
Article

A Framelet-Based Iterative Pan-Sharpening Approach

Zi-Yao Zhang, Ting-Zhu Huang *, Liang-Jian Deng *, Jie Huang, Xi-Le Zhao and Chao-Chao Zheng
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731,
Sichuan, China; 201621100102@std.uestc.edu.cn (Z.-Y.Z.); huangjieuestc@uestc.edu.cn (J.H.);
xilezhao@uestc.edu.cn (X.-L.Z.); 201521100205@std.uestc.edu.cn (C.-C.Z.)
* Correspondence: tzhuang@uestc.edu.cn (T.-Z.H.); liangjian.deng@uestc.edu.cn (L.-J.D.)

Received: 7 March 2018; Accepted: 16 April 2018; Published: 18 April 2018
����������
�������

Abstract: Pan-sharpening is used to fuse multispectral images and panchromatic images to produce
a multispectral image with high spatial resolution. In this paper, we design a new iterative method
based on framelet for pan-sharpening. The proposed model takes advantage of the upsampled
multispectral image and a linear relation between the panchromatic image and the latent high-resolution
multispectral image. Since the sparsity of the pan-sharpened image under a B-spline framelet transform
is assumed, we regularize the model by penalizing l1 norm of a framelet based term. The model
is solved by a designed algorithm based on alternating direction method of multipliers (ADMM).
For better performance, we propose an iterative strategy to pick up more spectral and spatial details.
Experiments on four datasets demonstrate that the proposed method outperforms several existing
pan-sharpening methods.
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1. Introduction

An optical satellite usually acquires two images describing the same scene almost simultaneously,
which are called multispectral (MS) image and panchromatic (PAN) image respectively. The former
is a multichannel image with low spatial resolution, while the latter is a single channel image with
rich spatial details. Despite the fact that MS image can be of over eight bands and the resolution of
PAN image can be less than half a meter, their superiority cannot be synthesized in one image due to
physical and technological constraints. However, pan-sharpening techniques are capable of creating
a multichannel image with high spatial resolution out of these two images, which is of great importance
for remote sensing. More specifically, pan-sharpening plays an important role in the interpretation
of remote sensing scenes and can be used as a preliminary step of various remote sensing tasks such
as object recognition [1], change detection [2] and so on. Therefore, these techniques attract much
attention of scientific community.

Among various pan-sharpening methods having been proposed in the literature, many of them
can be put into two main categories: component substitution (CS) and multiresolution analysis (MRA).
CS mainly involves three steps: firstly a spectral transformation of MS image, then a replacement of
its spatial component with PAN image, and finally an inverse transformation. This class includes
classical methods such as intensity-hue-saturation (IHS) [3], principal component analysis (PCA) [4],
Gram-Schmidt spectral sharpening (GS) [5] and recent methods based on mean information [6] and
image matting model [7]. As for MRA, it focuses on an injection process in which spatial details
extracted from PAN image are added to upsampled MS image. Examples of this class include wavelet
transform based methods [8–10], Laplacian Pyramid based methods [11], and methods based on other
transforms [12,13].

Different from the two categories mentioned above, there are also other types of pan-sharpening
methods. This family includes those based on Bayesian paradigm [14], total variation [15,16],
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gradient operator [17,18], sparse representation [19], super-resolution techniques [20], convolution
neural network [21] and so on. Recently, Deng et al. [22] propose a novel variational model for
pan-sharpening in which intensity function of the unknown image is considered from a continuous
point of view. The related continuous function is made up of two components. Assumption is made
that the former lies in a Reproducing Kernel Hilbert Space (RKHS) while the latter can be approximated
by linear combination of approximated Heaviside functions (AHF). This model outperforms several
state-of-the-art pan-sharpening methods according to experiments on two datasets. However, its good
performance relies on a large amount of computation, which results in rather long running time.

In this paper, a new iterative algorithm for pan-sharpening is proposed as an attempt to simplify
RKHS method. We make use of the information from MS image by generating its upsampled form.
The linear relation [22,23] between PAN image and bands of the image to be estimated is also considered
in the model. A framelet based term is introduced as regularization. Besides, we adopt an iterative
strategy similar to [22] to improve performance of the algorithm. The framework of the proposed
approach can be seen in Figure 1. By utilizing real data from Pléiades, Quickbird, WorldView-2
and SPOT-6, we compare several existing pan-sharpening methods with the proposed method.
These results show spatial and spectral fidelity of the proposed method. Meanwhile, they confirm
a much less running time than RKHS method, suggesting that framelet based regularization is more
mature and easier to compute.
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Figure 1. Framework of the proposed iterative pan-sharpening approach.

The rest of this paper is arranged as follows. Section 2 reviews the related work [22]. Then in
Section 3 the new iterative algorithm is presented. Section 4 is a display of visual and numerical
experimental results together with some discussions about the proposed method. Finally, conclusion
is drawn in Section 5.

