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Abstract: Ocean surface currents and winds are tightly coupled essential climate variables, and, given
their short time scales, observing them at the same time and resolution is of great interest.
DopplerScatt is an airborne Ka-band scatterometer that has been developed under NASA’s Instrument
Incubator Program (IIP) to provide a proof of concept of the feasability of measuring these variables
using pencil-beam scanning Doppler scatterometry. In the first half of this paper, we present
the Doppler scatterometer measurement and processing principles, paying particular attention
to deriving a complete measurement error budget. Although Doppler radars have been used for the
estimation of surface currents, pencil-beam Doppler Scatterometry offers challenges and opportunities
that require separate treatment. The calibration of the Doppler measurement to remove platform and
instrument biases has been a traditional challenge for Doppler systems, and we introduce several new
techniques to mitigate these errors when conical scanning is used. The use of Ka-band for airborne
Doppler scatterometry measurements is also new, and, in the second half of the paper, we examine the
phenomenology of the mapping from radar cross section and radial velocity measurements to winds
and surface currents. To this end, we present new Ka-band Geophysical Model Functions (GMFs)
for winds and surface currents obtained from multiple airborne campaigns. We find that the wind
Ka-band GMF exhibits similar dependence on wind speed as that for Ku-band scatterometers, such
as QuikSCAT, albeit with much greater upwind-crosswind modulation. The surface current GMF at
Ka-band is significantly different from that at C-band, and, above 4.5 m/s has a weak dependence
on wind speed, although still dependent on wind direction. We examine the effects of Bragg-wave
modulation by long waves through a Modululation Transfer Function (MTF), and show that the
observed surface current dependence on winds is consistent with past Ka-band MTF observations.
Finally, we provide a preliminary validation of our geophysical retrievals, which will be expanded in
subsequent publications. Our results indicate that Ka-band Doppler scatterometry could be a feasible
method for wide-swath simultaneous measurements of winds and currents from space.

Keywords: surface currents; ocean vector winds; scatterometry; Doppler

1. Introduction

The two-way interaction between ocean surface currents and ocean winds is an important
component of the ocean-atmosphere system. Surface winds drive currents, but are, in their turn,
modulated by currents since the forcing wind stress is relative to the current’s moving reference
frame [1]. In addition, surface currents advect warm or cold water, and the resulting temperature
gradients modulate the winds (e.g., [2]), possibly causing a change in the structure of mesoscale and
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sub-mesoscale circulation (e.g., [3]). At small space and time scales, the interaction of winds and
surface currents becomes tighter as winds can drive inertial oscillations or aid in the formation of
mesoscale fronts (e.g., [4]), where significant vertical ocean motion can occur, leading to enhanced
mixing. For these reasons, it is very desirable to be able to obtain simultaneous synoptic measurements
of ocean surface currents and winds.

Measurements of ocean vector winds have a long heritage with radar scatterometers using either
Ku-band rotating pencil beam scatterometry (e.g., NASA’s Quick Scatterometer (QuikSCAT) and
RapidScat, the Indian Space Research Organisation’s (ISRO) OSCAT and ScatSat) or multiple beam
C-band scatterometry (e.g., EUMETSAT’s ASCAT series). The possibility of measuring surface currents
using radar along-track interferometry was first suggested by Goldstein et al. [5,6] and an airborne
vector measurement was demonstrated by [7]. Implementing a dual beam along-track interferometer
from space is challenging. Chapron et al. [8], with colleagues from Institut français de recherche
pour l’exploitation de la mer (IFREMER) and elsewhere, suggested that single-antenna Synthetic
Aperture Radar (SAR) Doppler centroid measurements could be used instead, albeit potentially at
lower resolution and accuracy. Rodríguez (Ocean Vector Winds Science Team Meeting, 2012) suggested
that a slight modification of the pencil beam scatterometer to include Doppler measurements could
produce wide-swath vector surface current measurements, and Bao et al. [9] subsequently published
an analysis of the performance of a Doppler scatterometer spaceborne system. Fois et al. [10] showed
that a Doppler system amenable to the ASCAT architecture could also be implemented by correlating
the Doppler shift from opposite sense linear frequency modulated pulses (i.e., chirps).

Given the scientific potential for simultaneous measurements of winds and currents, NASA
funded the development of a Ka-band Doppler scatterometer system, called DopplerScatt, under
the NASA Instrument Incubator Program (IIP). Here, we present the Ka-band measurement
phenomenology, the processing and calibration algorithms, and the detailed measurement error
budget for the DopplerScatt wind and current measurements. These measurements are then validated
using data collected in several field campaigns.

The DopplerScatt instrument design is presented in Section 2.1. We then present a review of the
measurement principles and an overview of the processing in Section 2.2. The measurement principles
are examined further in Appendix A, which extends the work of Bao et al. [9] to include several
additional effects. One aspect where pencil-beam Doppler centroid systems differ from side-looking
SAR systems is in the variation of Doppler bandwidth with scan angle [11]. This variation allows the
estimation of the Doppler centroid using phases from multiple bursts in order to reduce the noise of
the estimate. We present detailed algorithms for the estimation of the Doppler centroid that extend the
classical work of Madsen [12] to multiple bursts in Section 2.5. We derive a new analytical estimate for
the radial velocity and validate it using DopplerScatt field measurements.

In Sections 2.4–2.6, we present the description of the end-to-end processing algorithms. Given the
novelty of the pencil-bean Doppler measurements, we pay attention to the sensitivity equations for the
velocity, and validate the DopplerScatt random error performance by comparing theoretical predictions
and estimates obtained from campaign data.

DopplerScatt also differs from spaceborne scatterometers in having only one polarization and
one antenna beam. In traditional scatterometry, this limitation would lead to unacceptable azimuth
ambiguities, but we show in Section 2.6 that, following the spirit of Mouche et al. [13], the surface
current radial velocity information can be used to obtain unambiguous wind directions.

A critical part of the radial velocity measurement (and one of the primary limitations for
spaceborne SAR systems to date) is calibrating the antenna position so that the look vector is known
to sufficient accuracy. In Section 2.8, we show that it is possible to use measurements over multiple
scan cycles of the pencil-beam antenna to determine angular biases and illustrate with results from
DopplerScatt. These results illustrate the system’s stability over multiple campaigns.

After laying down the theoretical and processing framework, we examine in Section 3 the
geophysical results obtained during multiple flights conducted by the DopplerScatt instrument during
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2016 and 2017. These results include estimates of the ocean correlation times at Ka-band (Section 3.1);
estimates of the geophysical model function (GMF) relating σ0 and winds for vertical-polarization,
moderate incidence angle Ka-band data (Section 3.2); the separation of the ocean surface currents into
two components: one directly proportional to the local wind, representing the sum of Bragg wave
motion, Stokes and wind drift, and coupling of surface waves orbital velocities; and another one
corresponding to the deeper current that does not respond immediately to the local wind (Section 3.4).
In Sections 3.3–3.5, we present some preliminary comparisons of the final DopplerScatt data products
against available in situ data. Given the complexity of comparing radar surface velocities with in
situ measurements conducted by various methods, we will give a more detailed accounting of this
subject elsewhere. The mechanisms that generate the surface current GMF through modulation of
Bragg waves by long ocean waves are discussed in Section 4. Finally, in Sections 4 and 5, we compare
our findings with similar findings obtained at different frequencies or by different measurements, and
assess the prospects for Ka-band Doppler scatterometry.

2. Materials and Methods

2.1. The DopplerScatt Instrument

DopplerScatt is a vertically polarized single-beam Ka-band coherent scatterometer using a rotating
pencil-beam antenna to illuminate circular regions that can be built into a continuous swath, similar
to the principle of the NASA’s Seawinds Instrument on QuikSCAT [14]. The 12 RPM rotation rate of
the antenna is set so that, for a given range, every point in the swath is observed from at least two
different directions, resulting in the observation geometry shown in Figure 1. The data are recorded
coherently onboard and processed on the ground to estimate radial velocities, by using pulse-pair
phase differences, and normalized radar backscatter cross sections, σ0. The azimuth diversity of the
measurements allows for inversion of both vector surface velocities and winds, as will be explained
below. The antenna beam boresight is set at a nominal incidence angle of 56◦, which, at a nominal
flight altitude of 8.53 km, results in a ground scan radius, R, of approximately 12.5 km, for a total
observation swath of about 25 km. The system is highly configurable in terms of the inter-pulse period,
the burst repetition interval, and the system bandwidth, allowing for operation at multiple altitudes.
Table 1 presents the configuration that was used to obtain the results used in this paper.
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Figure 1. Geometry, viewed from above, for the inversion of vector surface velocities and winds.
The platform flies along the x-direction, and the cross-track distance is given by y. For a given range,
the footprint scans along a circle of radius R centered at the radar position (indicated by a dark circle).
For this simple geometry, any given point in the swath is mapped twice, with a plane-projected look
vector in the forward (backward) direction given by ˆ̀+

‖ (ˆ̀−
‖ ). The angle φ = arctan(2y/D) = ϕ+ is the

angle between the forward look and platform directions and D is the platform separation. It is related
to the backward look angle by ϕ− = π − φ.
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Table 1. DopplerScatt nominal parameters.

Parameter Value

Peak Power 100 W
3 dB Azimuth Beamwidth 3◦

3 dB Azimuth Footprint 600 m
3 dB Elevation Beamwidth 3◦

3 dB Elevation Footprint 1.4 km
Nominal boresight angle 56◦

Burst Repetition Frequency 4.5 kHz
Inter-pulse Period 18.4µs

Chirp length 6.4µs
Pulses per burst 4
Pulse Bandwidth 5 MHz
Azimuth Looks 100

Range Resolution 30 m
Resolution in Elevation 36.2 m
Resolution in Azimuth 485 m

Nominal Platform Altitude 8.53 km
Nominal Swath 25 km

Scan Rate 12 RPM
Noise Equivalent σ0 −37 dB

A 3D model of DopplerScatt is presented in Figure 2. A 5 MHz chirp signal is generated digitally,
upconverted, and amplified using a commercial Ka-band solid state amplifier (SSPA), built by
QuinStar Technology (Torrance, CA, USA), to achieve a peak transmit power of 100 W. The signal
is transmitted and received by a rotating, 3◦ one-way beamwidth, vertically-polarized, waveguide
slotted array antenna, base-banded by the Radio-Frequency (RF) receiver, and digitized at a high
rate by a commercial digital receiver built by Remote Sensing Solutions (Barnstable, MA, USA). The
processing of the complex data from the digital receiver will be described below. For the nominal
system parameters in Table 1, the system achieves a noise-equivalent σ0 of about −37 dB, which is
sufficient for sampling scenes for even very low winds (O (2 m/s)).

Figure 2. 3D model of the DopplerScatt system prior to integration into the radome and mounting
plate installed in the belly of a Beechcraft King Air B200 airplane (Wichita, KS, USA).
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Although the system pulse repetition frequency allows for SAR processing, the achievable azimuth
resolution using SAR will vary significantly with azimuth angle, and, at this point, we have decided to
process the data in real-aperture mode to obtain more uniform sampling characteristics. This leads to a
two-way azimuth footprint size of approximately 600 m. In the range direction, the chirp bandwidth
results in a ground sample spacing of 36 m. The achievable ground resolution when combining
measurements from different azimuth directions will vary across the swath, but the combination of
partially overlapping skewed footprints can lead to significant improvements in the resolution cell size
since the areas of overlap are emphasized, especially in the swath “sweet-spots” between the nadir
track and the far-swath (see, e.g., [15]).

