of values [63].

The second set of coefficients resulting from the TC transformation corresponds to the TC
Greenness index (Table 1). The TC Greenness index is the difference between the sum of visible
bands and near-infrared bands. Similarly to NDVI, TC Greenness is responsive to both high absorption
in the visible bands and high reflectance in the near-infrared bands because of plant pigments and
cellular leaf structure, respectively [64]. Higher greenness values represent greater densities of green
vegetation, while lower greenness values generally correspond to water and soils.

The third rotated component is the TC Wetness index calculated as the difference between the
sum of visible and near-infrared bands and longer infrared bands. The third set of coefficients derived
from the TC transformation represents this wetness index (Table 1). In this calculation, longer infrared
bands are suggested to be most sensitive to soil and plant moisture, with soil moisture status as the
primary characteristic. Variation in plant moisture has limited representation in TC wetness [64]. The
TC Wetness index yields negative values; those closest to 0 indicate the presence of bodies of water,
while negative values farther away from 0 characterize a moisture gradient in which an increase in the
magnitude of the index value generally corresponds to a decrease in moisture [63].
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2.3.4. Logistic Regression Model for Probability Mapping

The logistic regression model describes how predictor variables relate to the binary dependent
responses of wetland or non-wetland. In this case, the predictor variables are the indices described
above. The Bernoulli response is modeled as:

Loge

(
P(X)

1− P(X)

)
= ω0 + ω1x1 + · · ·+ ωnxn = ωTX, P(X) ∈ (0, 1), (4)

where P(X) = exp
(
ωTX

)
/
(
1 + exp

(
ωTX

))
and describes the probability of wetland presence within

a given pixel based on the predictors X. The regression coefficients ωi serve as weights for each of the
predictor variables that describe their relative contribution to the outcome probability. The nonlinear
probability is transformed to a generalized linear model with a binomial distribution and logit-link
function (Equation (4)). The logit transformation maps the probability from (0, 1) to (−∞, +∞) and
allows for explicit calculation of the probability of event success.

The weights for the logistic regression model were determined from a training period comprised
of three consecutive hydrologic wet years (2010 to 2012). First, a stationary land cover map was
generated by removing pixels that varied in land cover type over the three-year period (Figure 3a).
This stationary map was used to determine the fixed Bernoulli response values (i.e., wetland pixel = 1
and non-wetland pixel = 0). The resulting training pixels are summarized in Table 2. In the training
data, the predictor variables (i.e., indices calculated from MODIS NBAR) were selected from the rainy
seasons only (21 March–6 April) for training pixels randomly sampled from within the UZRB study
region. Several models were trained using different combinations of indices. Once the weights were
determined from the training data, the logistic regression model was applied to generate independent
probability maps of wetlands every 8 days.
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Figure 3. Stationary land cover map and histograms for unitless remote sensing indices using only
the pixels representing wetland and non-wetland in the training data. Stationary land cover data and
indices were derived from the MODIS MCD12Q1 and MCD43B4, respectively. (a) Stationary land
cover map derived from MODIS MCD12Q1 data for 2010–2012. (b–g) Histograms for wetland and
non-wetland pixels using NIR (b), NDVI (c), NDWI (d), TC Brightness (e), TC Greenness (f) and TC
Wetness (g).
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Table 2. Summary of training pixels (28,000 total) for each MODIS land cover type.

Land Cover MODIS
Code (IGBP)

Number of Pixels in
Stationary Map 1

Number of
Training Pixels

Water 0 480 0
Evergreen needle-leaf forest 1 0 0
Evergreen broadleaf forest 2 6732 2000

Deciduous needle-leaf forest 3 0 0
Deciduous broadleaf forest 4 77 0

Mixed forest 5 173 0
Closed shrublands 6 251 0
Open shrublands 7 1067 0
Woody savannas 8 355,893 4000

Savannas 9 432,824 4000
Grasslands 10 17,067 4000

Permanent wetlands 11 14,135 14,000
Croplands 12 879 0

Urban and built-up 13 251 0
Cropland/Natural vegetation mosaic 14 1343 0

Snow and ice 15 0 0
Barren or sparsely vegetated 16 3 0

1 Only pixels within the UZRB study region were considered.

The best predictors for the linear regression model are those where there are clear differences in
index values for wetland and non-wetland pixels. This can be observed in histograms of the indices
that show isolated peaks for wetland and non-wetland pixels (Figure 3). The histograms represent
moist conditions because the training data were obtained from only the rainy season. Thus, for a
dry period the resulting histograms could be drastically different. Individually, NIR, NDWI, TC
Brightness and TC Wetness show the clearest separations between wetland and non-wetland pixels.
Using combinations of these indices in the logistic regression model will help remove the overlapping
effects observed in the individual histograms.