2. Related Work

To begin with, we introduce several notations to be used throughout this paper. Let MS ∈ Rm1×n1×T be
the original multispectral image with T bands, each band denoted as MSi ∈ Rm1×n1 . Let M̃S ∈ Rm2×n2×T

be the upsampled multispectral image, each band denoted as M̃Si ∈ Rm2×n2 . M̂S represents the
high-resolution multispectral image to be estimated, with M̂Si ∈ Rm2×n2 being the ith band of it. Moreover,
the original panchromatic image is P ∈ Rm2×n2 .

Deng et al. propose a new iterative pan-sharpening algorithm [22], which is an extension of
their previous work on super-resolution [24]. They view the pan-sharpening problem as an intensity



Remote Sens. 2018, 10, 622 3 of 18

estimation process for the unknown image M̂S. The intensity of M̂S is modelled as a hidden continuous
function. It consists of two different components, a smooth one and a non-smooth one. The former is
assumed to be an element of a special function space called Reproducible Kernel Hilbert Space (RKHS),
while the latter is formulated as a linear combination of approximated Heaviside functions (AHF).

Specifically, let fi, i = 1, 2, ..., T, be the underlying continuous intensity function corresponding to the
ith band of M̂S. Without loss of generation, the domain is restricted such that z = (x, y) ∈ [0, 1]× [0, 1].
The smooth component is expressed as ∑M

ν=1 dν,iφν,i(z) + ∑n
s=1 cs,iξs,i(z). These two series lie in two

different RKHS, with φν,i(z), ν = 1, 2, ..., M, and ξs,i(z), s = 1, 2, ..., n, being basis functions in each RKHS
respectively. dν,i, ν = 1, 2, ..., M, together with cs,i, s = 1, 2, ..., n, are the corresponding coefficients. As for
the non-smooth component, a family of Heaviside functions is considered to implement the approximation.
However, since Heaviside functions are singular at the origin, which makes differentiation impossible to be
taken there, they are approximated by a smooth form, i.e., approximated Heaviside functions (AHF). In 2D
case, this smooth alternative takes the form of ψ((cosθj,i, sinθj,i) · z+ cρ,i), actually representing an edge
with θ elevation at a location specified by cρ,i. It is a generalization of the 1D form ψ(x) = 1

2 +
1
π arctan( x

ξ ),
where ξ is a positive parameter to control smoothness. Therefore, fi, i = 1, 2, ..., T, is finally modelled as:

fi =
M

∑
ν=1

dν,iφν,i(z) +
n

∑
s=1

cs,iξs,i(z) +
k

∑
j=1

n

∑
ρ=1

ωj,iψ((cosθj,i, sinθj,i) · z + cρ,i). (1)

For more details, see [22,24].
By evaluating on a fine grid, (1) can be discretized so that it becomes a form involving simple

matrix multiplication. Let Th ∈ Rm2n2×M, Kh ∈ Rm2n2×m2n2 and Ψh ∈ Rm2n2×m (m = k · n) denote
matrices whose entries are generated by evaluating φν,i(z), ξs,i(z), and ψ((cosθj,i, sinθj,i) · z + cρ,i) on
a fine grid. Then each band of the desired multichannel image with high spatial resolution can be
computed as follows:

M̂Si = Thdi + Khci + Ψhfii, i = 1, 2, ..., T. (2)

Hence the pan-sharpening problem is converted into a problem of coefficient estimation. In [22],
the coefficients are computed by minimizing the following model:

min
di ,ci ,βi

1
N

T

∑
i=1
‖Thdi + Khci + Ψhβi − M̃Si‖2

2 +
µ

2

T

∑
i=1

cT
i Klci +

λ1

2

T

∑
i=1
‖βi‖1

+
λ2

2

∥∥∥∥∥ T

∑
i=1

ωi(Thdi + Khci + Ψhβi)− P

∥∥∥∥∥
2

2

,

(3)

where N is the number of pixels that M̂S contains. µ, λ1, and λ2 are positive parameters. M̃Si is
generated by an upsampling process via GS method [5]. Kl ∈ Rm1n1×m1n1 is a coarser version of Kh,
i.e., the discretization process is done on a coarser grid. ωi are weights reflecting the contribution of
each band of M̂S to the linear combination which approximates the panchromatic image P. This linear
approximation and its variants are assumed by many methods, e.g., [23,25].

After the coefficients di, ci, βi are obtained, the high-resolution multispectral image can be
computed by (2). Furthermore, model (3) is combined with an iterative strategy. It will be detailed in
Section 3 since it is used in the method proposed in this paper as well.

3. The Proposed Method

Empirical results in [22] show that RKHS method outperforms several state-of-the-art
pan-sharpening methods both in the perspective of spatial and spectral fidelity. However, the RKHS
based model of M̂S is quite complicated, since it is not easy to implement in actual calculation.
In addition, the regularization terms of (3) involve not only l1 norm of βi but also quadratic function of
ci (both summed by band), which adds to computational burden. As a result, the algorithm is rather
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time consuming. Therefore, it is natural to raise a question. Can we simplify model (3) without loss of
its advantage, i.e., high-level spatial and spectral performance? A possible way is not to make efforts
to build a complicated model of M̂S, but seek for another technique of regularization instead. This is
exactly why we turn to framelet.