Pulsed pair Doppler processing is achieved by cross-correlating bursts, which are transmitted at a
burst repetition frequency of 4.5 kHz, Nyquist oversampling the Doppler bandwidth for all azimuth
angles. The system’s phase and power stability is monitored using an internal calibration loop which
includes the transmit and receive paths, excluding the rotating antenna. Intensive laboratory testing
prior to deployment, and subsequent calibration field data, showed that the pulse-pair difference
timing stability is insensitive to temperature and introduces radial velocity errors much smaller than
1 cm/s. The system delay showed some sensitivity to temperature, but drifts were much smaller than
the inverse bandwidth of the system. The system gain exhibited variations with temperature and these
were calibrated using loop-back calibration and corrected during the processing to obtain σ0.

The instrument position and attitude are obtained using a GPS receiver coupled with an
Applanix POS AV-610 Internal Motion Unit (IMU) (Richmond Hill, Canada). The IMU manufacturer
specifications relevant to DopplerScatt’s performance are given in Table 2, assuming Precise Point
Positioning (PPP) processing. The rotation angle is obtained by means of an encoder, which has a
nominal resolution of 88 mdeg, but has an unknown mounting offset that needs to be obtained from
calibration. The nominal antenna pattern was obtained using near-range field measurements. The
nominal boresight was obtained by combining mechanical measurements of the antenna location
together with IMU attitudes and the azimuth encoder measurement.

Table 2. Applanix POS AV 610 performance specifications.

Parameter Accuracy

True Heading 5 mdeg
Roll & Pitch 2.5 mdeg

Attitude Drift <0.01 deg/h
Velocity 0.5 cm/s

Horizontal Position <10 cm
Vertical Position <20 cm

2.2. Current Measurement Principle

DopplerScatt measures two basic quantities, pulse-pair phase differences and return power,
which are then converted to surface radial velocities, vrS, and normalized backscatter cross section, σ0.
The use of σ0 for vector wind retrieval using a pencil-beam scatterometer is well known (e.g., [16]),
and we refer the reader to the literature for a review of the principles. The principles of using a
pencil-beam system to measure surface currents was presented by Bao et al. [9]. In this paper, we extend
their derivation to include various effects not accounted for in their first order approximation and also
examine the algorithm for radial velocity in detail.

In Appendix A, we present a detailed measurement model and find that the complex correlation
coefficient, γ(τ), for a pulse pair separated by a time τ is given by
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〈E1E∗2 〉√〈
|E1|2

〉 〈
|E2|2

〉 ≡ γ (τ) = exp [−iΦ(τ)] γNγT (τ) |γD(τ)| , (1)

Φ
2kτ

= ˆ̀ ·
(

vp −
(

vW +

〈
δσ0

σ0
ˆ̀ · δvW

〉
W

))
− vrG − vrA, (2)

where Ei is the complex return signal, Φ is the pulse-pair phase difference, 2kτ = 4πτ/λ, ˆ̀ is the look
vector from the platform to the scattering cell (we drop the C subscript and overbars of Appendix A in
the main text to simplify notation), vp is the platform velocity vector, and vW is the velocity vector
for the surface scatterers averaged over the resolution cell. Equation (2) shows that the normalized
pulse-pair phase is proportional to the radial velocity along the look direction, ˆ̀ ·

(
vp − vW

)
, as in [9],

but also includes three additional terms.
The first term,

〈
δσ0
σ0

ˆ̀ · δvW

〉
W

, represents the correlation between σ0 and vW fluctuations within
the resolution cell, reflecting the modulation of the resolution cell Doppler centroid by changes in
σ0. Thus, if velocity and backscatter modulations are correlated (by hydrodynamic, tilt, or other
modulations), the radial velocity contributing to the Doppler will not be ˆ̀ · vW , but will be shifted
towards the velocities in the brighter parts of the long waves and may cause a net Doppler shift even
when the average wave orbital velocity is negligible. The presence of this coupling has been known
for a while (e.g., [17,18]), while Chapron et al. [8] called attention to the strong wind dependence
for moderate incidence angles at C-band. The coupling has been incorporated subsequently into the
DopRIM model [19–21] for estimating the wind-wave component of the radial velocity. This type of
modulation has been shown to be important at C-band [8,20] and X-band [22], and to introduce a
significant wind component that is a function of both wind speed and direction, with theory being in
general good agreement with observations. At Ka-band, there is a much smaller literature, although
recently Yurovsky and colleagues [23,24] have shown empirical and theoretical evidence for a wind
induced component, which will be discussed in greater detail below.

The second term, vrG, is due to shifts in the Doppler centroid caused by non-random
(i.e., non-wave-related) variations in the backscatter cross section over the resolution cell, such as those
due to a gradient in wind speed, or a σ0 variation due to surfactants. A detailed derivation of the
magnitude of this term is given in Appendix A. When the antenna pattern is well approximated by a
Gaussian, as is the case for DopplerScatt, the term is well approximated by

vrG =

(
∆σ0

σ0
σφa

)
vp sin φ, (3)

where ∆σ0 is the change in σ0 over the footprint, σφa ≈ 0.02 is the standard deviation of the azimuth
beamwidth, and φ is the azimuth angle relative to the velocity direction. For a 0.1 dB variation over the
~600 m azimuth footprint, corresponding roughly to a 10 cm/s change, and a nominal platform velocity
of 130 m/s, this corresponds to a maximum error of about 6 cm/s at broadside, while the average error
over the swath is significantly smaller. This error can increase substantially in the presence of sharp σ0

discontinuities, and must be corrected in the processing if the discontinuity is large enough using the
measured σ0 data.

The final term, vrA, is due to shifts in Doppler centroid due to asymmetry in the antenna
pattern, and, if large enough, must be corrected in the processing by using antenna pattern
calibration measurements.

The magnitude of the pulse-pair correlation, γ, determines the noise in the estimated
pulse-pair phase difference and contains contributions from three distinct mechanisms. The first
term, γN = SNR/(1 + SNR), where SNR is the system signal to noise ratio, is the use term induced
by the presence of random thermal noise. Given the small noise-equivalent σ0 for DopplerScatt, it only
plays a role for very low wind speeds. The next term, γT , is due to changes in scatterer phase due to
surface motion between the pulses used to form the pulse-pair phase. This temporal correlation is
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the product of γTS, due to the finite lifetime of surface scatterers, and γTW , due to scatterer motion
induced by long-wavelength surface waves

γTW (τ) = exp

[
−
(

τ

TW

)2
]

, (4)

TW =
(√

2kσWr

)−1
, (5)

where TW is the correlation time due to wave motion, and σWr is the standard deviation of the wave
orbital velocity along the radial direction. Although an upgrade is planned, DopplerScatt does not
have the capability to resolve surface waves currently, so an estimate of the orbital radial velocity
variance cannot be obtained from the data itself, but it can be obtained using in situ knowledge of
the surface wave spectrum or by assuming that it is purely wind-driven and has reached equilibrium
with the wind. The term γTS is due to nonlinear dissipation of resonant scatterers or wave breaking,
for which we do not have appropriate models at this time. However, the temporal correlation term can
be estimated from the data itself, as we will show below.

The final term contribution to signal decorrelation, γD, is due to the variation of the Doppler shifts
within the resolution cell, and is given by the Fourier transform of the resolution cell illumination at
the Doppler shift phase spatial rate of change (Equation (A27)). For a Gaussian antenna pattern and
range resolution that is small compared to the changes in Doppler in the range direction, this term can
be approximated by

γD ≈ exp

[
−
(

τ

TD

)2
sin2 φ

]
, (6)

TD =
(√

2kvpσφa

)−1
, (7)

where TD is the Doppler decorrelation time at broadside, which is on the order of 0.35 ms. γD reaches
a maximum in the fore and aft directions, and a minimum at broadside. Notice that TD/TW =

σWr/vpσφa � 1, since we find in Section 3 that the typical ocean correlation time TW & 2 ms.
The Doppler term dominates the correlation for about 80% of the swath, but, due to the sin2 φ term,
the surface temporal correlation is dominant for the inner 20%.

To test the validity of the correlation model, we estimate the pulse-pair correlations as a function
of τ and φ from collected data correlations and compare against predictions for the DopplerScatt
parameters assuming a Gaussian antenna pattern. A typical result is shown in Figure 3, where observed
correlations (solid lines) estimated using 100 pulse pairs for a 200 km line of data are plotted against
the theoretical prediction in Equation (6) for three different pulse-pair separations given by τ = nτ0 for
n = 1, 2, 3 and burst-repetition interval τ0 = (4.5 kHz)−1 ≈ 0.22 ms. Since the temporal correlation is
unknown, it is fit for each pulse-pair interval by making the theoretical and observed curves match in
the aft direction, φ = 0. These estimates will be used to estimate ocean correlation times in the results
section below.

Several features of the DopplerScatt signal are apparent from Figure 3, in addition to the good
agreement between theory and observations (the deviations for low correlation values are due to biases
in the correlation estimator, and the two curves agree for moderate to large values of γ). As expected,
the correlation is inversely proportional to the Doppler bandwidth, with γD ≈ 1 in the fore (φ = π)

and aft (φ = 0), while the correlation is minimized at broadside (φ = ±π/2). Thus, it is expected
that the radial velocity errors will be at a maximum in the broadside direction, and at a minimum
fore and aft. The second lesson from this figure is that temporal correlation of the signal can be a
significant contributor to signal decorrelation. The variability of the ocean temporal correlation times
as a function of environmental conditions will be examined below.
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Figure 3. Observed (solid lines) and modeled (dashed lines) pulse-pair correlations for pulse-pair
separations τ = nτ0, τ0 = 0.22 ms, as a function of φ, the azimuth angle relative to the platform velocity.

2.3. Estimation of Pulse-Pair Phase

Traditionally, the estimation of phase differences for Doppler centroids [12] and radar
interferometry [25], for pulses separated by jτB (j ≥ 1 is an integer), where τB is the burst repetition
interval, has been done by using the phase of the pulse-pair interferogram

Φ̂j =
1
j

arg

[ Np

∑
n=1

〈
En(t)E∗n+j(t + jτB)

〉]
, (8)

where the index n labels subsequent pulses in the received pulse train. Following Madsen [12], in SAR
applications j = 1, since typically pulses separated by more than one can be regarded as uncorrelated.
This can be shown to be the maximum likelihood estimator (MLE) for the interferometric phase when
using independent pulse pairs, but not when the pulses are not independent. As can be seen from
Figure 3, pulses in the DopplerScatt return may have significant correlation across many transmit
events and a natural question arises: what is the best combination of pulse-pairs to use for estimating
the pulse-pair phase. In Appendix B, we present the derivation of the MLE estimator for the pulse-pair
phase difference, as well as the Crámer–Rao asymptotic lower bound for the estimator variance [26].
Unfortunately, unlike for the independent pulse-pair samples, the MLE Equation (A42) does not have
an analytic solution, but must be solved numerically by a one-dimensional search, or by iteration,
which has a computational cost. In the low-correlation limit, the estimator can be approximated by the
weighted average of the MLE estimator

Φ̂ =

Nj

∑
j=1

wjΦ̂j, (9)

where wj is an approximate inverse variance weight given by Equation (A53).
For independent pulse pairs with the same correlation γ, the Cramér–Rao bound is given by [25]

σ2
Φ =

1
2NL

1− γ2

γ2 , (10)

where NL is the number of independent pulse pairs used in the estimate. When the pulses are correlated,
the Cramér–Rao bound is given by Equation (A47), which can be calculated analytically but does not
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lend itself to a simple expression, except in the low-correlation limit when it is given by Equation (A50),
which represents a weighted combination of Equation (10) accounting for changes in the number of
samples and correlations.