2.3.5. Calculating Wetland Fractions

In order to compute wetland fractions at a given spatial scale, a threshold was determined to
transform wetland probabilities into a binary signal for wetland presence. An area-threshold analysis
was used to determine a cut-off probability above which we assume the 1 km pixel is completely
covered by wetlands (Figure 4). Different probability thresholds were used to determine wetland
presence at 1 km. We then calculated the area of the wetland extent over the entire UZRB basin at
each threshold during the period of maximum wetland extent for a given year (around 9 April). The
respective areas were compared to the wetland area determined by the stationary land cover map
(Figure 3). Through this analysis, a threshold of 70% was determined to best represent the presence of
wetlands; that is pixels with wetland probabilities ≥70% were assigned the value 1 and pixels with
wetland probability <70% were assigned the value 0. Maps of wetland fractions were then created by
averaging over 5 × 5 pixel windows. The resulting wetland maps are described in Section 3.1.
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Figure 4. Annual threshold-area curves used to determine how wetland probability corresponds to the
presence of wetlands at the 1 km native resolution. The x-axis shows the maximal wetland area for the
given probability threshold (y-axis). The vertical line indicates the wetland area from the stationary
land cover map (Figure 2a). The years with extremely low wetland extents shown in gray were not
used to determine the threshold. The remaining years range from 60–80% wetland probability to match
the stationary wetland area. Stationary wetland area was derived from the MODIS MCD12Q1 data as
described in Section 2.3.4.

2.4. Land-Surface Eco-Hydrology Modeling

The Duke Coupled Hydrology Model with Vegetation (DCHM-V) is used to investigate the
impact of temporal changes in wetland extent on regional hydrology and plant productivity. It is a
physically-based land-surface eco-hydrology model that consists of a mass balance to solve for soil
moisture and water fluxes, an energy balance to solve for soil temperature and heat fluxes, physics for
snow accumulation and melt, and a biochemical formulation of leaf photosynthesis [65–75]. In this
study, the DCHM-V is implemented in 1-D where vertical energy and water fluxes are evaluated at
each time step between the atmospheric boundary layer and 3 soil layers ranging from the surface
to bedrock.

The DCHM-V simulates C3 and C4 photosynthetic pathways. The key difference in C3 and C4

photosynthesis is the existence of bundle sheath cells that allow for higher rates of carboxylation.
The equations describing C4 photosynthesis within the DCHM-V are presented in Appendix A.
It is assumed that all wetland, grassland and savanna vegetation undergo C4 photosynthesis [76],
while all trees and shrubs (including miombo) undergo C3 photosynthesis [9,77]. When undergoing
photosynthesis, wetlands are treated as savannas in order to determine biophysical properties.

2.5. Simulating Contributions of Wetlands to Water and Carbon Budgets

For the purposes of this study, the DCHM-V runs at 5 km spatial resolution and an hourly
time-step. The wetland maps serve as a proxy for surface–groundwater interactions in the 1-D column
model DCHM-V. When wetlands are present, vegetation in and around the inundated region have
access to near-saturated, if not saturated, soil moisture. This added water source is able to sustain
vegetation productivity past the wet season and allow for extended periods of carbon uptake well
into the dry season. We use two simulations to evaluate how the presence of wetlands in the UZRB
enhance fluxes of carbon and water between the land surface and the atmosphere. The first simulation
uses the wetland maps to indicate where the pixels are fully inundated and soil moisture is fixed at
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saturation (WET). The second simulation assumes that wetlands are not present and soil moisture is
controlled by evapotranspiration, infiltration, gravity, diffusion, and capillary action (DRY).