Piecewise smooth functions, for instance images, can be sparsely approximated by framelet
system efficiently [26]. As a result, framelet techniques are used in literature to address the problems
like image restoration (e.g., [26–28]). Recently, it is also applied to pan-sharpening. For instance,
a framelet based MRA scheme is considered in [29]. A variational model [30] based on assumptions
related to framelet coefficients, geometry keeping, spectral preserving and the sparsity of the image
in the framelet domain is also proposed. They are able to obtain good results. Nevertheless, in this
section, we consider a combination of variational model and iterative strategy instead of building
a complicated model, i.e., we try to build a simple framelet based variational model and then combine
it with an iterative strategy to yield a novel and effective approach for pan-sharpening.

In discrete case, let W and WT denote fast framelet decomposition and construction respectively.
They are constructed by unitary extension principle (UEP) [31], and satisfy the relation WTW = I.
In this paper, we use the piecewise linear B-spline framelets [26]. An L-level framelet transform of
an image u [26] can be denoted as:

Wu = {Wl,ju, 0 ≤ l ≤ L− 1, j ∈ I}, (4)

where Wl,ju denotes the coefficients of u in framelet band j at level l under the framelet transform,
and I is the index set of all framelet bands. Throughout this paper, we empirically set L = 1. For more
theoretical details of framelet, see e.g., [32].

Consequently, by employing framelet based regularization, (3) can be modified. Each band of M̂S
is computed by minimizing the following function:

min
M̂Si

1
2

T

∑
i=1
‖M̂Si − M̃Si‖2

2 +
α

2

∥∥∥∥∥ T

∑
i=1

ωiM̂Si − P

∥∥∥∥∥
2

2

+
T

∑
i=1
‖λi ·W(M̂Si)‖1, (5)

where α and λi are parameters. Dot product is used in the third term since there are more than one
framelet band, as (4) suggested. Coefficients for bands of M̂S, i.e., ωi, are estimated automatically by
a linear regression [23] between the original multispectral image and downsampled panchromatic image.
The upsampled multispectral image M̃Si is generated via GS method. Note that this model can also be
viewed as an extension of the so-called analysis based model for image restoration (e.g., [33,34]). Each l1
term of (5) is in accordance with that defined in the analysis based model. Concretely, it can be expressed as

‖λi ·W(M̂Si)‖1 =

∥∥∥∥∥∑
j∈I

λi,j|Wi,j(M̂Si)|
∥∥∥∥∥

1

. (6)

This expression is the case where 1-level framelet transform is imposed on M̂Si, as we
emphasized above.

Model (5) can be solved by methods such as primal-dual method [35] and ADMM [36] efficiently.
We choose ADMM here, whose application covers a wide range of image processing, such as image
denoising [37], image super-resolution [38], tensor completion [39], image destriping [40,41] and so on.
Its convergence is guaranteed by many works such as [42,43]. Due to non-smoothness caused by l1
term, the first step is to rewrite (5) as an equivalent form through substitution of variables:

min
ui ,Vi ,M̂Si

1
2

T

∑
i=1
‖M̂Si − M̃Si‖2

2 +
α

2

∥∥∥∥∥ T

∑
i=1

ωiVi − P

∥∥∥∥∥
2

2

+
T

∑
i=1
‖λi · ui‖1

s.t., ui = W(M̂Si), Vi = M̂Si, i = 1, ..., T.

(7)
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Then we can obtain the augmented Lagrangian of (7), i.e.,

L(M̂Si, ui, Vi, Di, Ei) =
1
2

T

∑
i=1
‖M̂Si − M̃Si‖2

2 +
α

2

∥∥∥∥∥ T

∑
i=1

ωiVi − P

∥∥∥∥∥
2

2

+
T

∑
i=1
‖λi · ui‖1

+
β2

2

T

∑
i=1
‖ui −W(M̂Si)‖2

2 +
T

∑
i=1

ET
i (ui −W(M̂Si))

+
β1

2

T

∑
i=1
‖Vi − M̂Si‖2

2 +
T

∑
i=1

DT
i (Vi − M̂Si),

(8)

where Di and Ei are Lagrangian multipliers, β1 and β2 are two positive parameters.
Now we denote Fi = Di/β1 and Gi = Ei/β2. According to ADMM, problem (7) can be solved by

implementing the following iterative scheme:

(1) For i = 1, ..., T, update each u(k)
i by solving:

u(k+1)
i = arg min

ui
‖λi · ui‖1 +

β2

2
‖ui −W(M̂Si

(k)
) + G(k)

i ‖
2
2. (9)

(2) For i = 1, ..., T, update each V(k)
i by solving:

V(k+1)
i = arg min

Vi

α

2

∥∥∥∥∥∥ ∑
1≤j<i

ωjV
(k+1)
j + ωiVi + ∑

i<j≤T
ωjV

(k)
j − P

∥∥∥∥∥∥
2

2

+
β1
2
‖Vi − M̂Si

(k)
+ F(k)

i ‖
2
2. (10)

(3) For i = 1, ..., T, update each M̂Si
(k)

by solving:

M̂Si
(k+1)

= arg min
M̂Si

1
2
‖M̂Si − M̃Si‖2

2 +
β1

2
‖V(k+1)

i − M̂Si + F(k)
i ‖

2
2

+
β2

2
‖u(k+1)

i −W(M̂Si) + G(k)
i ‖

2
2.