To assess the relative performances of the estimation algorithms, we generated correlated
circular-Gaussian samples with the correlation coefficient given by Equation (1), using a
Gaussian antenna pattern. The temporal correlation function was assumed to be of the form
γT = exp[−(τ/Tsc)2] and Tsc was varied between 0.5 ms to 4.0 ms, consistent with ocean observations
presented below. We examine three estimators: the MLE estimator; and the two estimators obtained
by taking Nj = 1, 3 in Equation (9). The Nj = 1 case corresponds to the Doppler centroid estimator
given by Madsen [12] and has correlations similar to the n = 1 line in Figure 3 (although with varying
temporal correlation). The Nj = 3 estimator uses the three pulses shown in Figure 3. For this simulation,
we use 100 pulses (as in the processor) and the nominal system parameters in Table 1. The results for
phase are converted into radial velocity error by dividing by 2kτ and are presented in Figure 4.
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Figure 4. Performance of three pulse-pair estimators described in the text as a function of | sin φ|,
the cross-track distance divided by the swath radius. Solid lines correspond to the Cramér–Rao bound
given by Equation (A47). Circles correspond to the simulation results as a function of correlation time
for Tc of 0.5 ms (blue), 1.0 ms (green), 2.0 ms (red), and 4.0 ms (purple).
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Figure 4 shows the radial velocity error increasing with cross-track distance for all estimators, and
decreasing with increasing correlation time. Surprisingly, the best estimator is the Madsen estimator
(Nj = 1), while taking additional samples (Nj = 3) increases the noise, as does using the MLE solution
(possibly due to errors in the numerical search). These characteristics hold for high SNR data where
reducing thermal noise variability is not important, while lower SNR results (not shown), which will
be more representative of spaceborne data, do show the benefit of using multiple samples in the
retrievals.

The reason the Madsen-type estimators do not conform to the approximate Cramér–Rao bounds is
that they utilize the number of pulses used to form the interferogram, Np, as the number of independent
looks, NL, in Equation (10). This is appropriate only in the limit when pulse-to-pulse correlation is
low, as derived in Appendix B. However, when pulse-to-pulse correlation is high, NL � Np. A better
estimator for the number of looks is given by the total interferogram observation time divided by
the total correlation time, NL = NpτB/Tc, and Tc is determined by solving |γ(Tc)| = 1/e. From
Equations (4) and (6), Tc is given by

Tc = T
√

1 + log (γN) , (11)

T−2 =
[

T−2
W + T−2

D sin2 φ
]

. (12)

Since TD � TW , for about 80% of the swath, T−1 varies sinusoidally with azimuth angle (or
linearly with cross-track distance), but approaches a fixed value determined by the ocean correlation
time in the nadir portion of the swath. For log γN > −1, the equivalent number of looks can be
written as

NL = min

NpτB

√
T−2

W + T−2
D sin2 φ√

1 + log (γN)
, Np

 . (13)

In the high-correlation limit, 1− γ� 1, which applies in most situations for DopplerScatt, one can
use the Cramér–Rao bound to derive a simple formula for the radial velocity error variance

σ2
vr =

(
1

2kτB

)2 1
2NL

1− γ2

γ2 , (14)

≈
(

1
2kτB

)2 τB
Np

√
T−2

W + T−2
D sin2 φ, (15)

which shows that, for about 80% of the swath, the radial velocity variance will vary linearly with
cross-track distance and approach a fixed value for the center swath. If the effect of the equivalent
number of looks were not taken into account, the prediction would be that the radial velocity variance
would exhibit a quadratic behavior with cross-track distance, in the high correlation limit. This equation
also shows that σ2

vr ∼ τ−1
B , rather than the τ−2

B behavior that would be expected if the phase variance
were independent of the pulse-pair separation.

In Figure 5, we show the expected random error performance as a function of SNR and ocean
temporal correlation using the exact correlations and estimated number of looks. For SNR greater
than 20 dB, the high correlation behavior described above applies, but the performance across the
swath flattens out significantly as the SNR becomes smaller, since the performance is dominated by
the thermal noise and not the Doppler correlation. The impact of ocean correlation time is only evident
in the nadir part of the swath and for lower SNRs.
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Figure 5. Random component of the radial velocity for Signal-to-Noise Ratios (SNRs) of 5 dB (blue),
10 dB (orange), 20 dB (green) and 30 dB (red) and radial velocity standard deviations (0.2 m/s (solid),
0.4 m/s (dashed), and 0.6 m/s (dot-dashed) for a platform velocity of 130 m/s and assuming that
Np = 100 and τ ≈ 0.2 ms. The cross-track distance is divided by the distance from the nadir track to
the outer swath.

In Figure 6, we compare the estimated noise in the radial velocity (blue), against predictions using
Equation (10) with the estimated γ using either the naïve Cramér–Rao bound (NL = Np) (green), or the
version where NL is estimated from the total correlation time (orange). The estimates of the radial
velocity random error (blue) were obtained for each pulse-pair by removing a trend in range for the
radial velocity and computing the standard deviation of the resulting signal: this is a conservative
estimate since there will be some natural variability due to waves and currents. Since the ocean
surface correlation time is unknown a priori, we estimate the γN and Tc by fitting a quadratic in
time for multiple pulse separations to the logarithm of the correlation function and averaging the
estimates for each range line for the same samples used to estimate the random error (additional
results regarding the temporal correlation function are given in Section 3.1). Both measured and
predicted random errors show periodic variations with azimuth due to changes predicted by the
Doppler correlation in Equation (6), with minimum errors occurring in the fore and aft directions,
and maxima at broadside. The figure shows that the naïve estimator underestimates the observed
error significantly, while the Cramér–Rao bound with NL determined by the correlation time is in
good agreement with the observations. The fact that the naïve estimator underestimates the error
significantly explains the degraded performance when multiple pulses are used in combination using
Equation (9): the estimation weights wj are too large for the larger pulse-pair separations, resulting in
the introduction of additional noise. One can improve the multi-pulse estimator in Equation (9) by
using the predicted variances, which incorporate the effective number of looks into the weights, wj,
but we have found that this modification has only a small effect on the estimation, due to the larger
errors for greater pulse-pair separation. At this point, we do not have a simple explanation as to why
the MLE estimator performs so poorly against the pulse-pair interferogram phase.
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Figure 6. Estimates of radial velocity random error obtained from observations (blue), using
Equation (10) (divided by 2kτ) with NL = Np (green), and using the same equation but estimating NL

from the correlation time Tc (orange). The data shown correspond to 4.5 revolutions of the antenna.
Note the variations in random error as a function of azimuth due to the variations in γD(φ), with error
maxima appearing at broadside, as predicted by Equation (6).

2.4. Processing to σ0 and Radial Velocities

Figure 7 presents an overview of the DopplerScatt data processing, which, following the usual
NASA conventions, produces data at three different levels: Level-0 (L0) data transformed from
a raw digital subsystem (DAQ) and IMU data into quality-assessed engineering radar and IMU
data in physical units; Level-1 (L1) data produces geolocated estimates of σ0 and residual radial
velocity, after subtracting platform motion effects, obtained by combining 100 transmit pulses;
Level-2 (L2) data contains geolocated estimates for surface vector winds and currents sampled along
individual observations swaths. Level-3 gridded data is obtained by combining multiple swaths
and requires accounting for temporal differences between different swaths, which typically requires
some assumption about dynamics, and is not an official product at this point given uncertainties in
the dynamics at DopplerScatt resolution scales. Below, we describe the general interest L1 and L2
processing algorithms, as L0 processing is hardware specific.

The DopplerScatt instrument uses four different coordinate systems to go from raw measurements
to geolocated data: a system intrinsic to the antenna; a system fixed relative to the instrument mounting
plate; a system relative to the aircraft; and, finally, the East-North-Up (ENU) geolocated coordinate
system. In the early part of L1 processing, GPS/IMU data are merged with the time-tagged radar
data and transformation matrices between the coordinate systems are derived. The down-converted
IQ radar data, including cal-loop and surface returns, are range compressed using time domain
convolution using a weighted reference chirp, to reduce range sidelobes. Estimates of both the phase
and amplitude of the loop-back chirps are calculated and stored for data processing.

A critical part of the processing is in the estimation of ˆ̀, the vector along the look direction,
which is given in the ENU system by

ˆ̀ = sin θ [n̂ cos α + ê sin α]− û cos θ, (16)

where n̂, ê, û are unit vectors pointing north, east and up, respectively; θ is the look angle; and α is the
azimuth angle measured clockwise relative to north.
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Figure 7. End-to-end flow of the DopplerScatt processor.

Assuming a local spherical Earth approximation with radius of curvature RE, the look angle to
the center of the range pixel can be written in terms of the range, r, the height of the platform above
the WGS84 ellipsoid from the GPS measurements, h, and the surface height, η, which is assumed to be
constant over the resolution cell:

cos θ =
h− η

r
+

(r/ (RE + η))2 − ((h− η) / (RE + η))2

2 (r/ (RE + η)) (1 + ((h− η) / (RE + η)))
. (17)

(Note that here and below we present terms with the Earth’s radius of curvature that play a small
role in airborne instruments, but are kept for future spaceborne applications.) The range term has
precision comparable to the system timing, which is much better than the precision in the height above
the surface η, obtained using the CNES-CLS11 mean sea surface [27]. Neglecting curvature terms,
the error in the look angle is given by

δθ ≈ δ (h− η)

r sin θ
. (18)

Using the nominal DopplerScatt parameters, and assuming that the coupled IMU-GPS and
knowledge of the ocean surface are known to within 10 cm, the error in the look angle will be
on the order of 6.6µ rad ~4 × 10−4 deg, which will cause minimal errors on velocity estimation
and geolocation.

Following Appendix A, the azimuth angle must be estimated as the mean value over the footprint
weighted by the antenna pattern and brightness. We assume constant brightness over the footprint
and compute the mean value as

α =

∫
dα′ G2 (θ, α′) α′∫

dα′ G2 (θ, α′)
, (19)

where G2 is the two-way gain mapped into elevation and azimuth coordinates, and, given the small
angular size of the range pixel, integrates along an iso-θ cut in the elevation direction. α can have
errors due to errors in the measured antenna pattern or due to coupling between the odd parts of the
antenna pattern and brightness gradients. These effects are much smaller in practice than the errors
that can be caused by a systematic offset, δα, between the antenna azimuth encoder and the IMU.
Below, we discuss how this mounting offset can be estimated during the calibration process.