3. Results

3.1. Wetland Mapping

The temporally and spatially varying wetland maps demonstrate the inter-annual and
inter-seasonal variability in wetland coverage not observed in the MODIS MCD12Q1 static land
cover data (Figures 5 and 6). The areal extent of wetlands in the MODIS product falls within the range
of the minimum and maximum extent from the dynamic wetland maps, except for in 2005 which was
an extremely dry year when the timing of wetland expansion appears to be controlled by groundwater
contributions rather than seasonal rainfall (Figure 5). Deficits in groundwater estimated by the Gravity
Recovery and Climate Experiment (GRACE) peak during the 2005 drought in the Zambezi basin
and are associated with a large decrease in terrestrial water storage [32,78]. The annual variability in
maximum wetland extent in Figure 5 follows the maximum observed discharge rates for the Zambezi
River [79]. The spatial patterns of the maximum wetland area in the dynamic maps reflect the observed
locations in the MODIS land cover data during the wet year (Figure 6). While in the dry year, the
riparian wetlands observed in the MODIS data that are not present on the day of maximum wetland
extent, but are observed over the course of the year (see Supplemental Materials Videos S1–S3).
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Figure 5. Bar graph showing the annual variability in wetland area. The minimum (black) and
maximum (gray) wetland areas for each year are displayed alongside the wetland area from the annual
MODIS MCD12Q1 product (white). The dates for the minimum and maximum areal extents are
displayed above their respective bars.
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3.2. Evaluation of C4 Photosynthesis Routine at Mongu, Zambia

The gross primary productivity (GPP) rates estimated by the C4 photosynthesis routine in the
DCHM-V are evaluated against the MODIS MOD17A2 GPP product and eddy-covariance flux tower
data collected at the ZM-Mon tower (Figure 7). The DCHM-V estimates compare well against the tower
observations, particularly during the dry season and green-up periods. The MODIS GPP product
severely underestimates both the DCHM-V and flux tower throughout most of the year, and by a
difference of more than 5 g C/m2/day during the peak of the growing season, and it is not able to
capture the variability in amplitude and overall seasonality of photosynthetic activity in this region.
The fact that MODIS underestimates productivity in African savanna and grassland ecosystems has
been documented previously and attributed to the uncertainties in incoming radiation, the insufficiency
of vapor pressure deficit as an indicator of water stress in the MODIS algorithm, differences in spatial
scale between MODIS pixels and flux tower footprints and subgrid heterogeneities (e.g., [80–82]).
Thus, the remainder of the results and the discussion regarding carbon and water fluxes in the UZRB
will focus on the DCHM-V and will not consider the MODIS data as a result of poor performance in
this region.
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Figure 7. Time series of daily GPP in 2008 from MODIS MOD17A2 (square), CarboAfrica flux tower
data (circle), and the DCHM-V estimates at the same location. Note the significant difference between
MOD17A2 and the DCHM-V estimates. The location of the ZM-Mon tower within the UZRB is shown
in Figure 2.
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3.3. Modeled Surface Fluxes

The results of the WET and DRY DCHM-V simulations indicate increases in ET and GPP for
wetland areas (Figure 8). Overall, the presence of wetlands allows for higher ET fluxes with the largest
increases during the driest months (May–October). During the wet season months, the differences
in ET between WET and DRY simulations are smaller because the added water available in soils is
minimal (Figure S2). Conversely, the additional soil moisture during the dry months do not translate
to GPP in the WET simulations which show the lowest increases in GPP between July and September,
because of higher ET, and thus lower water use efficiency.
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Figure 8. Bar plots of the monthly difference in ET (a) and GPP (b) for all wetland pixels over
the study period 2002 to 2012. ∆ = WET − DRY. Each bar is normalized by the area of wetlands
present. Dry season differences in July correspond to about 50% of GPP at ZM-Mon. Note the inverse
trends of ET and GPP in the wet–dry transition season (April–July) vis-à-vis the dry–wet transition
(September–December).