(11)

(4) For i = 1, ..., T, update each F(k)
i by F(k+1)

i = F(k)
i + (V(k+1)

i − M̂Si
(k+1)

).

(5) For i = 1, ..., T, update each G(k)
i by G(k+1)

i = G(k)
i + (u(k+1)

i −W(M̂Si
(k+1)

).

Note that (9)–(11) have closed-form solutions. Using soft-thresholding operator (e.g., [44]) Tτ, u(k+1)
i

can be rewritten as:

u(k+1)
i = Tλi/β2(W(M̂Si

(k)
)− G(k)

i ), (12)

where Tτ(ν) is defined entry-wise by

Tτ(ν) =
ν

|ν|max{|ν| − τ, 0}, (13)

As for (10) and (11), they can be solved easily as follows:

V(k+1)
i =

αωi(P−∑1≤j<i ωjV
(k+1)
j −∑i<j≤T ωjV

(k)
j ) + β1(M̂Si

(k) − F(k)
i )

αω2
i + β1

, (14)

M̂Si
(k+1)

=
M̃Si + β1(V

(k+1)
i + F(k)

i ) + β2WT(u(k+1)
i + G(k)

i )

β1 + β2 + 1
. (15)

In order to facilitate illustration of the proposed algorithm, we summarize these steps of ADMM
as Algorithm 1. Note that for simplicity of form, we write each iteration of ADMM in Algorithm 1 in
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an order slightly different from what we mentioned above, but it is easy to validate that they give the
same results.

Algorithm 1 ADMM scheme for the proposed model

Input: panchromatic image P, upsampled multispectral image M̃S, ωi α, λi, β1, β2.
Output: high-resolution multispectral image M̂S.

while not converged do
for i = 1 : T do

(1) Solve u(k+1)
i by (12).

(2) Solve V(k+1)
i by (14).

(3) Solve M̂Si
(k+1)

by (15).

(4) Update F(k)
i by F(k+1)

i = F(k)
i + (V(k+1)

i − M̂Si
(k+1)

).

(5) Update G(k)
i by G(k+1)

i = G(k)
i + (u(k+1)

i −W(M̂Si
(k+1)

)).
end for

end while

Although Algorithm 1 itself is a complete algorithm, there is still room for improvement.
Thus an iterative stategy is considered. For accordance of notations, let P(1) = P and MS(1) = MS.
Similarly, denote the first output of Algorithm 1 as I(1). After obtaining M̂S, we compute

P(2) = P − ∑T
i=1 ωiM̂Si. In addition, let M̃S

(2)
= U(MS-D(M̂S)). D represents a downsampling

operator, and U represents the upsampling process by which M̃S is generated. Now we view P(2) and

M̃S
(2)

as new inputs for Algorithm 1 instead of the original P and M̃S. The resulting new output can
be denoted as I(2). By repeating this strategy, we obtain a series of I(j), j = 2, 3, ..., γ. Then the sum of
all I(j), j = 1, 2, ..., γ, is taken as the final high-resolution multichannel image. This iterative strategy is
adopted in not only pan-sharpening [22] but also image super-resolution [24].

Now we can summarize the procedures above as Algorithm 2:

Algorithm 2 The proposed iterative pan-sharpening algorithm
Input: panchromatic image P, multispectral image MS, ωi α, λi, β1, β2.
Output: high-resolution multispectral image M̂S.

1. Initialization: MS(1) = MS, P(1) = P.
for j = 1 : γ do

(1) Upsample MS(j) to obtain M̃S
(j)

.

(2) Compute I(j) by implementing Algorithm 1 (M̃S
(j)

, P(j) instead of M̃S, P as input).
(3) Update P(j) by P(j+1) = P(j) −∑T

i=1 ωi I
(j)
i .

(4) Update MS(j) by MS(j+1) = MS(j) − D(I(j)).
end for
2. Compute the final output: M̂S = ∑γ

j=1 I(j).

Note that γ is the number of outer iterations. The downsampling process D in each iteration is
completed through a combination of two steps: compute the modulation transfer function of I(j) with
Gaussian filter and then interpolate it to the size of MS in a “nearest” way [22]. And the upsampling
process is done by GS method.

