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Abstract: Retrieval of forest biophysical properties using airborne LiDAR is known to differ between
leaf-on and leaf-off states of deciduous trees, but much less is understood about the within-season
effects of leafing phenology. Here, we compare two LiDAR surveys separated by just six weeks
in spring, in order to assess whether LiDAR variables were influenced by canopy changes in
Mediterranean mixed-oak woodlands at this time of year. Maximum and, to a slightly lesser
extent, mean heights were consistently measured, whether for the evergreen cork oak (Quercus suber)
or semi-deciduous Algerian oak (Q. canariensis) woodlands. Estimates of the standard deviation
and skewness of height differed more strongly, especially for Algerian oaks which experienced
considerable leaf expansion in the time period covered. Our demonstration of which variables are
more or less affected by spring-time leafing phenology has important implications for analyses of
both canopy and sub-canopy vegetation layers from LiDAR surveys.
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1. Introduction

Airborne laser scanning, or Light Detection and Ranging (LiDAR), is a proven technique for
making precise and accurate three-dimensional measurements of forest and other complex vegetation
canopies over large spatial extents [1–3]. As such, it is a powerful tool for an increasing range of
applications in forestry, ecology and conservation. These include habitat suitability modelling [4–6] and
the monitoring of carbon stocks, which is an essential requirement of projects for reducing emissions
from deforestation and forest degradation (REDD+) [7,8].

At the heart of LiDAR’s effectiveness in modelling vegetation three-dimensional structure is
a predictable relationship between return data and the arrangement (e.g., heights and densities) of
component parts of the vegetation. However, there is still much to be understood in relation to
vegetation–laser pulse interactions [9]. Repeat LiDAR surveys of deciduous/mixed forests in leaf-off
and leaf-on states indicate that foliage development of the tree has a significant influence on the
scatter of LiDAR height measurements, and therefore the retrieval of information on parameters of
interest for individual trees [10] and forest plots [11–15]. Laser penetration rate through the canopy is
greater in leaf-off conditions, providing better information capture on the presence of an understorey
(of suppressed trees and shrubs), but potentially less optimal for the modelling of the forest canopy
structure itself [16]. Indeed, a better representation of ground and understorey layers in leaf-off state of
Japanese deciduous forest has been shown [17], and comparable results were obtained for an English
mixed deciduous woodland [16] where as much as 57% of last return height measurements were
from the ground layer (<1 m) and 42.5% from the understorey layer (1–8 m). The combination of
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leaf-on and leaf-off data can help improve tree species classification, and in one example this has been
demonstrated using LiDAR intensity information [12].

Less attention has been given to the more subtle seasonal effects on the LiDAR modelling of
evergreen or mixed canopies. Much of the world’s forest cover, which amounts to some 30–35% of the
land surface or around 39–45 million km2 [18], is dominated by evergreen trees, including coniferous
(principally boreal) and broadleaved evergreens. The latter include the majority of Mediterranean forests
and woodlands, whose canopies are composed of evergreen oak (Quercus spp.) and other sclerophyllous
trees such as phillyrea, rhamnus and olive. Multi-temporal LiDAR is being increasingly employed
for the investigation of tree growth, forest patch, vegetation and biomass dynamics (e.g., [19–25]).
An understanding of the robustness of LiDAR metrics in the face of seasonal leafing phenology is
important for making correct inferences in such studies [26].

In this current investigation, we capitalise on a repeat LiDAR survey of an area of mixed oak
forest in southern Spain to consider the effect of timing on the LiDAR measurement of tree canopies
and understories. We look at whether LiDAR variables differ significantly when captured six weeks
apart. The study spans a period in which an evergreen tree species (Quercus suber) is experiencing leaf
drop and concurrent new leaf emergence, and when a semi-deciduous tree species (Q. canariensis) is
moving from a state of partial to full leaf expansion. We consider the implications of such processes
on LiDAR variable retrieval for the application of this technology to the study of Mediterranean and
other forest ecosystems.