4. Discussion

4.1. Precipitation Gradients in the UZRB

A key land–atmosphere interaction in the UZRB is the growth of wetlands in response to
precipitation gradients. We previously found that wetlands develop most fully between February
and March in all years except 2005, which was an exceptionally dry year. Here the focus is on
understanding how these areas recede during the dry season. In this region, March marks the end of
the wet season and April serves as a transition period where infrequent and low rainfall accumulations
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are observed in “dry” years that tend to follow the elevation gradients (i.e., higher accumulations at
higher elevations). In “wet” years, with high rainfall accumulations compared to the climatological
average, large localized rainfall events occur in April and March in the midlands and lowlands of the
basin that are not seen in “dry” years (Figure 9). For the following analysis, wet and dry years are
distinguished by whether localized accumulations of rainfall are observed in the midland area in May.
This means the period 2002–2006 defines dry years and 2007–2012 are wet years, in agreement with
the hydrological drought observed in GRACE studies (e.g., [78]).
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Figure 9. Minimum, maximum, and mean monthly rainfall accumulations along a transect within the
UZRB for April and May in a wet year (2006) and a dry (2010) year. The minimum, maximum, and
average elevations along the transect positioned between 22.7◦ and 24◦ longitude are displayed.

4.2. Wetland Persistence and Dry Season Rainfall

The development of a spatially and temporally dynamic wetland classification in Section 2 permits
an evaluation of wetland persistence under different wet and dry precipitation regimes. Wetland
persistence is defined as the continuation of wetland areas past the onset of the dry season (i.e., May).
The persistence of the UZRB midland wetlands is of particular interest due to the occurrence of
localized rainfall events during wet years over this region (Figure 9, Figure S3). Dry years tend to have
very low wetland persistence past the month of June (DOY 180, Figure 10 and Figure S3). The year
2004 shows an area around −15.25◦ latitude where 40–50% of the wetland area continues through
August. This appears to be a case where remote groundwater contributions are playing a role, as there
are no significant precipitation events occurring along this transect between May and August of 2004,
and groundwater deficits nearly subside during the dry season in 2004 [78]. In wet years, high wetland
fractions persist over large areas within the UZRB midlands (Figure 11, Figure S4).
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Figure 10. Wetland persistence in dry years. These plots show the maximum wetland fraction along a
transect located between 22.7◦ and 24◦ longitude. The subset area is displayed in Figure S1. In years
2002–2006 most wetland areas dry rapidly after the end of May (approximately day 150). Only very
small areas persist until later in the dry season. Hövemöeller diagrams of rainfall in dry years over the
same region are presented in Figure S3.

In order to better understand how the persistence of wetlands relates to localized rainfall events
in the transition season, we evaluate the average diurnal cycles of local rainfall events around the
midland wetlands. The rainfall accumulations from TRMM 3B42 consistently demonstrate a dual-peak
in the diurnal cycle of rainfall in the early morning around 7–9 a.m. LST and in the afternoon between
5–8 p.m. LST in the transition season April–June (Figure 12, Figure S5). The bimodal diurnal pattern
observed in the TRMM data is consistent with wet season low level cloud and fog formation patterns
in the morning and late afternoon thunderstorms [83]. A word of caution is necessary to highlight
the relatively coarse resolution of TRMM 3B42 at approximately 25 km2, which explains the very low
rainfall rates per unit area in the diurnal cycle estimates (see also Figure S5). Further evaluation of
these rainfall events using TRMM Precipitation Radar (PR) reflectivity (2A25 product) shows that
the morning events are very shallow events with low reflectivity corresponding to radiation fog and
low level clouds formed over the inundated areas in the early morning (Figure 13). Afternoon events
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correspond mostly to isolated shallow convection (<5 km height, not shown) with deeper convection
features and higher intensity localized storms in the beginning of the transition season through
early May (e.g., Video S4 for May 2009) as illustrated by the TRMM PR overpass example shown in
Figure 13 for May 2008. Note the daily re-occurrence of isolated precipitation cells in the midland
wetland region (highlighted by purple box in Figure S1). The TRMM 3B42 daily rainfall accumulations
at approximately 25 × 25 km2 is relatively low, but the reflectivity profiles from TRMM 2A25 at
5 × 5 km2 suggest co-organization of individual afternoon rainfall cells and wetland pixels at high
spatial resolution. This spatial organization over the wetland areas is similar to the classical model of
cumulus development linked to high instability in the boundary-layer when the diurnal amplitude of
Bowen ratio (sensible/latent heat fluxes) and the Bowen ratio proper are very small and near-surface
relative humidity is high [84].Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 27 
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Figure 11. Wetland persistence in wet years. These plots show the maximum wetland fraction
along a transect located between 22.7◦ and 24◦ longitude. The subset area is displayed in Figure S1.
In years 2007–2012 many wetland areas continue to exist after the end of May (approximately day 150),
specifically between −15◦ and −15.5◦ latitude. Hövemöeller diagrams of rainfall in wet years over the
same region are presented in Figure S4.
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Figure 12. Average diurnal cycle of TRMM 3B42 rainfall accumulations for the month of May. The
diurnal cycle is marked by a bi-model precipitation pattern with peaks in morning and evening.
Only pixels within the midland area marked by Figure S1 with monthly rainfall totals greater than
25 mm/month were considered for this analysis.