4. Results and Discussion

In this section, we firstly utilize four datasets to compare the proposed method with several
pan-sharpening methods. After that, discussions related to the number of outer iterations of
Algorithm 2 are discussed. Results on time cost are presented as well.
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The tested datasets are acquired by Quickbird (4 bands, 512 × 512), Pléiades (4 bands,
1024 × 1024), WorldView-2 (4 bands, 800 × 800), and SPOT-6 (4 bands, 1024 × 1024). The dataset
of Quickbird can be downloaded from http://glcf.umd.edu/data/quickbird/chilika.shtml.
And the dataset of Pléiades is downloaded together with the source codes of [45] from
http://openremotesensing.net/knowledgebase/quality-assessment-of-pan-sharpening-methods-in-high
-resolution-satellite-images-using-radiometric-and-geometric-index/. As for datasets of WorldView-2 and
SPOT-6, we downloaded them from http://cms.mapmart.com/Samples.aspx.

Since high resolution multispectral images are not available in the datasets, we follow Wald’s
protocol [46]. Therefore, the original multispectral images in the datasets are treated as ground truth.
The scale ratio is 4, thus the simulated low-resolution multispectral images (4 bands) are of the size
128× 128, 256× 256, 200× 200, and 256× 256 respectively. Each of them is downsampled from the
corresponding ground truth in the same way as that in Algorithm 2, i.e., filter the ground truth by
a Gaussian filter matched with the modulation transfer function (MTF) and then downscale it by
“nearest” interpolation. As for each P, it is generated by combining bands of the ground truth linearly.

Parameters of the proposed algorithm are empirically set as follows. We use 1-level piecewise
linear B-spline framelet. For each band, λi is equally set as:

λi = 10−4

0 1 1
1 1 1
1 1 1

 . (16)

Other model parameters in (8) are set as α = 1.5, β1 = 0.5, and β2 = 0.5, with coefficients ωi
estimated by linear regression. In addition, the number of the external iterations in Algorithm 2, i.e., γ,
is set as 5. For different datasets, these settings may not always be the best choice, but we unify them
to display stability of the proposed method and also to save efforts of tuning.

Methods compared with the proposed method comprise some classical pan-sharpening methods
(PCA [4], GS [5], high-pass filtering (HPF) [47], and modulation transfer function-generalized
Laplacian Pyramid (MTFGLP) [48,49]) and different kinds of recent state-of-the-art methods
(pan-sharpening with hyper-Laplacian prior (PHLP) [50], nonlinear intensity-hue-saturation
(NIHS) [51], and RKHS [22]). All the experiments are conducted in MATLAB on a laptap with
4GB RAM and 1.70 GHz Intel(R) Core(TM) i5-4210U CPU.

4.1. Visual Comparison

Figures 2–5 show visual results obtained by conducting experiments on four datasets
aforementioned. Each set of figures contains output images produced by eight different methods.
Each ground truth is also presented as reference. For better visualization, we show local enlarged
images at the bottom-left corner of each output image.

It is obvious that all of the other methods perform better than PCA method both in terms of
spatial quality and spectral fidelity according to Figures 2–4. GS method outperforms PCA method
significantly but generally fails to avoid great spectral distortion, which is most visible on Quickbird
dataset and Pléiades dataset. NIHS method and PHLP method preserve spectral characteristics quite
well. However, from the perspective of spatial details, they tend to generate excessive smooth results,
thus the pan-sharpened images provided by them lack much sharp spatial information compared with
the reference images.

HPF method and MTFGLP method are visually without much spectral distortion and are able to keep
more spatial details. However, a closer look at their resulting images, e.g., in Figure 3, suggests that they are
not able to provide as many spatial details as the proposed method does. Finally, it is noticeable that RKHS
method and the proposed method achieve the best visual performance on the last three experimented
datasets. Actually, visual comparisons show little disparity for these four methods. However, we will
demonstrate that the proposed method gives the best quantitative results in Section 4.2.

http://glcf.umd.edu/data/quickbird/chilika.shtml
http://openremotesensing.net/knowledgebase/quality-assessment-of-pan-sharpening-methods-in-high-resolution-satellite-images-using-radiometric-and-geometric-index/
http://openremotesensing.net/knowledgebase/quality-assessment-of-pan-sharpening-methods-in-high-resolution-satellite-images-using-radiometric-and-geometric-index/
http://cms.mapmart.com/Samples.aspx
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Visual results for Quickbird dataset (4 bands, 512× 512) obtained by different pan-sharpening
methods. (a) Referential high resolution multispectral image, (b) PCA method, (c) GS method, (d) HPF
method, (e) MTFGLP method, (f) PHLP method, (g) NIHS method, (h) RKHS method, (i) Proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Visual results for Pléiades dataset (4 bands, 1024× 1024) obtained by different pan-sharpening
methods. (a) Referential high resolution multispectral image, (b) PCA method, (c) GS method, (d) HPF
method, (e) MTFGLP method, (f) PHLP method, (g) NIHS method, (h) RKHS method, (i) Proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Visual results for WorldView-2 dataset (4 bands, 800× 800) obtained by different pan-sharpening
methods. (a) Referential high resolution multispectral image, (b) PCA method, (c) GS method, (d) HPF
method, (e) MTFGLP method, (f) PHLP method, (g) NIHS method, (h) RKHS method, (i) Proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Visual results of the SPOT-6 dataset (4 bands, 1024× 1024) obtained by different pan-sharpening
methods. (a) Referential high resolution multispectral image, (b) PCA method, (c) GS method, (d) HPF
method, (e) MTFGLP method, (f) PHLP method, (g) NIHS method, (h) RKHS method, (i) Proposed method.