Once the look vector is estimated, the scatterer position, S, is determined in the ENU coordinate
system using S = P + r ˆ̀, where P is the nominal radar phase center position from the GPS/IMU.
Geolocation into latitude and longitude from ENU is then performed for each pulse.
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To estimate the surface velocity, pulse-pair phase differences are computed using 100 contiguous
bursts, and the platform motion effects are removed by multiplying by a term exp

[
2ikjτ ˆ̀′ · v′p

]
,

where ˆ̀′ and v′p are the estimated look vector and IMU/GPS platform velocity, respectively.
This process of interferogram flattening also ensures that the residual phase does not suffer from
phase-wrap ambiguities. After estimating the flattened interferometric phase, δΦ̂, using the estimator
in Equation (9) (Nj = 1 or 3 are both kept), the raw surface-projected radial velocity, v′rS, is estimated
using the equation

v′rS =
1

sin θ

δΦ̂
2kτ

=
1

sin θ

[
Φ̂

2kτ
− ˆ̀′ · v′p

]
. (20)

At this point, the radial velocity contains potential calibration errors, as well as contributions from
not only surface currents but also the velocity of the scatterers due to Bragg wave motion, differential
brightness due to long-wave modulation, Stokes and wind drift effects. The final radial velocity,
vrS, removes these effects by subtracting a calibration term, FC, and (optionally) a surface current
geophysical model function (GMF) term FS

vrS = v′rS − FC − FS. (21)

Section 2.7 discusses FC, while FS is discussed in Section 3. We refer to the radial velocity without
FS correction as the uncorrected radial velocity.

The backscatter cross section σ0 is computed from the multi-looked received power, Pr, by using
the equation

Pr = Ptσ0LX, (22)

X(r) =
λ2

(4π)3
∆r
r3

∫
dα′ G2 (θ, α′

)
, (23)

where Pt is the transmit power, L is the system loss outside the calibration loop, and ∆r is the range
resolution. In the equation for the X−factor, we have assumed that the integral along the range
direction of the range point target response, χ2, is given by ∆r =

∫
dr′ χ2(r′ − r). The same 100 pulses

are used for computing the multi-looked power as for the interferograms.

2.5. Estimating the Surface Velocities and Errors

The DopplerScatt rotating pencil-beam illuminates a swath of width 2R = 2h sin θ (see Figure 1),
where h is the platform height above the surface and θ is the look angle. For a given range (or
look angle), every point in the swath is imaged twice, looking forward and back, respectively.
Using Equation (21), estimates for v+/−

rS , the radial velocities projected on the horizontal plane can
be obtained after removing the platform velocity contribution to the pulse pair phase. The radial
velocities are defined by

v+/−
rS = vS · ˆ̀+/−

‖ =
vS · ˆ̀+/−

sin θ
, (24)

where ˆ̀+/− is the look vector from the radar to the scattering point; they are related to vx/y, the surface
velocities along the x/y directions, respectively, by(

cos φ sin φ

− cos φ sin φ

)(
vx

vy

)
=

(
v+rS
v−rS

)
,

sin φ =
y
R

,

where φ = ϕ+ is the forward-look azimuth angle shown in Figure 1. It is related to ϕ−, the back-look
azimuth angle, by ϕ− = π − φ.
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Separating explicitly the measured radial velocities and the velocity GMF, this equation can
be inverted (

vx

vy

)
=

1
sin 2φ

(
sin φ − sin φ

cos φ cos φ

)(
v
′+
rS − F+

S
v
′−
rS − F−S

)
(25)

so that the surface components can be retrieved everywhere, with the exception of along the nadir
path (φ=0) for the y-component, or at the edge of the swath (φ = π/2) for the x-component, when the
inverse matrix is singular.

In practice, due to the finite beamwidth of the antenna and finite cell size of the retrieval,
a given point in the ground can be imaged multiple times, and the surface currents are inverted
by weighted least-squares inversion. However, for the purpose of calculating the measurement
sensitivities, these simplified equations are sufficient to illustrate the nature and magnitude of the
errors, provided random measurement errors are adjusted for the appropriate number of looks.
The sensitivity equations are then given by

δvx =
δv
′+
rS − δv

′−
rS

2 cos φ
− δ

(
F+

S − F−S
)

2 cos φ
, (26)

δvy =
δv
′+
rS + δv

′−
rS

2 sin φ
− δ

(
F+

S + F−S
)

2 sin φ
. (27)

These equations show that the surface velocity errors are a function of cross-track distance, y,
but not of the along-track coordinate, x, with unbounded errors at the nadir and far swath. They also
indicate that we can expect the along-track error to be large at the edges of the swath, while the
cross-track errors will grow in the nadir direction. Finally, they show that, if the radial velocity errors
are symmetric with respect to look direction (i.e., δv+rS = δv−rS), then the along-track velocity errors
cancel, whereas, if they are antisymmetric (i.e., δv+rS = −δv−rS), the cross-track errors cancel.

Aside from geophysical effects in FS, the DopplerScatt surface velocity error budget is dominated
by two types of errors: random noise that is caused by thermal noise, speckle, and temporal
decorrelation; and errors due to incorrect removal of the platform Doppler velocity from the radial
velocity. Assuming that the fore and aft random velocity errors are not correlated, the random error
standard deviations will be given by

σvx =

√
σ2

vrS+ + σ2
vrS−

2 cos φ
≈ σvrS√

2 cos φ
, (28)

σvy =

√
σ2

vrS+ + σ2
vrS−

2 sin φ
≈ σvrS√

2 sin φ
, (29)

where σ2
vrS+/− is the radial velocity random variance for the fore/aft directions using Equations (14).

The last approximation follows in the high SNR limit, when the σ0 variations due to different azimuth
look angles can be ignored as a contributor to the total pulse to pulse correlation, so that σ2

vrS+ ≈ σ2
vrS−.

The previous formulas apply for estimates obtained by combining pairs of radial velocity
measurements. In practice, we combine all fore and aft radial velocity measurements whose centers
lie in a finite resolution cell small enough so that the azimuth angle can be taken to be constant.
This allows us to reduce the random measurement noise by the square root of the number of
independent fore and aft measurements that lie within the resolution cell. Figure 8 shows the theoretical
predicted random error performance as a function of SNR and correlation time for a 200 m resolution
cell, which corresponds to approximately 25 independent fore and aft radial velocity estimates.
Combining multiple radial velocities from similar look directions also allows for an independent
estimate of the random component of the error and the associated estimated standard error, as shown
in Figure 9. Using Equations (28) and (29), these standard errors can be propagated to the along and



Remote Sens. 2018, 4, 576 16 of 59

cross-track error estimates (see Figure 10), which show good agreement with the theoretical results in
Figure 8.

Figure 8. Along-track (left) and cross-track (right) surface velocity errors for the same cases as shown
in Figure 5: SNRs of 5 dB (blue), 10 dB (orange), 20 dB (green) and 30 dB (red) and radial velocity
standard deviations (0.2 m/s (solid), 0.4 m/s (dashed), and 0.6 m/s (dot-dashed) for a platform velocity
of 130 m/s and assuming that Np = 100 and τ ≈ 0.2 ms.
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Figure 9. Estimated standard error of the radial velocity for fore-looking angles (aft-looking results are
similar) obtained by dividing the standard deviation of fore-looking radial velocities in 200 m boxes,
divided the square root of the number of independent samples (~25).

Figure 10. Estimated along-track (upper) and cross-track (lower) surface velocity component errors,
obtained by propagating radial velocity standard errors, as in Figure 9. Note the agreement with
theoretical estimates shown in Figure 8 for high SNR situations.
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In addition to the random measurement error, the other major source of instrument-related errors
is the subtraction of the platform radial velocity contribution, which can suffer from errors in the
estimated platform velocity, as well as look and azimuth angle estimation. Of these, the azimuth angle
estimation is dominant for a mechanically scanned antenna, since knowledge of the azimuth angle is
dependent on the encoder accuracy of the reported antenna scan angle. In this case, the associated
radial velocity error will be given by

δvrS ≈ vp‖ sin ϕδϕ, (30)

where, as shown in Figure 1, ϕ is the relative angle between the platform velocity and the look direction.
Since ϕ− = π − ϕ+, one will have δv+rS = δv−rS as long as the azimuth error remains constant between
fore and aft observations. Replacing this in Equations (26) and (27), one sees that a constant azimuth
bias will affect the cross-track surface current, but will have little impact on the along-track component.
An error in the along-track component due to a constant azimuth bias will introduce a constant
cross-track bias

δvy = vp‖δϕ. (31)

This equation shows the great sensitivity of the cross-track component to azimuth errors.
For example, to get to a velocity error of 10 cm/s assuming a platform velocity of 100 m/s, one must
require that δφ ≤ 10−4 ≈ 0.006◦, which can present a significant installation challenge.

In practice, we expect errors in the azimuth angle to have two main sources: (1) a constant bias
due to a mismatch between the antenna and the spin mechanism coordinate systems; and (2) periodic
changes in rotation speed due to changes in friction as the antenna spins. This leads us to assume that
azimuth estimation error will be of the form

δϕ(η) = δϕ0 +
Nh

∑
n=1

[an cos (nη) + bn sin (nη)] , (32)

where η is the antenna encoder angle, which, for nominal flight conditions will be approximately ϕ,
but will be offset by a constant when cross-winds induce a difference between the flight direction
and the airplane forward direction. Following the previous argument, the cross-track surface velocity
component will be most sensitive to terms in δϕ that do not change sign when η+ → η−, while the
along-track component will be sensitive to those harmonics that do change sign.

The final source of surface velocity errors is due to errors in the wind-driven radial velocity
contribution, FS. In Section 3.4, we show that FS is well represented by a low-order harmonic expansion

FS(ϕ, U10, ϕU) = δvr(U10) +
NS

∑
n=1

vrn(U10) cos (n (ϕ− ϕU + δϕ (U10))) , (33)

where U10 is the neutral wind speed measured at 10 m; ϕU is the wind azimuth direction; and δvr, vrn,
and δϕ are the wind speed dependent model parameters up to order NS. In practice, the dominant
terms are the first harmonic (n = 1) and, to a lesser extent, the constant term. The FS associated errors,
up to order n = 2, are then

δvx = −δ (vr1 cos ϕU + 2vr2 sin φ sin ϕU) , (34)

δvy = − δ (δvr + vr2 cos 2ϕU)

sin φ
− δ (vr1 sin ϕU − 2vr2 sin φ cos 2ϕU) . (35)

The n = 1 term in FS is equivalent to a current along the wind direction, and errors result
in a two-dimensional current error vector, −δ (vr1 cos ϕU , vr1 sin ϕU). As shown in Section 3.4, vr1 is
relatively constant for most of the wind speed range and is about 0.75 m/s, so that, in practice, the major
error contribution from the first order term will be through errors in the estimated wind direction,
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resulting in an error vector vr1 (sin ϕU ,− cos ϕU) δϕU , whose magnitude is vr1δϕU . The effect of a
wind direction error will be to add an approximately constant magnitude surface current vector in the
direction orthogonal to the wind direction, whose scale of variability will be the spatial scale of wind
direction change. Given the magnitude of vr1, the wind azimuth angle estimation will play a dominant
role in the subtraction of the wind-driven surface current components, but not in their derivatives,
since the wind direction varies much more slowly than the ocean circulation direction. The vr1 error
will introduce a current of magnitude δvr1 parallel to the wind direction. Given the Ka-band FS relative
insensitivity to wind speed, this error is expected to be an order of magnitude smaller than the
wind direction error. This situation should be contrasted to that found a C-band [8,13,28], where
vr1 ∼ aU10 (0.05 . a . 0.15), and a 1 m/s wind speed error can lead to significant additional surface
velocity errors.