Previous work demonstrated that moisture delivered to the atmosphere via plant
evapotranspiration contributes up to 60% of energy available for convection along the eastern slopes
of the Andes [85], which results in a decrease in precipitation up to 50% along the Andean slopes.
Over the low-lying areas of the Amazon basin, the change in precipitation is on the order of 75%,
where evapotranspiration is the dominant source of moisture [85,86]. Similarly, in a study on
precipitation recycling in west Africa local evaporation served as the moisture source for 27% of
local precipitation [87]. Figure 14 shows a conceptual illustration of the conditions favorable to develop
land–atmosphere interactions in the UZRB consistent with observations. First, initial conditions that
allow for regional wetland expansion are set by wet season precipitation linked to large scale forcing
mostly at higher elevations in the AHP. Infiltration and groundwater recharge occur, followed by
lateral redistribution by subsurface flows and discharge along the mid-basin low lying convergence
areas. Second, rainfall recycling in the transition season (April–June) driven by up-valley daytime
flows converging to the mid-basin region enhance cumulus convection locally, leveraging moist
energy available from surface fluxes. Rainfall suppression in the dry season proper (July–September)
reflect colder temperatures and depressed dew points with regard to morning fog, and the collapse
of land–atmosphere interactions due to weakening of regional circulations, increased stability and
reduced moisture supply. Thus, reductions in wetland extent in the UZRB limit the timing and amount
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of evapotranspiration and water vapor content in the lower troposphere, and in turn may impact low
level stability and thus rainfall. The spatial and temporal scales over which this feedback between
wetland persistence and local convective storms should be further investigated using a coupled
land–atmosphere model.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 27 
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Previous work demonstrated that moisture delivered to the atmosphere via plant 
evapotranspiration contributes up to 60% of energy available for convection along the eastern slopes 
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precipitation [87]. Figure 14 shows a conceptual illustration of the conditions favorable to develop 
land–atmosphere interactions in the UZRB consistent with observations. First, initial conditions that 
allow for regional wetland expansion are set by wet season precipitation linked to large scale forcing 
mostly at higher elevations in the AHP. Infiltration and groundwater recharge occur, followed by 
lateral redistribution by subsurface flows and discharge along the mid-basin low lying convergence 
areas. Second, rainfall recycling in the transition season (April–June) driven by up-valley daytime 
flows converging to the mid-basin region enhance cumulus convection locally, leveraging moist 
energy available from surface fluxes. Rainfall suppression in the dry season proper (July–September) 
reflect colder temperatures and depressed dew points with regard to morning fog, and the collapse 
of land–atmosphere interactions due to weakening of regional circulations, increased stability and 
reduced moisture supply. Thus, reductions in wetland extent in the UZRB limit the timing and 
amount of evapotranspiration and water vapor content in the lower troposphere, and in turn may 
impact low level stability and thus rainfall. The spatial and temporal scales over which this feedback 
between wetland persistence and local convective storms should be further investigated using a 
coupled land–atmosphere model. 

Figure 13. Left panel (a) Cumulative monthly rainfall in May 2008 from TRMM 3B42 rainfall product
(~25 km resolution). Black box indicates area of interest for land–atmosphere interactions and is the
same area shown in Figure S1. Top right panel (b) Climatology of the diurnal cycle of rainfall reflectivity
from TRMM PR 2A25 product (~5 km resolution) for the month of May. High reflectivity indicates
high rainfall rates (i.e., intense storms events). These events only occur between 2007 and 2012. Bottom
right panel (c) TRMM PR 2A25 reflectivity profiles as examples of isolated deep (early in the transition
season) and shallow (daily) isolated convection at around 5:45 p.m. LST on 6 May 2008. The terrain
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4.3. Impact of Wetlands on Productivity