4.2. Quantitative Comparison

Several quantitative indices are employed to report the performance of different pan-sharpening
methods. To evaluate spectral distortion, we use spectral angle mapper (SAM) [52], erreur relative
globale adimensionnelle de synthése (ERGAS) [52], universal image quality index (Q) [53] together
with its vector extension Q4 [54], and relative average spectral error (RASE) [55] (the larger Q and
Q4 and the smaller SAM and ERGAS, the better performance). Correlation coefficient (CC) [56],
with 1 being its ideal value, acts as spatial quality metric. Meanwhile, we use peak signal-to-noise
ratio (PSNR) and root mean square error (RMSE) as metrics of fusion accuracy. Generally speaking,
better performance is achieved when PSNR is larger and RMSE is smaller.



Remote Sens. 2018, 10, 622 12 of 18

In each experiment, most of the compared methods require an upsampled multispectral image as
an input. Unless specially specified in the literature, we unifiedly generate them by interpolating via
a kernel function which is a polynomial with 23 coefficients [57].

The quantitative results of four datasets with regard to eight metrics are reported in Tables 1–4.
They clearly validate that the rest of the methods outperform PCA method as visual comparison in
Section 4.1 preliminarily confirmed. GS method maintain spectral fidelity well on Quickbird dataset
and WorldView-2 dataset, while on the rest two datasets it performs not so well. Compared with
methods such as MTFGLP method and HPF method, PHLP method and NIHS method give comparable
results with respect to SAM. However, there is still a gap when it comes to metrics reflecting spatial
quality and fusion accuracy. Similar to GS method, HPF method is unable to preserve enough
characteristics on Pléiades dasaset and SPOT-6 dataset from a spectral point of view. If not taking the
proposed method into consideration, RKHS method or MTFGLP method performs the best. However,
the proposed method consistently achieves better quantitative performance than them in terms of all
metrics (except for SAM) on the four tested datasets. These observations are sufficient to demonstrate
that the proposed method preserves spectral information and sharp spatial details accurately.

Table 1. Quantitative results for Quickbird dataset.

Method SAM Q4 Q RASE ERGAS CC RMSE PSNR

PCA 5.2812 0.7734 0.3895 21.5874 4.7453 0.7520 0.1246 18.0910
GS 2.3162 0.8510 0.8345 12.3841 2.9310 0.9433 0.0715 22.9177

HPF 2.1727 0.8561 0.8299 8.5465 2.0681 0.9420 0.0493 26.1392
MTFGLP 2.2767 0.8756 0.8399 6.1273 1.6287 0.9439 0.0354 29.0296

PHLP 5.0053 0.8184 0.7736 11.5526 2.9020 0.9077 0.0667 23.5214
NIHS 2.9060 0.7212 0.7521 14.4955 3.4247 0.9161 0.0837 21.5503
RKHS 3.0682 0.8725 0.8380 7.4955 1.9868 0.9413 0.0433 27.2789

Proposed 2.2422 0.8816 0.8525 5.1265 1.4605 0.9484 0.0296 30.5785

Table 2. Quantitative results for Pléiades dataset.

Method SAM Q4 Q RASE ERGAS CC RMSE PSNR

PCA 9.5457 0.7829 0.8387 32.8033 8.0507 0.9276 0.0637 23.9147
GS 9.1222 0.8336 0.8900 28.8060 6.4917 0.9645 0.0560 25.0434

HPF 10.8694 0.8376 0.9243 27.8449 6.7583 0.9722 0.0541 25.3382
MTFGLP 4.7925 0.9063 0.9653 14.6515 3.2470 0.9801 0.0285 30.9155

PHLP 3.9558 0.7749 0.9186 23.6349 4.8308 0.9508 0.0459 26.7620
NIHS 5.8053 0.7807 0.8954 32.9408 6.6098 0.9500 0.0640 23.8784
RKHS 3.8294 0.9071 0.9710 12.0542 2.5088 0.9829 0.0234 32.6103

Proposed 3.2465 0.9278 0.9775 10.3886 2.1452 0.9857 0.0202 33.9019

Table 3. Quantitative results for WorldView-2 dataset.