It is important to note that errors in the even harmonics of FS (especially the constant term) lead to
an error in the cross-track surface velocity component that is inversely proportional to the cross-track
distance, switches sign depending on whether the return is from the left or right swaths, and can
become significant near the nadir track. These types of errors (which could also be introduced by
an instrument pulse-pair phase bias) must be calibrated from the data itself. Note that higher order
harmonics will introduce distortions that can be expressed as low-order polynomials in the cross-track
distance; e.g., errors in the n = 2 term result in linear distortions across the swath. Given sufficient
variability in the current data, so that the mean current contribution is small, these systematic terms
can also be calibrated out.

2.6. Estimating the Wind Speed and Direction

Remote sensing of ocean winds takes advantage of the interaction between the ocean surface
and the wind. As wind blows across the surface of the ocean, it promotes the growth of capillary and
gravity-capillary waves that scatter energy back to a radar dominantly through the Bragg mechanism
(at vertical polarization), wherein only surface waves that have the appropriate wavelength for
constructive interference (given the electromagnetic wavelength and local incidence angle) contribute
to the scattering [29]. For Ka-band and 56◦ incidence, the resonant Bragg waves have a wavelength
of ~5 mm, and lie in the part of the spectrum directly responsive to wind inputs. However, resonant
Bragg waves can also be generated by straining of longer waves [30,31], and not directly by the wind.

Although there is a good general understanding of the mechanisms responsible for generating
Bragg waves (see [30–32]), current theory cannot yet predict quantitatively the high wavenumber
spectrum required to predict radar backscatter given the wind and observation vectors. The traditional
approach to wind estimation is to use an empirical wind GMF, FW(U10, φU), that maps winds to
backscatter. In Section 3.2, we see that Ka-band wind GMF, like the Ku-band QuikSCAT GMF, exhibits
a power-law dependence on wind speed, U10, and a low-order harmonic dependence on the wind
relative azimuth, φU . By observing from different fore and aft azimuth directions (Figure 1), one can
use traditional scatterometer techniques to estimate the wind speed and azimuth. The first step the
wind processor takes is to turn a group of σ0 (and other) measurements into fore and aft looks for each
wind vector cell (200 × 200 m ground cells in this case). To do this, a k-means centroid estimator is
used to find two optimal centroids in antenna azimuth and group (median or mean) measurements
into fore and aft looks based on those centroids. With fore and aft measurements, the wind processor
performs an optimization of the likelihood function, J(U10, φU), in each wind vector cell to find the
wind speed and direction that best match observed σ0 for both fore and aft looks.

J(U10, φU) =
n

∑
i

(
σ0i − FWi(U10, φU)

σi

)2

, (36)

where σ0i is the observed backscatter, and index i represents fore/aft looks. FWi(U10, φU) is the
calculated backscatter from the GMF based on trial wind speeds and directions. σi represents the
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measured variance in observed σ0. In contrast to QuikSCAT, where vertically and horizontally
polarized beams were used to make up to four independent measurements of each ground cell [14],
DopplerScatt operates a single vertically polarized beam, making only two independent measurements
of each ground cell. Two independent measurements is the theoretical minimum number of
measurements required to solve for wind speed and direction, making wind retrieval difficult in
the presence of noise since wind direction ambiguities will occur.

To overcome this limitation, we use the fact that the Doppler measurement reflects the surface
velocity of small waves, which propagate mainly along the wind direction, with (usually) relatively
small changes in direction due to refraction by the non-wind driven surface current. As the first guess
to the wind direction, we use φdop, the direction of propagation of the total Doppler inferred surface
current, uncorrected by FS. A peak finder is used to find optimal wind direction selections along a best
speed ridge (the selection of wind speeds for each possible wind direction that optimizes the objective
function), and the likelihood peak nearest to φdop is selected. We refer to this direction as the initially
selected σ0 direction, φσ0 , and note that φσ0 6= φdop in general. An initially selected speed, Uσ0 , is then
selected by selecting the wind speed along the best speed ridge where φ = φσ0 . In strong currents,
one might be concerned that the initial guess might be dominated by the surface current, rather than
the wind. However, we have found in the strong currents of the Mississppi River plume described
below that we are insensitive to this initial guess.

With φσ0 and Uσ0 selected, the wind processor begins to improve wind estimates in areas of
reduced wind retrieval skill. An important consideration in scatterometry is that some measurement
geometries offer better wind retrieval skill (less noise) than others. With a spinning antenna, a “sweet
spot” exists on either side of center-swath, sometimes called “mid-swath” [33]. Conversely, the center
and far edges of the swath offer reduced variation between measurements, allowing noise to become
a significant issue during wind retrieval. QuikSCAT overcame these issues with spatial filtering of
ambiguities using Direction Interval Retrieval with Thresholded Nudging (DIRTH) [34]. Another
consideration is that scatterometers typically receive weak return signal at low wind speeds, often
corrupting measurements below a few m/s [35].

First, regions of low wind speeds (and low SNR) are improved by introducing φdop and a spatial
median of φσ0 . A weighting function based on wind speed smoothly folds in φdop and φ̃σ0 using

φσ0,dop = w1φσ0 + w2φ̃σ0 + w3φdop, (37)

where
w1 = 1− 1

1 + eUσ0−4 , (38)

w3 = w2 =
1−W1

2
. (39)

These logistic weightings result in almost no contribution from φdop and φ̃σ0 where wind speeds
are greater than 7 m/s, and about half weighting on w1 at 4 m/s. These weightings were chosen to
ensure sufficient weighting at low wind speeds while allowing φσ0 to dominate at moderate and high
wind speeds.

The second area where scatterometer winds require improvement is at the center of the swath,
where the measurement geometry does not offer enough variation in azimuth to compute directions
accurately. Again, a logistic weighting function is used to fold φdop and φ̃σ0 into the φσ0,dop estimate
made above:

φU = w4φσ0,dop + w5φ̃σ0 + w6φdop, (40)

where w5 and w6 are again equally split in the remainder of 1− w4. A logistic function is used to
determine w4 such that w4 is nearly 0 at the center of the swath, and increases to about 0.75 near the
sweet spot. This allows for a smooth transition across the swath while creating usable wind directions
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near the center. With the final wind direction, φ selected, the original best speed ridge is used to select
the wind speed at φ.

The technique proposed here should be contrasted to that proposed at C-band by
Mouche et al. [13], which uses both the direction and the magnitude of the Doppler currents to improve
wind retrievals from SAR data. This approach makes sense at C-band, where the magnitude of the
Doppler current is a strong function of wind speed. This is not the case at Ka-band, as we will see
in Section 3.4, and we do not use the magnitude of the Doppler current in wind estimation. Another
major difference is that, except for regions of low skill, we only use the Doppler current direction to
help resolve azimuth ambiguities. This allows us to examine the relative direction between the wind
and the wind-driven current, which is not the same.

Formal errors for DopplerScatt winds must consider both the contribution from σ0 variance and
the Doppler determined surface current error. Due to measurement geometry, we can expect larger
errors near the center and the edges of the swath, which is typical to pencil-beam scatterometers.
A formal error propagation was conducted for DopplerScatt using a method similar to the bootstrap
method. A randomly selected Gaussian noise was added to σ0 and surface current inputs using
estimated σ0 variance and Doppler determined surface current variance, before running the wind
processor many times. Results indicate sweet-spot Root-Mean-Square (RMS) errors of about 0.25 m/s
in wind speed and 3◦ in wind direction. Along the center of the swath, RMS errors are about 0.5 m/s
in wind speed and 7◦ in direction. These errors are fairly consistent with QuikSCAT simulated errors
[34]. While we expect DopplerScatt errors to vary over wind speed, proximity to coast and a relatively
small amount of data make resolving dependence an exercise for a later time.

The wind processor produces two wind versions, both run on the same 200 m grid that surface
currents are retrieved on. The first version uses the uncorrected surface current directions as a strong
weighting prior, favoring smoothed uncorrected surface current directions over those computed
by the wind processor. This first version retrieves wind speeds based on σ0 from the GMF and
direction heavily weighted towards the surface current direction. The second processing version is that
presented above, and blends uncorrected surface current directions into σ0 retrieved directions only at
low wind speeds and/or near the center of the swath, where scatterometer σ0 based directional skill is
typically low. While the second of the two versions is the wind product we present as the DopplerScatt
winds, the first wind product produces scientifically interesting results and is worth investigating for
that reason.

2.7. σ0 Calibration

DopplerScatt implements an internal calibration loop to measure and remove system instabilities
from the majority of the transmit and receive paths. Additionally, temperature sensors throughout
the radar are used to help remove component loss characteristics as the instrument heats and cools
during operation; however, a heater is used to help maintain the temperature of radar components,
which largely negates temperature changes during level flight. The resulting losses typically vary by
less than 0.05 dB during operation and are thus not included during processing.

The σ0 estimation requires good knowledge of attitude and pointing for accurate calibration,
largely due to its dependence on the two-way antenna gain pattern, G2, in Equation (23). If σ0 is
to be correctly calculated, the gain pattern of the antenna must be removed from σ0 using X-factor
computation. Here, we refer to elevation angle, Θ, as the elevation angle from the center of the antenna
bore-sight. This is distinct from the incidence angle, θ. Prior to flight calibration, we found that σ0

was sloped by about −2.5 dB/degree of elevation, indicating a bias in elevation angle knowledge.
By adding an empirically derived constant bias of 0.042◦ to the elevation angle and re-computing
X-factor, the non-physical slope of σ0 was removed. Figure 11 shows the average return power, σ0 and
X-factor after correction and averaging over a large area. We find that, post-correction, σ0 remains flat
over the main lobe of the antenna, with no significant slope after the initial 0.042◦ adjustment.
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Figure 11. Normalized return power (blue), X-factor (black) and relative σ0 (i.e., the difference in
dB between Power and X-factor) after averaging over many measurements. The σ0 shows no trend
over the antenna main lobe. There is a slight bias in the X-factor, but this introduces negligible wind
speed errors.

2.8. Radial Velocity Calibration

To achieve an error of 10 cm/s, one would require 7.7× 10−4 rad, or 4.4× 10−2 degree azimuth
angle accuracy, which is not achievable with the DopplerScatt encoder. Thus, it is necessary to
calibrate systematic errors in azimuth pointing during flight using the data themselves. In the past,
some researchers have used stationary land targets for calibration, but, in the presence of topography,
the accuracy of the look angle θ is determined by knowledge of the topography, atmospheric delays,
and knowledge of the platform position. We do not have access to digital elevation models that meet
the accuracy requirements needed for calibration, and so must look for alternate approaches. We have
found that a novel approach involving flying the same calibration lines over the ocean in opposite
directions provides a feasible means for azimuth angle calibration.