It was previously shown that the presence and persistence of wetlands allowed for increases in
ET and GPP in the UZRB. Water use efficiency (WUE) describes how efficiently vegetation uses water
(ET) to undergo photosynthesis and fix atmospheric CO2 (GPP) and is defined as WUE = ET/GPP.
WUE is computed for both the WET and DRY simulations (Figure 15). During the wet season
(November–March), vegetation in the WET simulation is slightly more water use efficient. On the
other hand, in the dry months WUE efficiency is much lower in the WET simulation compared to the
DRY simulation. Wetland vegetation in the WET run has ready access to soil water and does not need
to efficiently use water for photosynthesis. In the DRY simulation some effects of water scarcity are
setting in forcing plants to be more efficient in their water usage during the dry season. This result
aligns with previous findings that productivity of African grassland vegetation is highly sensitive to
seasonal rainfall [88–90]. A limitation of this analysis is the inability to account for methane emissions
from flooded areas [3,91]. Future work should evaluate how the seasonal and annual variability of
wetland extent impact the overall carbon budget in the UZRB.
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Figure 15. Bar plots of the monthly difference in water use efficiency (WUE) for all wetland pixels over
the study period 2002 to 2012. ∆ = WET − DRY. Each bar is normalized by the area of wetlands present.
Note that area of wetlands disappear at lower elevations in dry years, and thus the more efficient water
use later in the dry season reflects the small areas of wetlands at higher elevations, colder temperatures,
and where subsurface flow is the source of moisture. The water-use overhead of productivity increases
nonlinearly through the dry season.

5. Conclusions

The co-variability of seasonal rainfall, wetland areal extent and how it impacts the coupled
water–carbon cycles, and thus the UZRB carbon sink, was evaluated with a focus on wet-dry transition
and dry season processes. The persistence of midland wetlands within the UZRB depends on localized
rainfall events early in the dry season. The diurnal cycle of these events shows high intensity rainfall
features in the afternoon and early evening. These findings suggest the potential for increased ET
from wetlands to contribute as a moisture source for localized convective events, which should be
evaluated further. The overall impacts of persistent wetlands corresponds to less efficient water use
for photosynthesis during the wet season, but higher overall photosynthesis rates because wetland
vegetation has unlimited access to water in soils. This work demonstrates the importance of wetlands
in the UZRB in the coupled carbon and water budgets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/5/692/s1,
Figure S1: Location of midland wetland areas used for analysis in Section 4 is highlighted in light purple, Figure S2:
Bar plots of the monthly difference in soil moisture for all wetland pixels over the study period 2002 to 2012.
∆ = WET − DRY. Each bar is normalized by the area of wetlands present, Figure S3: Hövemöeller diagrams of
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rainfall in dry years over the same region presented in Figure S1, Figure S4: Hövemöeller diagrams of rainfall in
wet years over the same region presented in Figure S1, Figure S5: Average diurnal cycle of TRMM 3B42 rainfall
accumulations for the month of May. The diurnal cycle is marked by a bi-model precipitation pattern with
peaks in morning and evening. Only pixels within the midland area marked by Figure S1 with monthly rainfall
totals greater than 25 mm/month were considered for this analysis. Note dual peaks in wet years in the early
morning and in the afternoon, Video S1: Annual Wetland Classification from the MODIS MCD12Q1 Land Cover
product. Location of wetlands are displayed over a digital elevation map from SRTM. Topographic contours are
displayed as black lines at every 100 m between 650 m and 1550 m, Video S2: Wetland fractions corresponding
to the 8-day MODIS retrieval periods for 2005 (dry year). Topographic contours are displayed as black lines at
every 100 m between 650 m and 1550 m, Video S3: Wetland fractions corresponding to the 8-day MODIS retrieval
periods for 2010 (wet year). Topographic contours are displayed as black lines at every 100 m between 650 m
and 1550 m, Video S4: Daily rainfall accumulations during May 2009 using TRMM 3B42. Topographic contours
are displayed as black lines at every 100 m between 650 m and 1550 m. The black box highlights the area of the
midland wetlands.
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Appendix A. C4 Photosynthesis Equations for DCHM-V