Method SAM Q4 Q RASE ERGAS CC RMSE PSNR

PCA 7.1137 0.9256 0.9137 17.4524 3.9960 0.9608 0.0778 22.1796
GS 5.2254 0.9312 0.9438 13.1991 3.2049 0.9776 0.0588 24.6058

HPF 4.1352 0.9185 0.9487 9.9563 2.4925 0.9832 0.0444 27.0547
MTFGLP 4.3926 0.9372 0.9531 9.1386 2.3852 0.9857 0.0407 27.7991

PHLP 4.0716 0.7879 0.9058 13.5540 3.2978 0.9720 0.0604 24.3753
NIHS 1.7128 0.7751 0.8781 29.6650 5.6749 0.9645 0.1323 17.5718
RKHS 5.3524 0.9340 0.9546 11.7716 2.9588 0.9864 0.0525 25.6000

Proposed 3.5176 0.9441 0.9647 6.6818 1.7829 0.9879 0.0298 30.5188
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Table 4. Quantitative results for SPOT-6 dataset.

Method SAM Q4 Q RASE ERGAS CC RMSE PSNR

PCA 8.4179 0.8594 0.9002 23.3863 6.1677 0.9653 0.0565 24.9547
GS 7.0558 0.8976 0.9248 25.6653 5.2751 0.9804 0.0620 24.1470

HPF 7.7539 0.8707 0.9172 26.0012 5.5211 0.9727 0.0628 24.0340
MTFGLP 3.8118 0.9162 0.9362 20.5174 4.1687 0.9795 0.0496 26.0915

PHLP 5.8827 0.7768 0.9044 21.1517 4.8940 0.9659 0.0511 25.8270
NIHS 3.8008 0.7848 0.8770 34.3983 6.4343 0.9588 0.0831 21.6032
RKHS 2.5938 0.9266 0.9530 11.8152 2.8106 0.9842 0.0286 30.8851

Proposed 3.2818 0.9300 0.9566 10.8640 2.6335 0.9843 0.0263 31.6141

4.3. Discussion on the Number of Outer Iterations

In Algorithm 2, we use an iterative strategy to improve the performance of Algorithm 1.
The number of this outer iterations, i.e., γ, is set to 5. It is meaningful to inspect how the performance
of Algorithm 2 changes as γ increases.

In Figure 6, we present I(j), j = 1, 2, 3, 4, 5, each being the result of the jth outer iteration of
Algorithm 2 with respect to Pléiades dataset. To focus on spatial details, only the first channel of each
image is shown. For each of the last four images, we subtract its intensities by the corresponding
smallest value in the channel before normalization, since these images contain negative intensities
which cannot be plotted by MATLAB directly. For better visualization, the normalization of these
four images are implemented by dividing the largest intensity of I(2) since their absolute values
are rather small compared with I(1). From these visual results, we know that the outer iteration in
Algorithm 2 is able to pick up more image details.

From Tables 5–8, quantitative results of the proposed method with γ changing from 1 to 6 are listed.
When γ = 1, the proposed method essentially becomes Algorithm 1, which makes it convenient to
compare it with the performance of Algorithm 2 directly. As expected, after combining Algorithm 1 with
the iterative strategy, better quantitative performance is achieved, which can also be inferred from Figure 6.

Table 5. Quantitative results for Quickbird dataset with different numbers of outer iterations.

Case SAM Q4 Q RASE ERGAS CC RMSE PSNR

γ = 1 3.6036 0.8633 0.8274 10.0852 2.5146 0.9393 0.0582 24.7013
γ = 2 2.6197 0.8796 0.8468 6.3718 1.6839 0.9471 0.0368 28.6898
γ = 3 2.2813 0.8816 0.8499 5.4827 1.5165 0.9476 0.0316 29.9951
γ = 4 2.3563 0.8828 0.8496 5.2938 1.5354 0.9465 0.0306 30.2996
γ = 5 2.2422 0.8816 0.8525 5.1265 1.4605 0.9484 0.0296 30.5785
γ = 6 2.3382 0.8822 0.8500 5.1863 1.5145 0.9465 0.0299 30.4778

Table 6. Quantitative results for Pléiades dataset with different numbers of outer iterations.

Case SAM Q4 Q RASE ERGAS CC RMSE PSNR

γ = 1 5.8470 0.8758 0.9383 19.2451 4.1779 0.9754 0.0374 28.5467
γ = 2 3.5671 0.9187 0.9725 11.8189 2.4454 0.9830 0.0230 32.7816
γ = 3 3.4947 0.9244 0.9746 11.5754 2.3527 0.9839 0.0225 32.9624
γ = 4 4.1877 0.9247 0.9731 12.5506 2.5343 0.9843 0.0244 32.2598
γ = 5 3.2465 0.9278 0.9775 10.3886 2.1452 0.9857 0.0202 33.9019
γ = 6 3.4306 0.9275 0.9761 10.9675 2.2676 0.9854 0.0213 33.4309
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Table 7. Quantitative results for WorldView-2 dataset with different numbers of outer iterations.