Comparing LiDAR metrics retrieved at two dates six weeks apart in April and May, we test the
hypothesis that they will be significantly affected by phenological changes to leafing state, and that
such effects will be greater for Quercus canariensis than for Q. suber because of the leaf expansion of
the former tree resulting in significantly less penetration of laser light through the denser mass of
May-time foliage.

2. Materials and Methods

2.1. Study Area

The Sierra del Aljibe is a range of mountains rising to 1092 m and protected within the
Los Alcornocales Natural Park. It represents an edaphic island of sandstone-derived acidic and
nutrient-poor soils surrounded by base-rich soils of limestone, marl and clay. The area contains
the most extensive Quercus suber (cork oak) forest in Iberia and the Mediterranean region. This
evergreen oak forms mixed and segregated patches with the co-dominant Algerian oak semi-deciduous
Quercus canariensis, which occupies moister valleys and north-facing slopes.

Within the Park, our research is focused on a site of mixed closed-canopy forest (approximate
area 93 ha) at Tiradero (36◦ 09′38′ ′N, 5◦ 35′25′ ′W; 335–360 m a.s.l.; Figure 1) on a gentle northeast
facing slope. This is a reserve set aside from management and therefore unaffected by the widespread
understorey cutting that is commonly associated with cork harvest, pasture improvement and fire
control. Herbivory levels are high, however, and there is a small amount of disturbance from the
maintenance and use of a marked hiking trail, as well as scientific research.

2.2. Field Survey

Field sampling of the forest at Tiradero was undertaken in April, May and September 2011.
Plant communities were sampled within 28 circular 10 m radius plots in a grid of seven (east–west
orientation) by four (north–south), as ground truthing in support of an investigation into topographic
and canopy controls on understories [27]. Plots were located using a GPSMAP 60CSx (Garmin, Olathe,
KS, USA), with a horizontal accuracy of 3 m; errors in the colocation of field and remotely sensed data
had previously been found to be negligible using this system in cork oak woodlands [28]. Vegetation
vertical profiles were constructed from plant contacts with a vertical pole at 20 random locations and
five height intervals within each plot. Cover abundance values were assigned to all non-graminoid
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vascular plant species according to the Braun Blanquet five-point scale [29]. The number of individuals
of each tree species within the plot was recorded, and basal area calculated from diameter-at-breast
height (DBH) measurements for trees of DBH > 10 cm. Whilst these data were collected in support of
research into canopy–understorey linkages described by [27], they provide contextual information to
help interpret the results of this current study. Data from two plots in particular were used for this
purpose (Figure 2 and Section 2.5).
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Figure 2. The 20-ha study site (in white), with Quercus suber (left, in yellow) and Quercus canariensis
(right, in yellow) 2-ha sub-areas and representative 10-m radius field plots (black circles, see Section 2.2).
Digital photography of the tree canopy on 10 April (top) and 22 May 2011 (bottom) is from a Leica
RCD105 39 megapixel camera (Wetzlar, Germany).
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2.3. LiDAR Survey

Data acquisition for an area encompassing the Tiradero study site took place on 10 April 2011.
A total of sixteen east–west overlapping strips of approximate length 8 km and width 600 m were
surveyed from an altitudinal range of 929–953 m above ground level. A coverage of approximately
50 km2, in the coordinate space 36◦08′–36◦11′N, 5◦32′–5◦37′W (UTM WGS84 zone 30N) was thus
achieved. The Leica ALS50 LiDAR operates at a wavelength of 1064 nm with a pulse frequency
of 86 kHz, pulse density of c 2.5 m−2, and footprint diameter of approximately 13 cm resulting
from the combination of instrument operating parameters (Table 1). Vertical placement accuracy
of this instrument is <10 cm for the survey flying altitude [30]. Simultaneous GPS measurement
was carried out on the ground using a Leica dGPS1200, as an adjustment of permanent GPS station
calibration data obtained from Cadiz (SFER) and Ceuta (CEU1). Further LiDAR data were collected
on 22 May 2011, i.e., 42 days after the first survey, due to patchy cloud cover leading to incomplete
coverage of another section of the study area. The temporal analysis described here is based on
a comparison of the data from one of the new (May) east–west strips, and an original (April) one
to which it overlapped almost exactly. The viewing angle range for the study area was therefore
identical, and at a maximum of 10◦ not considered likely to have a major impact on the height-based
measurements [31,32]. For both flights, Specimen Eagle and Hawk hyperspectral imagers were
also in operation, and a Leica RCD105 39 megapixel camera produced digital photographic coverage.
The latter images were useful for distinguishing the main areas of Q. suber and Q. canariensis dominated
canopy, with seasonal true-colour differences reflecting changes in the leafing state of these two trees
(Figure 2).