Appendix A.1. Overview

The DCHM-V models photosynthesis under a biochemical framework where it is assumed
that the rate of carbon assimilation scales with the rates of key processes in the light and Calvin
cycles. Photosynthesis is limited by either Rubisco activity or RuBP regeneration. Rubisco
(ribulose-1,5-bisphosphate carboxylase/oxygenase) is the enzyme that catalyzes the reaction between
RuBP (ribulose-1,5-bisphosphate) and atmospheric CO2 beginning the process of carbon fixation and
ultimately the conversion of CO2 to sugars. C3 photosynthesis is called as such because this first step,
known as the Photosynthetic Carbon Reduction (PCR) cycle, results in a three-carbon compound,
phosphoglycerate (3-PGA). However, Rubisco catalyzes two competing processes: (1) Carboxylation
through which carbon is converted to sugars, and (2) oxygenation, where oxygen is added to RuBP
creating phosphoglycolate which serves no metabolic purpose and is toxic at high concentrations [92].
Processing phosphoglycolate requires photorespiration which is energy demanding and results in a
loss of 25–30% fixed carbon [93]. C4 photosynthesis overcomes this limitation by spatially separating
the sites of CO2 fixation and assimilation, thus suppressing the oxygenase activity of RuBP. Reducing
the need for photorespiration means a more efficient use of CO2 for C4 plants.

C4 plants accomplish more efficient carbon assimilation through the evolutionary adaptation of a
bundle sheath cell. Unlike in C3 photosynthesis where carbon fixation and assimilation both occur
in the Mesophyll cell, in C4 photosynthesis CO2 is converted into a four-carbon organic acid (i.e., C4)
through carboxylation of phosphoenolpyruvate (PEP) by PEP-carboxylase (PEPc). The C4 compounds
are then sent to the bundle sheath cells and decarboxylated to release CO2. In the bundle sheath cells,
Rubisco interacts with CO2 and forms the 3-PGA as part of the PCR cycle. Thus, a biochemical model
for C4 photosynthesis must account for the limiting effects of both Rubisco and PEPc kinetics under
light-saturated conditions.

https://lpdaac.usgs.gov/data_access/data_pool
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Appendix A.2. C4 Photosynthesis Model Equations

Biochemical modeling of C4 photosynthesis follows from the methods developed for C3

photosynthesis. Key processes that limit photosynthetic activity are identified and represented as
a Michaelis–Menten kinetics model. In C4 plants, these limiting processes include rate of electron
transport (J) and Rubisco carboxylation (Ac), as seen in C3 photosynthesis, with the addition of the
rate of PEP carboxylation (Vp). Net photosynthesis is assumed to be the minimum of the carboxylation
rate (ACARB) and the RuBP regeneration (ARuBP).

An = min{ARuBP, ACARB} (A1)

The equations for ACARB and ARuBP are presented below. The model variables and parameters
are summarized in Tables A1 and A2, respectively.

Appendix A.2.1. Carboxylation Equations

Carboxylation rate [94]:

ACARB = min
{
(Vp + gbsCm − Rm), Vcmax − Rd

}
(A2)

Rate of PEP carboxylation [94]:

Vp = min
{

CmVpmax

Cm + Kp
, Vpr

}
(A3)

Rate of Rubisco carboxylation at high irradiance [94]:

Vc =
CsVcmax

Cs + Kc(1 + Os/Ko)
(A4)

Photorespiratory Compensation Point [94]:

Γs =
γ∗Om + Kc(1 + Om/Ko)(Rd/Vcmax)

1 + Rd/Vcmax
(A5)

Γ =
gsKpΓs

Vpmax
+

RmKp

Vpmax
(A6)

Appendix A.2.2. RuBP Regeneration/Election Transport Rate Equations

Rate of RuBP regeneration under drying conditions [94]. Dry conditions correspond to less than
6.5% soil moisture in the median layer where most roots are located.

ARuBP = min
{(

xJt

2
− Rm + gbsCm

)
,
(
(1− x)Jt

3
− Rd

)}
(A7)

Jt = Jm (A8)

Rate of RuBP regeneration under wet conditions [94]:

ARuBP =
(1− x)Jt

3
− Rd (A9)

Jt = Jm + Js (A10)

Jm = pJ =
Jmax ∗ pIAPAR

pIAPAR + 2.1Jmax
(A11)
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Js = 4.5
(

1 +
7Γ
3Cs

)
Vc (A12)

Appendix A.2.3. Temperature Dependencies for Maximum Enzymatic Rates

Maximum enzymatic rates (i.e., Vcmax, Vpmax, and Jmax) [95]:

f (Tk) = k25 exp
[

Ea(Tk − 298.15)
298.15 R Tk

]1 + exp
(

298.15 ∆S−Hd
298.15R

)
1 + exp

(
Tk ∆S−Hd

Tk R

) (A13)

Michaelis–Menten constants (Kc, Kp, Ko) [95]:

f (Tk) = k25 exp
(

Ea(Tk − 298.15)
298.15 R Tk

)
(A14)

Table A1. C4 Photosynthesis Model Variables in DCHM-V.