The main challenge when using the ocean as a calibration target is the ocean Doppler induced by
surface currents. In the presence of a surface current and an azimuth bias, one has

vrS = − sin(α− αp)vp‖δϕ + vW cos (α− αW) (41)

= − sin(α− αp)vp‖

[
δϕ +

vWx
vp‖

]
+ vWa cos

(
α− αp

)
, (42)

where αp and αW are the azimuth directions of the platform and surface current, respectively; vp‖ is
the platform horizontal velocity divided by sin θ; and vWa and vWx are the surface current components
along and across the platform velocity vector, respectively. It is clear from the last equation that using
the radial velocity to estimate the azimuth offset by fitting to a sinusoidal signature over all azimuths
will yield a bias in the estimated azimuth offset

δϕB =
vWx
vp‖

, (43)

which is proportional to the cross-track component of the current, and will result in an error that is of
the same magnitude as this component.
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For the DopplerScatt swath, constant cross-track velocity components will certainly occur, and one
needs another approach. We propose an approach where data with different (ideally, opposite)
headings is collected. In that case, the surface current for the same azimuth look direction will remain
constant, while the contribution from the azimuth bias will change. In the simplest case, where the two
headings are in opposite directions, αp and αp + π, the sign of the current relative in the coordinate
system defined by the platform velocity vector flips between passes, and the estimated azimuth bias,
δ̂ϕ, will have the form

δ̂ϕ
+/−

= δφ± δϕB, (44)

and one can estimate the bias term as δϕ =
(

δ̂ϕ
+
+ δ̂ϕ

−)
/2. An example of this process is shown in

Figure 12, which clearly demonstrates both the impact of the cross-track currents and the feasibility
of estimating a bias. We find that the bias estimated using this procedure is stable over multiple
calibration runs separated by as much as six months.

Figure 12. Estimates of the azimuth bias obtained by fitting opposite direction flight lines over a period
of 4 h. Flight lines 1 and 3 are in the same direction and opposite to lines 2 and 4. The impact of
cross-track currents is clearly visible as geolocated differences around a mean bias of ≈0.8◦, where the
sign of the difference depends on the flight direction.

After an initial estimate and removal of the phase bias using this simple method, we find that
residual cross-track dependent biases due to errors in the estimated azimuth over the antenna rotation
period remain in the estimated radial velocity (see Figure 13, upper panel). To estimate these encoder
angle dependent biases, we take the radial velocity differences for opposite direction flight lines
looking in the same direction at the same pixel. Given the change of sign in the relative direction with
respect to the flight direction, the surface current motion cancels (provided it can be considered as
static over the data collection time) and we fit the harmonic coefficients in Equation (32). We note that
some coefficients will be better defined than others, depending on the aircraft crab angle. In general,
coefficients for even harmonics that do not flip sign when the azimuth encoder changes by π, are well
determined, whereas those for odd harmonics are not, and we do not fit for them. Figure 14, upper
panel, shows the harmonic fit for two independent flight line pairs, while the lower panel shows the
radial velocity error signature after calibrating for the harmonics. This signature has proven to be
stable during a continuous installation of the instrument on the aircraft.
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Figure 13. (upper panels) Radial velocity differences for two passes prior to calibration using harmonic
expansion. (lower panels) Radial velocity differences for the same two passes after calibration using
harmonic expansion. The left/right panels show radial velocities looking north/south, respectively.
Note the cross track error signature evident in the upper panels is not evident in the lower panels.

Figure 14. (Upper panel) Azimuth bias as a function of encoder angle obtained by fitting opposite
direction flight line radial velocity differences assuming only two even harmonics are fit. (Lower panel)
Radial velocity error corresponding to the harmonic fit in the upper panel. The two different color
represent estimates from two different flight line pairs collected approximately 2 h apart, showing
good stability in the retrieved biases at the ~1 cm/s scale.
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The opposite-direction, repeat pass technique is not sensitive to harmonics that have a periodicity
such that the resulting error is identical for fore and aft viewing geometries; i.e., odd/even harmonics
in Equations (32) and (45). These terms are especially important for the component of the cross-track
velocity component, where the error can be proportional to the inverse of the cross-track distance.
To calibrate these error terms, we average the velocity components in the along track direction and
accumulate the results over multiple flight lines taken at different locations, to minimize aliasing by
the true surface velocity. The resulting data are fit with low-order polynomials and an inverse distance
term, and the resulting fit assessed for significance. We have not found any systematic effects in the
along-track velocity component, but there are significant (sin φ)−1 terms in the cross-track component
that persist across many days and which must be removed, as shown in Figure 15.

Figure 15. (blue dots) Along-track average of the cross-track velocity component vy for one day data
collection, plotted as a function of sin φ. The grey area indicates the standard deviation of the data
around the sample mean. The dashed line is a fit containing a (sin φ)−1 term, and polynomials to
second order in the cross-track distance. This signature is consistent across data collections.

3. Results

The results presented in this section were acquired over four separate campaigns in 2016 and
2017. The first set of calibration flights were collected along the Big Sur coast, California, from Point
Conception to Monterey Bay (~300× 25 km2) and consisted of two northbound and two southbound
passes along the same nadir track (Figure 13). In September, 2016, six 4-h sorties (each ~200 ×
100 km2) were collected flying west from the Oregon coast into the California current. In April 2017,
DopplerScatt participated in the Consortium for Advanced Research on Transport of Hydrocarbon in
the Environment (CARTHE) Submesoscale Processes and Lagrangian Analysis on the Shelf (SPLASH)
campaign (http://carthe.org/splash/), covering the Mississippi River plume and Barataria Bay,
Louisiana, for eight days of data collection. Finally, DopplerScatt collected four days of data west of
Monterey, California, in May 2017. During the data collections, a wide variety of wind conditions
were encountered (Figures 16 and 17). No buoy wave spectral measurements were available, but, for
the most part, little swell was present and most of the waves were wind driven. Models for winds
and currents existed for some of the sites, and are described below. All of the results shown below
include data from all campaigns, with the exception of the validation of the surface currents, where
only surface current model data were available during the SPLASH campaign.

http://carthe.org/splash/
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Figure 16. (Upper panel) Estimated ocean correlation time mean and standard deviation (blue error
bars) and predictions from the Pierson–Moskowitz spectrum when waves are traveling in the azimuth
(green) or range (orange) directions. (Lower panel) Number of observations as a function 25 km mean
wind speed.

Figure 17. Collocated DopplerScatt and model data histograms after filtering. From left to right,
relative frequency of: backscatter, incidence angle, relative azimuth to model direction, and model
wind speed. In total, there are about 7.2 million data points. Zero degrees relative azimuth corresponds
to the upwind direction. In spite of conical scanning, the azimuth angles are not uniformly distributed
because we have discarded pixels very near the coast, which lie predominantly in one direction.

3.1. Ocean Temporal Correlation

The correlation time of the ocean backscatter cross section is the ultimate limitation on the
accuracy that can be obtained from the Doppler method, since both signal-to-noise ratio or the Doppler
bandwidth of the footprint can be reduced by transmitting more power or using a larger antenna.
In the absence of temporal decorrelation, very long pulse separation could be used to improve radial
velocity estimates. Given the importance of the surface temporal correlation time in determining and
predicting the accuracy of the estimated radial velocity, it is important to note that the DopplerScatt
spinning configuration can be used to estimate it directly. The Doppler bandwidth contribution
vanishes in the fore and aft directions, so that the only contributions to the correlation are the constant
noise correlation factor, γN , and the ocean temporal correlation (4). We fit the correlation time by
calculating the average correlation in the forward direction by averaging over 25 km along-track.
The logarithm of the resulting value is fit with a quadratic, from which the correlation time can be
derived. Figure 16 presents the results for the estimated correlation time as a function of wind speed.
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The data used spanned all of the data collections and had 25 km mean winds ranging between about
4 m/s to about 18 m/s. The mean temporal correlation time decreases with wind speed and ranges
from a little over 3 ms to about 1 ms. Equation (4) predicts that the correlation time should be inversely
proportional to the radial orbital velocity of ocean waves inside the radar footprint. Given the fine
range resolution and relatively coarse azimuth resolutions, we expect that the total variance will be
maximized when the waves are perpendicular to the look direction and minimized when traveling in
the range direction. In Figure 16, we use the wind-driven Pierson–Moskowitz spectrum to compute
the predicted correlation for both wave direction cases. The predicted results agree well with the
simple Pierson–Moskowitz estimate, although the correlation time is shorter than expected at low
wind speeds, due to the fact that in the wave radial velocity in those situations probably contains
non-wind-driven swell contributions, which cannot be neglected.

3.2. Wind Geophysical Model Function

With the launch of AltiKa in 2013 [36], a shift has begun towards higher frequency
wind-observation instruments, but Ka-Band Geophysical Model Functions (GMFs) are rare.
The majority of well validated scatterometer GMFs were developed using C or Ku-band data [37–40],
owing to the large number of past scatterometers operating in those frequency bands. For years,
a study by Masuko et al. using platform-measured backscatter from a Ka-band radar was the only
available Ka-band GMF [41], although studies at near-nadir have shown a 6 dB offset from that model
is necessary, likely due to calibration issues [42–44]. More recently, Yurovsky et al. [23] have derived
a Ka-band wind GMF over a wide range of incidence angles using platform data called KaDPMod.
This GMF more closely matches Ku-band GMFs and agrees fairly well with a 6 dB offset from Masuko.
However, due to the nature of platform measurements, the data set used for training KaDPMod is
sparse over azimuth, causing some potential uncertainties in the azimuth modulation.

We have developed a V-pol Ka-band GMF for incidence angles around 56◦ using airborne
data taken during the four DopplerScatt campaigns. Wind speeds and directions interpolated
and collocated to DopplerScatt L1B data were taken from the highest resolution models available
for each deployment. In the case of data taken near the Monterey Bay, the North American
Mesoscale Forecast (NAM) (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
north-american-mesoscale-forecast-system-nam) model was used with a 3 km spatial resolution and
time steps of 1 h. For data taken off the coast of Mississippi, a 250 m spatial resolution University
of Miami Unified Wave INterface-Coupled Model (UWIN-CM) (https://www.gitbook.com/book/
milancurcic/uwincm-manual/details) was used with time steps of 1 h. For data collected off the
Oregon coast, we used the National Oceanic and Atmospheric Administration (NOAA) Blended Sea
Winds (https://www.ncdc.noaa.gov/data-access/marineocean-data/blended-global/blended-sea-
winds), which blend satellite observations and NCEP winds with a spatial resolution of 0.25◦. In total,
about 7.2 million data points were collected from incidence angles between 53◦ and 59◦ degrees, wind
speeds between 3 m/s and 20 m/s, and all relative wind directions (thanks to DopplerScatt’s spinning
antenna). The accuracy of each truth data at high resolution will vary with region and available data:
e.g., high resolution SST might modify winds at high resolution and not be available in the forecast.
The reader should refer to the links above for the expected accuracy of each model.

Prior to building a model function, data more than 3 dB from the peak of the antenna pattern was
removed, as were data within 2 km of the coast (to avoid wind shadowing) or data flagged by quality
control in the processing. Rain was not present in any of the data taken. Histograms of the training
data set are shown in Figure 17, including the model winds used for training. Bins were populated
with mean backscatter in a three-dimensional incidence, relative wind direction, and wind speed space.
To remove outliers, an iterative binning approach was used during which backscatter measurements
more than two standard deviations from the bin mean were removed. All binning was done in linear
(non-dB) space. After binning, there were a total of about 18 thousand data points. Due to flight paths,
coastlines tended to flag out data in the positive region of relative azimuth, resulting in the skewed

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam
https://www.gitbook.com/book/milancurcic/uwincm-manual/details
https://www.gitbook.com/book/milancurcic/uwincm-manual/details
https://www.ncdc.noaa.gov/data-access/marineocean-data/blended-global/blended-sea-winds
https://www.ncdc.noaa.gov/data-access/marineocean-data/blended-global/blended-sea-winds
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distribution across relative azimuth. During the course of these data collections, we tended to fly over
either high winds or low winds, with very few moderate wind speeds predicted by the models used.