Table 1. Specifications for the LiDAR surveys undertaken in the Tiradero study area, Los Alcornocales, 2011.

April Survey May Survey

LiDAR sensor Leica ALS050 Leica ALS050
Date of deployment 10 April 2011 22 May 2011
Align in 12:48 09:16
Ground speed 135–148 knots 141–150 knots
Flight altitude (above ground) 929–953 m 938–960 m
Pulse rate frequency 85.1–86.1 MHz 86.1–89.9 MHz
Field of view (degrees) 12 12
Scan frequency 54.8 Hz 54.8–57.4 Hz
Number of strips 16 (E–W) + 1 (N–S) 2 (E–W) + 1 (N–S)
Wavelength 1064 nm 1064 nm
Beam divergence 0.22 mrad 0.22 mrad
Footprint size 13 cm 13 cm
Vertical discrimination 2.8 m 2.8 m
Detection system Four return Four return

2.4. LiDAR Data Processing

Post-flight processing of the LiDAR data was carried out by NERC’s Remote Sensing Group at
the Plymouth Marine Laboratory. Modelling of terrain and canopy heights was performed using the
software ‘Tiffs’ 8.0: Toolbox for Lidar Data Filtering and Forest Studies ([33]; Globalidar 2006–2011).
After importing and tiling data strips, the Tiffs core function is to filter the point cloud into ground
and non-ground returns. A morphological filtering method described by [34] is employed, and, being
grid-based, it is computationally efficient and fast. For each tile, the outputs from the filtering process
were Digital Elevation Models (DEMs), Digital Surface Models (DSMs), and Object Height Models
(OHMs) at a spatial resolution of 5 m, as well as ground, object (vegetation) and combined point data.
We employed the DEM from a single LiDAR acquisition (that for April) for both time points, following
the precedent of previous multi-temporal studies [35].
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The Tiffs software facilitates individual tree as well as grid-based analyses. Its marker-controlled
watershed segmentation method [36] was used to identify treetops and crown boundaries of trees for
tiles covering the Tiradero core study area. The software also extracts structural parameters for the
trees, calculated from the normalised vegetation heights (all returns). The statistics that were calculated
were maximum, mean, standard deviation, quadratic mean, skewness and kurtosis of vegetation
heights, and crown radius and canopy volume (being the volume under the OHM for the delineated
tree crown [37]). The simultaneous grid-based statistical analysis (GSA) returned the same set of height
metrics (excluding crown dimensions) for cells of size 5 m.

2.5. Temporal Analysis

We wanted to compare the effect of acquisition date on the LiDAR measurement of forest structure,
at both the tree crown and 5 m grid cell level. Metrics were retrieved from surveys on 10 April 2011
and 22 May 2011, an interval of 42 days. This interval spans a period of significant leaf change for the
two dominant trees of the mixed forest study area: the evergreen cork oak Quercus suber undergoes
both leaf loss and emergence, whilst the semi-deciduous Q. canariensis is in a state of leaf expansion.
The comparisons were made for a 20 ha area of mixed forest, and two smaller (2 ha) areas contained
therein, differing in their predominant canopy type: Quercus suber versus Quercus canariensis (Figure 2).
The areas used in the comparisons were drawn as quadrilateral polygons in ArcGIS, and were used to
extract the sets of tree- and grid-level data from the shapefiles of wider coverage.