Model Variable Description Units

An Net carbon assimilation rate mol C m−2 s−1

ARuBP RuBP regeneration rate mol C m−2 s−1

ACARB Carboxylation rate mol C m−2 s−1

Vp Rate of PEP carboxylation mol C m−2 s−1

Vc Rate of Rubisco carboxylation at high irradiance mol C m−2 s−1

Vcmax Maximum rate of carboxylation by Rubisco mol C m−2 s−1

Kp Michaelis–Menten constant for PEP carboxylase of CO2 ubar
Vpmax Maximum rate of carboxylation by PEP mol C m−2 s−1

Jmax Maximum rate of electron transport mol C m−2 s−1

Γs CO2 compensation point in bundle sheath cells mol mol−1

Cs Bundle-sheath CO2 partial pressure unity
Os Bundle-sheath O2 partial pressure unity
Jm Rate of electron transport in mesophyll cells mol C m−2 s−1

Js Rate of electron transport in bundle sheath cells mol C m−2 s−1

Jt Total rate of electron transport mol C m−2 s−1

Table A2. C4 Photosynthesis Model Parameters in DCHM-V.

Model Parameter Description Value Units Reference

gbs Bundle sheath conductance 3 mmol m−2 s−1 [96]
Cm CO2 concentration in mesophyll cell 0.7Cair mol m−3 [67]

Cair
CO2 concentration outside the leaf
boundary layer 0.0145 mol m−3 [67]

Rm Mesophyll mitochondrial respiration 0.5Rd umol C m−2 s−1 [94]
Rd Leaf mitochondrial respiration 0.01Vcmax umol C m−2 s−1 [94]
Vpr PEP regeneration rate 80 umol C m−2 s−1 [94]

Oi = Om = Os Intercellular O2 concentration 210 mmol mol−1 [97]
x Partitioning factor of electron transport rate 0.4 unity [94]

γ∗ Half of reciprocal of Rubisco specificity 0.000193 unity [94]
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Table A3. C4 Photosynthesis Temperature Response Parameters (with standard errors).

Parameter Units Measured
at 25 ◦C

k25 [umol
m−2 s−1] Ea [kJ mol−1] ∆S [kJ mol−1

K−1]
Hd

[kJ mol−1] Reference

Kp
Pa CO2 16.0 ± 1.3 13.9 ± 1.0 36.3 ± 2.4 - - [95]

µM HCO3 62.8 ± 5.0 60.5 ± 2.4 27.2 ± 2.8 - - [95]
Kc Pa CO2 94.7 ± 15.1 121 ± 7 64.2 ± 4.5 - - [95]
Ko kPa of oxygen 28.9 ± 5.4 29.2 ± 1.9 10.5 ± 4.8 - - [95]
Sc/o Pa/Pa 1610 ± 66 1310 ± 52 −31.1 ± 2.9 - - [95]

Vpmax

µmol HCO3/m2/s 450 ± 16 - - [95]
Normalized to 1 at 25 ◦C 1 1.01 ± 0.07 94.8 ± 40.8 0.25 ± 0.12 73.3 ± 39.6 [95]

µmol/m2/s - 125 70,373 376 177,910 [96]

µmol/m2/s - 159.9 ± 6.8 175.2 ± 3.8 1

71.6 ± 1.0 2 - - [98]

Vcmax

Normalized to 1 at 25◦ 0.96 ± 0.04 0.89 ± 0.05 78.0 ± 4.1 - - [95]
µmol/m2/s - 32 67,294 472 144,568 [96]

mol/m2/s - 3.9 ± 0.3 100.6 ± 2.0 1

56.1 ± 1.4 2 [98]

Jmax µmol/m2/s - 191 77,900 627 191,929 [96]
1 measured between 0 and 12 ◦C; 2 measured between 18 and 42 ◦C.
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