Radar backscatter depends on the three variables considered here in different ways. With wind
speed, backscatter follows a power law akin to log σ0 = A + B log U10. This functional form matches
the saturation typically experienced by scatterometers at high wind speeds. For DopplerScatt, we have
found the value of B to be about 2. This predicts a saturation of somewhere around 20 m/s, consistent
with other scatterometers [45]. A cosine expansion is typically used to represent the variation in
backscatter over relative wind direction [46]

σ◦ = A0(θ, U10) + A1(θ, U10) cos (φ′) + ... + AN(θ, U10) cos (Nφ′), (45)

where A0 through AN are fitting parameters that depend on both incidence, (θ), and wind speed, (U),
and φ′ is the relative wind direction (the azimuth angle between DopplerScatt’s look and the wind).
Traditionally, the harmonic expansion is taken in real (not dB) space, but fitting in dB space offers
some advantage for noisy data and, and will aid in comparison with Yurovsky et al. [23] who take
this approach. We fit a harmonic series in dB space: the two fitting approaches are very similar if
An/A0 � 1, but fitting in dB space may introduce higher harmonics in real space. Note that, due to
tradition, for the wind GMF, we take φ′ = 0 when looking in the upwind direction; i.e., in a direction
opposite the wind direction. Following the oceanographic convention, we take the downwind direction
as the reference (e.g., for the current GMF relative direction). The AN dependence on temperature
is not considered here. Often, Equation (45) is fit separately for multiple incidence angles and wind
speed regimes to break out the wind speed/incidence behavior; however, in order to fit a single
model function over all wind speeds and incidence angles, an integrated model was used, similar
to Yurovsky et al. [23]. This helps to interpolate the data set we are fitting over data-sparse parts of
parameter space, but also introduces the possibility of incorrectly biasing the fit (e.g., only a single
power law in speed is assumed for the entire speed range). We believe our data set has enough data to
use an integrated model while still benefiting from this technique.

The functional form shown in Equation (46) was chosen to include a cosine expansion in relative
azimuth, a logarithmic speed dependence, and a linear dependence on incidence angle. The form is
the same as the Yurovsky et al. KaDPMod functional form, besides the linear incidence dependence,
which was reduced from a fourth order to a first order polynomial because DopplerScatt only views a
relatively small range of incidence:

10 log10 σ0 =
2

∑
n=0

1

∑
m=0

1

∑
k=0

Cnmk cos nφ′θm(log10 U10)
k. (46)

Equation (46) expands to a 12 coefficient model function, for which least squares optimization
was done to determine the coefficients shown in Appendix C. The least squares fit results in a root
mean square error of about 2 dB. Comparing actual to predicted backscatter in Figure 18 finds no
significant bias or unaccounted model shape. Over the range of incidence angles measured, this model
function appears to be a good fit, but we cannot recommend its use outside of the trained range of
54◦–59◦ incidence.

Figure 19 shows the DopplerScatt GMF shape at 56◦ incidence and various wind speeds and
relative azimuths, along with the corresponding binned data used for fitting. The fit again appears to
be a good representation of the underlying data. Beyond the goodness of fit, the GMF shape saturates
as wind speed increases and modulates from highest return at upwind to low return at cross wind.
Fit error is shaded behind wind speed curves and represents 95% confidence intervals.
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Figure 18. A histogram of model-calculated σ0 versus observed σ0 for the binned training data.
A histogram at the top right represents the distribution of samples on either side of the x = y line.

Figure 19. A comparison between the DopplerScatt Ka-Band Geophysical Model Function and the
binned data set it was fit to at 56◦ incidence. Shaded error bars represent 95% confidence intervals for
the fit. The relative azimuth for the wind GMF is taken with the origin in the upwind direction.

The wind speed dependence of the azimuth-averaged GMF, the underlying binned data
variability, and the Ku-band GMF for 56◦ incidence from NSCAT/QuikSCAT are shown in Figure 20.
Simulated backscatter data from the GMF and binned training data was averaged into wind speed bins
for both 55 and 56 degrees incidence. The GMF follows observations and the theoretical power law
well, with saturation somewhere above 15–20 m/s. This is consistent with Yurovsky et al., where they
found saturation beginning at 15 m/s. Variations with incidence angle are small, as might be expected
for 1 degree variation, but consistent across wind speed. Figure 21 considers the relative-azimuthal
dependence of σ0 over wind speed by separating between down-wind (φ′ = 180◦), up-wind (φ′ = 0◦)
and cross-wind (φ′ = 90◦). Here, we again see the expected power law dependence of both the
observations and the simulated GMF data. As we might expect, we see a consistent difference between
the three wind direction regimes, with upwind consistently presenting the largest return signal,
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followed by downwind and finally cross-wind. While this plot seems to indicate some saturation at
wind speeds above 15 m/s, we have not found that to be the case during wind retrieval compared
to buoy measurements. We have found that the model wind estimates used to bin against were low
relative to the actual winds, which could incorrectly lead to saturation. Compared to the previous
plot, Figure 20, we see smaller error bars since we are no longer averaging over all relative azimuths.
Unlike Figure 20, the fits for the azimuth cuts do not follow the data as well for the highest wind speeds,
possibly pointing to limitations in the fitting model over the full set of azimuth angles. Additional
high wind speed data is required to resolve this issue.

Figure 20. The DopplerScatt σ0 data set over wind speed and the GMF in the same range. Shaded error
regions around the GMF represent 1 standard deviation in the data used to make this plot. We can
expect variation solely from modulation across wind direction in the GMF. Individual data points (dark
blue for 56◦, light cyan for 55◦) show error bars that also represent 1 standard deviation, but include
both contributions from directional modulation and measurement noise. The black line shows the
V-pol NASA Scatterometer (NSCAT)/QuikSCAT GMF extrapolated to 56◦ incidence angle.

Figure 21. The DopplerScatt σ0 data set over wind speed and the GMF in the same range, split by up,
down, and cross wind. Similar data from the NSCAT/QuikSCAT GMF are plotted as dashed lines.

In Figure 22, we compare the azimuthal and wind speed variations of the DopplerScatt, NSCAT,
and KaDPMod GMFs. The DopplerScatt GMF is similar to the KaDPMod GMF but with some
important distinctions. The most obvious difference between the two GMFs is that there is significantly
more modulation between upwind and downwind in the DopplerScatt GMF than in the KaDPMod
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GMF. We believe this difference stems from the data sets used for fitting. KaDPMod has a sparse
data set across relative azimuth (by nature of platform measurements), while the DopplerScatt GMF
benefits from relatively even sampling across relative azimuths. The sparsity of the KaDPMod training
data set (particularly in our incidence range) could effectively lead to interpolation across relative
azimuth and incidence when fitting, leading to a smoother objective function across relative azimuth.
This is the danger when fitting an integrated model function, as we discussed earlier. Based on
private communications with the KaDPMod team, we found that the platform data collected in the
DopplerScatt incidence range corresponds well with the DopplerScatt GMF. Despite the differences
between the two fit GMFs, the correspondence of the underlying data sets is a good indicator of
calibration between the two experiments.

Figure 22. Comparison between the KaDPMod wind GMF (dashed lines), NSCAT (lines with squares),
and the DopplerScat Ka-band wind GMF (solid lines). Shaded regions again represent 95% confidence
intervals for the DopplerScatt wind GMF. The relative azimuth for the wind GMF is taken with the
origin in the upwind direction.

3.3. Wind Retrieval Results

Results from a particularly interesting DopplerScatt deployment off the coast of Louisiana during
the SPLASH campaign are shown here. On 18 April 2017, DopplerScatt flew over the area containing
the Mississippi River plume and Barataria Bay. Looking at DopplerScatt σ0 data in Figure 23, there are
distinctive features, potentially due to a combination of local flows and surface characteristics. Just right
of the center in Figure 23, the Mississippi river plume is clearly visible as a low backscatter feature.
The river outflow and coastal currents move towards the west (left) in the south, but curve north at
the edge of Barataria Bay and recirculate to the east (right) near the coast (see models and results
in Section 3.5). This effect is probably due to surface films or atmospheric boundary stratification,
although water viscosity can also important role in determining how the wind forces capillary waves,
especially at low temperatures. Additionally, scatterometers measure the wind speed relative to the
moving surface current frame [1], so, since winds were mainly in the northwest direction (Figure 24),
we can also expect the changes in direction in the current to show up as decreased backscatter when
the current moves with the wind, while backscatter is expected to increase when the current moves
against the wind. Both of these changes are observed, although changes due to cooler plume waters,
or current divergence, could be responsible for some of the decrease in the plume region. This flight
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area also includes a large number of highly reflective oil platforms, one of which was leaking oil at the
time. Near the leaking platform, at 28.9◦N latitude and 89◦W longitude, what is likely an oil trail is
visible as low backscatter.

Figure 23. DopplerScatt aft looking measured backscatter on 18 April 2017, near the outlet of the
Mississippi river, at 200 m resolution. Interesting features are apparent and will affect wind retrieval.
Strong point sources are due to a large number of ships and oil platforms in the area.

Figure 24 shows the retrieved vector winds as estimated by DopplerScatt on 18 April 2017.
Stepping back from the features, DopplerScatt estimated winds blowing towards the northwest at
about 6.5 m/s. Data from the UWIN-CM model and data from NOAA’s Real Time Mesoscale Analysis
(RTMA) indicate winds blowing towards the northwest at about 6 m/s, but without any of the smaller
features evident in the DopplerScatt data. Comparing the RTMA model to DopplerScatt results in a
direction RMS of 25◦ and a speed RMS of 2.7 m/s, quite good considering the strong features picked
up by DopplerScatt but not the models.

Figure 24. DopplerScatt retrieved wind vectors on 18 April 2017, near the outlet of the Mississippi
river, at 200 m resolution. Direction vectors have been down-sampled for plotting but speeds have
not. Currents, surface surfactants, temperature, and dissolved solids combine to create high resolution
features visible in wind retrievals.

As expected, retrieved winds from 18 April display prominent wind speed features in the areas
where the Mississippi river flows through the bay. Currents and winds are generally aligned in the area
where currents flow out of the Mississippi river and towards the left (west), resulting in a reduction
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in measured wind speed. The opposite is true where the river outflow currents wrap back around
and flow against the wind. Based on data from the Advanced Very High Resolution Radiometer
(AVHRR), there is about a 2 ◦C difference in temperature between the Mississippi river outflow and
the surrounding ocean water. Studies have found a 0.25 m/s to 0.5 m/s decrease in wind speed when
sea surface temperatures quickly drop by 1 ◦C [47]. We believe the combination of surface currents and
temperature changes are both apparent in the nearly 3 m/s drop in wind speed across the Mississippi
river outflow. It is likely that additional modulation due to surfactants, salinity and dissolved solids
play a part in the river outflow, too, through viscosity effects.