For the comparison of LiDAR statistics of individual trees, the package spatstat [38] implemented
in R language (R Development Core Team 2012) was used to match trees identified in one survey
with trees identified in the next. Spatstat is designed for analysing spatial point patterns. For two
point patterns A and B, its function nncross computes the nearest neighbour in B for each point of A.
For our purposes, we applied nncross to associate trees isolated from the one LiDAR object height
model (OHM) to the assumed same trees isolated from the second LiDAR OHM. Distances between A
and B will be small when the same tree is detected in the two surveys. Once trees had been matched,
the ratio of values for each of the eight LiDAR statistics was calculated and analysed according to
distance between the neighbours (corresponding to amount of error in the localisation of trees). In the
absence of phenology-related changes, ratios are expected to equal 1 (the measured values do not
change between surveys) when trees are perfectly matched (A–B distance values are low).

Comparable grid-based analyses were conducted based on raster files of 5 m cell size clipped by
the 20 ha and 2 ha areas of interest. In this case, ratios of change of four LiDAR variables (maximum,
mean, standard deviation and skewness of vegetation heights) were calculated between surveys.
The ratio values (April/May), for both grid cells and trees, were tested for significant difference from
the value 1 using Wilcoxon signed rank tests for non-normal data.

To aid the interpretation of the results, the same four LiDAR variables compared in the grid-cell
analysis were also calculated from the LiDAR vegetation point data extracted for two circular plots
of radius 10 m, for which field data on vegetation vertical profile and plant community composition
were available (see Section 2.2). The two plots chosen comprised one for each of the two main canopy
types, and were the ones nearest to the two 2-ha study areas (Figure 2). The LiDAR point clouds for
these plots were inspected using the data exploration tool Treevis (version 0.78, University of Freiburg,
Germany), as well as the graphing of scatterplots. Such visualisation and inspection of the data can
prove highly useful in the detection of patterns and relationships [39].

3. Results

3.1. Selection of Trees

April–May comparisons were made on eight LiDAR metrics calculated for segmented trees
crowns (Figure 3), and four metrics for 5 m grid cells (Figure 4). Temporal differences in the metrics
increased with offset distance between matched trees in the near-neighbour analysis (Supplementary



Remote Sens. 2018, 10, 659 6 of 13

Materials, Figure S1), although this effect was clearer with some metrics (e.g., mean and quadratic
mean) than others (e.g., crown dimensions). Further consideration of the tree data is therefore restricted
to trees matched with most certainty, taken to be within 2 m (representing approximately 60% of the
total segmented trees, or 2900 comparisons for the 20 ha plot and c. 300 comparisons for the 2 ha plots).

3.2. April–May Comparison of LiDAR Metrics

We predicted that April–May comparisons of LiDAR metrics would reveal significant differences
as a result of phenological changes to leafing state and this was demonstrated for the majority of the
metrics by the significant deviation of the April–May ratios from the value 1 (Figures 3 and 4).

The variable that differed least between surveys was maximum height: ratio values in both tree and
grid analyses were very close to the value of 1 (Figures 3 and 4, Supplementary Materials Figure S1).
The tree analysis also revealed only small differences in the measurement of mean height between
surveys (Figure 3); for the grid analysis, the May measurements of mean height were higher for the
mixed plot and Q. canariensis (Figure 4). For the standard deviation of heights, ratio values > 1 were
evident in nearly all comparisons (Figures 3 and 4). Of all metrics included in the tree and grid cell
analyses, skewness values were most dissimilar across surveys, and also variable in that dissimilarity.
The results at the tree level showed lower skewness in May than in April (all values are negative, hence
in this case a lower ratio value corresponds to a more negative value in May). For the four metrics
studied in the tree analysis alone, crown radius, crown volume and quadratic mean height had very
similar values in the comparisons, whilst kurtosis values increased from April to May (Figure 3).
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Figure 3. Bar plots showing LiDAR April/May measurement ratios (with 95% confidence intervals)
for eight tree statistics. Results of Wilcoxon signed rank tests of significant difference from the value 1
are given above each bar (** significant at p = 0.01; * significant at p = 0.05; N.S. not significant.) Results
for the 20 ha mixed Q. canariensis/suber plot (Qc/s), 2 ha Q. canariensis (Qc) and Q. suber (Qs) plots
are given.
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Figure 4. Bar plots showing LiDAR April/May measurement ratios (with 95% confidence intervals) for
four 5 m grid-cell statistics: maximum, mean, standard deviation and skewness. Results of Wilcoxon
signed rank tests of significant difference from the value 1 are given above each bar (** significant at
p = 0.01; * significant at p = 0.05; N.S. not significant.) Results for the 20 ha mixed Q. canariensis/suber
plot (Qc/s), 2 ha Q. canariensis (Qc) and Q. suber (Qs) plots are given.