Case SAM Q4 Q RASE ERGAS CC RMSE PSNR

γ = 1 5.2761 0.9338 0.9484 12.1816 3.0319 0.9816 0.0543 25.3026
γ = 2 4.2752 0.9422 0.9608 8.2856 2.1955 0.9872 0.0369 28.6502
γ = 3 3.7884 0.9436 0.9637 7.1468 1.8866 0.9877 0.0319 29.9344
γ = 4 3.6676 0.9439 0.9640 7.3470 1.9681 0.9878 0.0328 29.6944
γ = 5 3.5176 0.9441 0.9647 6.6818 1.7829 0.9879 0.0298 30.5188
γ = 6 3.2613 0.9433 0.9652 6.7456 1.8407 0.9876 0.0301 30.4363

Table 8. Quantitative results for SPOT-6 dataset with different numbers of outer iterations.

Case SAM Q4 Q RASE ERGAS CC RMSE PSNR

γ = 1 6.8677 0.9109 0.9284 23.4889 4.8319 0.9803 0.0568 24.9167
γ = 2 3.6602 0.9270 0.9504 13.6097 3.1098 0.9824 0.0329 29.6569
γ = 3 2.8394 0.9287 0.9535 10.9922 2.6297 0.9824 0.0266 31.5123
γ = 4 2.6245 0.9268 0.9518 10.1182 2.5081 0.9819 0.0245 32.2318
γ = 5 3.2818 0.9300 0.9566 10.8640 2.6335 0.9843 0.0263 31.6141
γ = 6 3.8526 0.9295 0.9558 10.8789 2.6852 0.9841 0.0263 31.6022

(a) (b) (c)

(d) (e) (f)

Figure 6. I(j) computed by Algorithm 2 for Pléiades dataset; (a) the first channel of the sum of I(j),
j = 1, 2, 3, 4, 5; (b) the first channel of I(1); (c) the first channel of I(2); (d) the first channel of I(3); (e) the first
channel of I(4); (f) the first channel of I(5).

We observe from Tables 5–8 that the best quantitative performance is achieved at γ = 5 when γ is
not too large, i.e., smaller than 6. An exception can be noticed in the case of SPOT-6 dataset, where
the best performance is observed at γ = 4. However, for the rest of the datasets, the case of γ = 5
outperforms other cases.

When we let γ goes even larger, things become different. This can be seen in Figure 7, which
shows how indices vary when γ goes from 1 to 20. Since situation for all the tested datasets and all
the indices is similar, we only present two indices related to Pléiades dataset here. From Figure 7, it is
obvious that the curves of indices fluctuate when γ is larger than 3. However, it is also noticeable that
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there is not much improvement for the performance of Algorithm 2 corresponds to larger γ compared
with the case of γ = 5.

gamma

0 2 4 6 8 10 12 14 16 18 20

in
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2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 7. Performance of Algorithm 2 as γ increases, represented by SAM (red) and ERGAS (blue)
with respect to Pléiades dataset.

To explain this phenomenon, an iterative regularization algorithm [58] may be helpful, whose
output signals become noisy if the outer iterations are not stopped properly, i.e., smaller than
a threshold. And the authors explain that the phenomenon of noisiness is due to the influence
of noisy input image. Despite the fact that the output images of Algorithm 2 do not necessarily
degrade all the way when γ becomes larger than 5, the explanation of the similar phenomenon in [58]
is enlightening. Therefore, we suggest that the output of Algorithm 2 is influenced significantly by the
blurred upsampling multispectral image when γ is large enough, which leads to the fluctuation of
numerical indices. Since the success of our iterative strategy has been preliminarily demonstrated by
numerical results, an analysis of this conjecture can be explored in our future research. We simply set
γ as 5 as a tradeoff of computational burden and the performance of the proposed algorithm, and also
as a strategy to save the efforts of tuning.

4.4. Time Comparison with RKHS Method

Since we mentioned in Section 3 that the proposed model is supposed to simplify model (3), it is
reasonable to expect a reduction in running time when comparing these two methods. Time cost of
both methods for the four datasets can be examined in Table 9, whose values are presented in the unit
of second. We point out that these results are obtained by running on the same laptap with 4GB RAM
and 1.70GHz Intel(R) Core(TM) i5-4210U CPU as mentioned in the beginning of Section 4.

Table 9. Running time(s) of RKHS and the proposed method on four datasets.

Method Quickbird Pléiades WorldView-2 SPOT-6

RKHS 7263.22 27882.87 16559.93 31576.65
Proposed 207.71 851.11 512.47 863.59

From the table, it can be validated that the proposed method is much less time consuming than
RKHS method, which means the goal of reduction in computational burden and running time is achieved.
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5. Conclusions

In this paper, a new iterative pan-sharpening approach is proposed for the fusion of panchromatic
image and multispectral image. The proposed variational model inherits the framework of RKHS
method but is essentially different. Instead of paying attention to modelling the unknown high
resolution multispectral image in a complicated way, we utilize framelet technique in image restoration
for more effectiveness of regularization. An iterative scheme similar to [22] is also employed to
improve performance of the proposed algorithm. Experiments on data from Quickbird, Pléiades,
WorldView-2, and SPOT are conducted for visual and numerical assessment. The results demonstrate
that the proposed method outperforms several state-of-the-art pan-sharpening methods both visually
and quantitatively. Meanwhile, it succeeds in reducing time cost compared with RKHS method.
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