3.3. Canopy Species-Specific Effects

An effect of canopy type was clearly observed in the April–May comparisons (Figures 3 and 4).
We hypothesised that, in the case of Quercus canariensis, which undergoes leaf expansion during the
study period, the reduced penetration of LiDAR pulses through the canopy in May would lead to
greater April–May differences in metric retrieval compared to Q. suber. The results, at both tree and
grid-cell level, confirmed this prediction. For the semi-deciduous tree in the tree analysis, the increase
in mean height and reduced standard deviation and skewness of heights in May compared to April
were more marked than for Q. suber (Figure 3). This was evident for the 2-ha Q. canariensis plot
and the 20-ha plot as a whole, which had a predominance of this tree. For both the tree and grid
analyses, skewness of height in Q. canariensis canopies was at least 20% less in May compared to April,
the differences for Q. suber being much less (Figures 3 and 4).

In relation to the Q. suber canopy, the April survey was undertaken at the onset of rapid leaf
drop, whilst the May survey was carried out during the spring flush of new leaf growth. The digital
imagery, with variation in the hue of green, suggests that full leaf expansion had not been achieved
in all trees (Figure 2). As such, the net change in foliage mass and volume is less easy to predict,
and the tree and grid analyses produce inconsistent support for either an increase or decrease in
interception of the laser pulses at the canopy level. The slightly lower mean height value for May in
the grid analysis (Figure 4) would suggest reduced foliage and more penetration of the laser through
the canopy, and this is consistent with a higher standard deviation of heights for the second survey.
In the tree analysis, skewness of heights experiences a significant reduction in May (Figure 3), whilst
also a reduced standard deviation of heights.

The distribution of height measurements for the two example circular plots helps to interpret
differences exhibited by Quercus canariensis and Q. suber (Figure 5 and Table 2). In the Q. suber
plot, the abundance of undershrubs to a height of 2 m is captured in both strips. This was mostly
composed of the shrubs Erica arborea and Genista triacanthos and liane Smilax aspera. A relatively
unfilled space apparently sits below the Q. suber canopy. For the Q. canariensis plot, a taller, shallower
but potentially denser canopy is suggested by the scatterplots. Field records suggest some presence of
Q. suber and Phillyrea latifolia, and this is reflected by the scatter of returns at 4 m and above. A lower
understorey of Ruscus aculeatus, Smilax aspera, Myrtus communis and other shrubs is also suggested.
Notably, the sub-canopy vegetation (7 m and below) appears less well captured in the May survey.
Comparisons of the four LiDAR variables were remarkably consistent for both plots (Table 2), with the
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ratio value falling in the range 0.95–1.03, with the exception of the skewness of heights for Q. suber,
and both skewness and standard deviation of heights for Q. canariensis.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 12 

 

Table 2. Average values of four LiDAR metrics for the two representative 10 m radius circular plots 
differing by canopy type, as well as ratio values for April–May comparisons. 

  Metric Values  
Canopy Type Height Statistic (m) April May April–May Ratio Value 

Quercus suber 

Maximum 10.65 10.29 1.03 
Mean 6.28 5.94 1.06 

Standard deviation 2.80 2.89 0.97 
Skewness −1.01 −0.91 1.11 

Quercus canariensis 

Maximum 14.96 14.85 1.01 
Mean 9.83 10.16 0.97 

Standard deviation 3.36 2.93 1.15 
Skewness −1.35 −1.62 0.83 

 
Figure 5. Scatterplots of vegetation heights for two representative circular plots of radius 10 m: 
Quercus suber dominated plot (top row) and Q. canariensis dominated plot (bottom row). Filled 
symbols are first returns, and open symbols second and third returns. 

4. Discussion 

A chief strength of our approach is that the repeat surveys are conducted using the same sensor 
configuration and flight parameters, and in the same year. Despite obvious advantages, this has 
rarely been possible in past multi-temporal LiDAR studies. Data collection in a mixed deciduous 
woodland in eastern England [16] was separated by two years, as was the case in a study in southeast 
Norway [11]. The experimental design of the latter investigation was also undertaken with different 
sensors at different flying altitudes, requiring a number of complicated compensations in the 
analysis. Flying altitude can have a significant effect, as a reduction in peak pulse power 
concentration can delay pulse triggering within vegetation, thereby increasing laser penetration into 
the foliage and reducing height metric values [40]. An increased interval time, on the other hand, 
allows tree growth to become a factor. 

Figure 5. Scatterplots of vegetation heights for two representative circular plots of radius 10 m:
Quercus suber dominated plot (top row) and Q. canariensis dominated plot (bottom row). Filled symbols
are first returns, and open symbols second and third returns.

Table 2. Average values of four LiDAR metrics for the two representative 10 m radius circular plots
differing by canopy type, as well as ratio values for April–May comparisons.

Metric Values

Canopy Type Height Statistic (m) April May April–May Ratio Value

Quercus suber

Maximum 10.65 10.29 1.03
Mean 6.28 5.94 1.06

Standard deviation 2.80 2.89 0.97
Skewness −1.01 −0.91 1.11

Quercus canariensis

Maximum 14.96 14.85 1.01
Mean 9.83 10.16 0.97

Standard deviation 3.36 2.93 1.15
Skewness −1.35 −1.62 0.83

4. Discussion

A chief strength of our approach is that the repeat surveys are conducted using the same sensor
configuration and flight parameters, and in the same year. Despite obvious advantages, this has
rarely been possible in past multi-temporal LiDAR studies. Data collection in a mixed deciduous
woodland in eastern England [16] was separated by two years, as was the case in a study in southeast
Norway [11]. The experimental design of the latter investigation was also undertaken with different
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sensors at different flying altitudes, requiring a number of complicated compensations in the analysis.
Flying altitude can have a significant effect, as a reduction in peak pulse power concentration can delay
pulse triggering within vegetation, thereby increasing laser penetration into the foliage and reducing
height metric values [40]. An increased interval time, on the other hand, allows tree growth to become
a factor.

This investigation has found evidence for the effect of seasonality, specifically short-term
spring-time leafing phenology in two typical Mediterranean forest species, on the retrieval of LiDAR
variables of value for describing tree crown and forest stand vegetation structural attributes. In this
way, the specific contribution that the study makes is in the investigation of more subtle effects of
tree leafing phenology than the often studied leaf-on/leaf-off dichotomy. The investigation was
opportunistic upon an unplanned repeat LiDAR survey, and hence a campaign of field data collection
aimed at quantifying the associated phenological changes was not planned. We have, however, been
able to draw upon contextual field data to reach some robust conclusions on the effect of seasonal tree
leafing processes and the retrieval of LiDAR metrics.

Airborne LiDAR is being increasingly applied in Mediterranean ecosystems (e.g., [41–47]).
Knowledge of the effect on LiDAR parameters of seasonal changes to these predominantly evergreen
canopies—including climatic influences on leafing phenology—is relevant to the design, data-analysis
and interpretation of LiDAR surveys in this and other warm-temperate/sub-tropical regions.

Contrasting responses were observed for Quercus canariensis and Quercus suber canopies, according
to our hypothesis. Field observation and comparison of the digital imagery for April and May (Figure 2)
indicate that the Quercus canariensis trees develop from a state of partial to full leaf expansion during
this period. Under partial leaf expansion, reflectances off branches will presumably represent a
relatively high proportion of the LiDAR point cloud. As leaves expand, one can predict that the
increased amount of foliage biomass, and canopy closure, will reduce penetration of laser pulses and
increase the proportion and concentration of height measurements recorded in the upper strata of
the vegetation profile. Our results confirmed this prediction, with an increased mean height, reduced
standard deviation and more negative skewness of heights, in May compared to April. These results
are analogous to those found for leaf-on/leaf-off conditions. For lowland mixed woodlands in eastern
England, a small increase in mean height (13.35 vs. 12.47 m) and decrease in standard deviation of
heights (5.10 vs. 5.25 m) was observed in leaf-on conditions [16]. The height distributions of single
returns and last-of-many returns have been shown to shift towards the ground in leaf-off conditions
within boreal forests [10]; skewness values under leaf-off conditions were more positive for single
returns (but not for first or last returns) and the variability of the height distribution tended to increase
from leaf-on to leaf-off conditions. In another study, the laser interception by the upper parts of a
mixed forest canopy were significantly higher in leaf-on conditions [11]. For the first return data,
height metrics were 0.33–0.97 m higher under leaf-on canopy conditions. Analogous results were also
shown in a comparison between tropical moist (TMF) and tropical wet (TWF) forest [48]. At the end
of the dry season, leaf loss from canopy-forming trees was pronounced in some TMF areas, and this
led to less LiDAR energy being reflected from the upper canopy, thereby reducing the LiDAR median
height metric relative to the TWF study area. In an investigation of light availability at different
developmental stages of a boreal forest [49], a direct relationship between skewness and the degree
of light entering through crown was established, results that are consistent with the canopy closure
between April and May in our study forest.

Maximum height was the least variable of the four metrics for Quercus canariensis plots. The ratio
values of ~1 for maximum height measurement for trees and grid cells is reassuring, in terms of reliable
measurement of a variable that should be less affected by tree leafing phenology than the others that
were calculated. This is again consistent with the results of the studies that have been reviewed here.
Leaf-on/leaf-off values in one investigation were 25.31/25.14 m [16]. In another, canopy conditions
were found to exert little influence on the maximum height obtained for the individual trees, although
maximum laser heights of ‘first’ echoes were higher in birch trees under leaf-off conditions [10].



Remote Sens. 2018, 10, 659 10 of 13

Meanwhile, plot-level stability of maximum height has been reported [11]. Using percentile heights,
a tendency for canopy height to be underestimated in leaf-off conditions has been observed, but only
where the forest was dominated by deciduous compound-leaved trees [14].

The tree-level and grid analyses have complemented each other in the comparison of time periods
and canopy types. The former provided a number of metrics associated with tree crowns, whilst the
latter was unaffected by any error in the tree segmentation process. The results of both give confidence
that the LiDAR variables are relatively robust to the seasonality of tree leafing that this study spans.
A possible exception is the measurement of skewness, especially in the case of the Q. canariensis canopy,
and the reasons for this have already been discussed. Skewness of heights is a useful summary measure
of their asymmetry as affected by canopy closure [49] and relative density of vegetation in the canopy
and understorey layers. It can be used, for example, to differentiate natural forest and plantations, with
their varying vertical vegetation profiles [50]. The reduced skewness values obtained for Q. canariensis
plots during the May survey suggests that this timing is less optimal to capture information on the
presence of understorey vegetation. This may also be the case for the evergreen Q. suber, though
evidence for this from our study is equivocal. It may be that a survey undertaken later in the summer,
with full leafing out of the cork oak trees, would similarly be less useful for the description of layers
below the tree canopy.

5. Conclusions

This investigation has provided a unique record of the effect of within-season tree leafing state
on the consistency of LiDAR measurement of mixed evergreen/semi-deciduous forests. It provides
reassurance that retrieval of standard parameters such as maximum and mean height of trees are
robust to a degree of leaf expansion, but that care in the timing of a survey is required when
sub-canopy vegetation layers—being relevant, for example, to modelling fire fuel loads—are the
focus of investigation, particularly for trees of a more deciduous nature. For the area studied in this
current investigation, the earlier spring-time canopy state of April was preferential for detecting an
adequate signal of the sub-canopy strata, especially in the patches dominated by the deciduous Quercus
canariensis. If the modelling of the canopy surface alone is important, the robustness of the maximum
height LiDAR metric would suggest that the survey timing is not critical.
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