Shifting now to the overall DopplerScatt winds dataset, Figure 25 compares collocated buoy wind
measurements with DopplerScatt wind estimates. For our flights, we only found five buoys that were
close enough to DopplerScatt swaths for use. Median DopplerScatt data was taken over a 1 km grid
and plotted against hourly buoy data within 15 min and 200 m (one grid cell) from buoy measurements.
In total, about 100 buoy measurements were available and close enough to DopplerScatt data for use.
Stability effects were not considered when comparing buoy winds to DopplerScatt winds, since we did
not have sufficient information to calculate neutral winds. Since DopplerScatt measures wind speeds
relative to the moving ocean surface, we can also expect larger differences in wind speed between
DopplerScatt and buoys in areas of strong surface currents. No correction was made for this effect.

Figure 25. A comparison between DopplerScatt and buoy wind speeds for data taken near Oregon,
Monterey, CA, and Louisiana. Due to the limited coverage area, relatively few buoy collocations are
available. Data is color coded by DopplerScatt flight (date). Dates in May/June are near Monterey, dates
in April are near Louisiana, and dates in September are near Oregon. (a) DopplerScatt wind speeds vs.
buoy wind speeds; (b) DopplerScatt wind directions vs. buoy wind directions; (c) DopplerScatt wind
speeds vs. buoy wind speeds (heavy surface current weighting); (d) DopplerScatt wind directions vs.
buoy wind directions. (heavy surface current weighting).

DopplerScatt wind directions compare favorably with buoy measurements, with the majority
of points lying close to the y = x line. Overall RMS direction difference versus buoys is about 18◦.
DopplerScatt wind speeds also compare well with buoy wind speeds, with 1.5 m/s RMS difference.
In addition, 18 and 20 April each observed strong surface currents in the Mississippi river plume
that, in the area of buoy measurements, caused a decrease in DopplerScatt estimated wind speeds.
This decrease is apparent in the buoy comparisons. Another comparison was made using two models
collocated to the DopplerScatt swath: a high resolution UWIN-CM model run for the Gulf of Mexico,
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and the NOAA’s RTMA, an hourly 3 km scale global assimilation. Compared to the same buoys,
the UWIN-CM model finds an RMS wind speed difference of 2.6 m/s and RMS wind direction
difference of 57◦. The RTMA model finds an RMS wind speed difference of 5.1 m/s and RMS wind
direction difference of 61◦. DopplerScatt winds offer a significant improvement over these two models
in the areas studied, probably due to the proximity to the coast and the fact that the model was not
able to assimilate high resolution SST measurements (M. Curcic, private communication).

Consider now the DopplerScatt winds estimated using a heavy weighting on uncorrected surface
current directions, where we also find satisfactory comparisons with buoy data (see the bottom panes
in Figure 25). This time, however, there appears to be a 10 degree bias between DopplerScatt wind
directions and Buoy wind directions. Since the “wind directions” estimated in this version of the
processor are essentially uncorrected surface current directions, which reflect the direction of wave
propagation for wind driven waves, we can expect a positive bias between buoy winds and this version
DopplerScatt winds based drift angles observed by High-Frequency (HF) radars [48], although the
exact angle of the difference will depend on the upper layer current structure. The σ0-based directions
do not consistently find this direction bias relative to the collocated buoys.

3.4. Surface Current Geophysical Model Function

The DopplerScatt polarization and incidence angles were chosen to simplify the interpretation
of measured Doppler as surface currents. By choosing a moderate to high incidence angle, ~56◦,
one minimizes the tilt modulation effects present at lower incidence angles, while also minimizing
wave breaking contamination that is common at higher incidence angles [31,32]. Using vertical
polarization further minimizes breaking wave contamination, since double-bounce scattering only
dominates for horizontal polarization [31,32]. For the incidence angles and polarization chosen, it is
well known that radar backscatter, and therefore, the associated Doppler velocities, will be dominated
by resonant Bragg scattering from capillary waves of wavelength ~5.1 mm [29–32]. The exact resonant
wavelength and reflection coefficient are modulated by the local large wave slope. Since the Bragg
wavelength ~1/ sin (θ − ζ), where ζ is the large-wave slope in the look direction, the range of Bragg
wavelengths, assuming large-scale wave slopes ±10◦, will only vary between ~4.6 mm to ~5.9 mm,
so that the Bragg waves are always capillary waves. In the absence of currents or large-scale waves,
these capillary waves (if not phase bound to other waves) will propagate with a nominal phase speed of
31 cm/s. which only varies between 32 cm/s and 29 cm/s for the range of large scale slopes considered
before. If the Doppler velocities were due only to the Bragg waves modulated by surface current, vS,
the surface-projected radial velocity would be of the form

vrS(ϕ, ϕU , θ) =
vS · ˆ̀ (θ, ϕ)

sin θ
+ (α+ (ϕ− ϕW)− α− (ϕ− ϕW))

cB(θ)

sin θ
, (47)

where α+(α− ) is the fraction of Bragg waves moving along(against) the direction defined by the look
vector ˆ̀, and ϕ and ϕW are the look vector and wind direction azimuth angles, respectively. Thus,
the surface-projected Doppler velocity should have a surface current term that is proportional to
the cosine of the angle between the look vector and the surface velocity, and a term that depends
on the difference in azimuth angles between the look and wind directions. Using a small footprint,
vertically polarized X-band data at high incidence angle, Moller et al. [49] observed this behavior, after
subtracting an along-wind wind-drift surface velocity component equal to 3.5% of the wind speed.

This simple relationship can break down for two reasons. First, there is significant evidence that
a significant fraction of the Bragg waves can be bound to longer waves and will travel at the longer
wave phase velocity [30,31,50]. In that case, the waves will be mostly concentrated on the leeward face
of the larger wave, near the crest. It is expected that, in the field, bound waves might have a significant
contribution at lower wind speeds, while higher wind speeds might exhibit a larger proportion of free
waves. There is no clear data at this point to determine the exact proportion and contributions to the



Remote Sens. 2018, 4, 576 34 of 59

Doppler for different ocean surface conditions, although Plant and Irisov [31] have made a start for the
backscatter cross section.

Another effect appears when the radar footprint is not small compared to the large-wave
wavelength [8]. Because the large-scale waves modulate the amplitude of the Bragg waves (and, hence,
σ0) in a way that is correlated with the large wave phase, the large-wave radial velocity contribution to
the Doppler will not cancel, since the Doppler measured at the radar is the σ0-weighted average of the
Doppler velocities over the waves (see Appendix A for details). Chapron and co-workers [8,13,19–21]
have shown that, for C-band data at moderate incidence angles, there is a strong and quasi-linear
dependence between the measured Doppler velocities and the wind speed. They attribute this to
the effects of large-scale surface tilt and hydrodynamic modulation, which result in an effective
amplification factor G to the wave Stokes drift (see Section 4 for additional details).

Without wanting to prejudge the mechanisms operating at Ka-band, we assume that the measured
Doppler surface velocity is given by

vrS =
vSE · ˆ̀ (θ, ϕ)

sin θ
+ FS (U10, ϕ− ϕU) , (48)

where vSE is the Eulerian part of the surface current that is not responsive to the local wind, and FS
represents the contribution of the local wind to the surface current. The wind contribution to the
current will not only be composed of the wave modulation effects discussed above, but will include
surface currents due to Stokes drift, surface drift Lagrangian (~0.01–0.03U10) and Eulerian (∼ 0.01U10)
components [48,51–53]. This wind-driven surface current sensed by the radar will represent the depth
averaged current over a fraction of the Bragg wavelength [54], which will be on the order of a millimeter.
Given the large shears expected very near the surface [50], it is not clear that the earlier estimates used
for HF or C-band radars will apply, and, considering also the presence of bound waves, we do not
assume a linear (or near-linear) model for the dependence on wind speed. Similarly, the Stokes drift,
Lagrangian, and Eulerian wind driven components are known to have different directions relative to
the wind direction. In what follows, we only assume that the net effect of all these contributions will
have a systematic dependence on the the wind direction (which might vary with speed), but do not
assume that the peak of the response will be along the wind direction.

To estimate FS, we only assume that, over our data set, vSE is independent of the current
components driven by the local wind, which given the variety of wind conditions and locations
that we sampled in our data collections, is a reasonable assumption. To make a non-parametric
estimate of FS, we bin our data with respect to the local wind speed and relative wind azimuth
direction observed by DopplerScatt. To explore the directional dependence of FS, we used both the
wind direction derived with slight nudging from the total Doppler current direction, and the direction
heavily weighted by the total Doppler current direction, which reflects the net direction of wind and
local currents. The results of this binning process are shown in Figure 26 for directions weighted heavily
by the total Doppler direction, which have about a 10◦ offset to the right relative to the buoy wind
direction, cf. Figure 25d. To estimate the variability around the mean for each histogram, we assumed
that data sets collected on different days were independent (consistent with our wind variability)
and used the jackknife resampling method [55] to estimate the standard deviations (shown in grey
shading) corresponding to the mean values (shown as dashed red line). The result for lightly nudged
directions (not shown), which are unbiased relative to buoy directions, is very similar, but shows
greater variability, especially at higher winds.
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Figure 26. Mean surface current GMF binned by wind speed and direction relative to the net
wind/surface current direction (red dashed lines). The grey shaded areas correspond to GMF standard
deviation estimated using jackknife resampling. The dot-dash grey lines correspond to the Bragg
resonant speeds for freely propagating waves. The relative azimuth for the current GMF follows
oceanographic convention and is taken with the origin in the downwind direction.

Examination of the results of binning with the two wind directions shows very similar behavior
with respect to the wind speed dependence. For very low wind speeds (upper-left panel), where few
long-wavelength waves are assumed to be present, the surface scatterers propagate at (or near) the
phase velocity of the free Bragg-resonant capillary waves (~31 cm/s), and the shape of the flat-topped
wide response is similar to that observed by Moller et al. [49]. However, as the wind speed increases to
about 4.5 m/s, the peak velocity increases and the shape of the distribution begins to approximate a
sinusoid. For wind speeds greater than 4.5 m/s, the peak of the distribution remains approximately
constant, up to higher wind speeds (~13 m/s), where a slight increase seems to occur, although there is
significant scatter around the mean, making this trend less certain. Even though the shape is roughly
sinusoidal, some bias and kurtosis are apparent. Examining the variability around the mean, it is also
clear that the scatter around the mean is significantly less when the total Doppler directions are used,
indicating that the direction of the wind-driven Doppler currents are not along the wind direction, but
offset to the right, as expected for a mixture of Lagrangian and Eulerian wind drift currents. However,
the magnitude of the current is significantly higher than that expected for the wind drift currents.

To get a more quantitative assessment, we fit the histograms with the 4th-order harmonic
expansion given in Equation (33). The results for both wind directions are presented in Figure 27
and tabulated in Appendix D. It is clear from this figure that the dominant behavior of FS is given by
the first harmonic (i.e., pure velocity vector), which increases linearly from the free wave Bragg velocity
to about 75 cm/s at a wind speed of 4.5 m/s, and remains approximately constant thereafter, with a
small increase at higher wind speeds. It is also clear from this figure that the parameters derived by
binning with the wind direction (green) are significantly noisier than those that use the total Doppler
direction (blue) (Recall from Section 2.6 that, for wind speeds less than about 6 m/s, the directions
are mostly determined by the total Doppler direction.). The term δϕU (lower right panel) shows the
systematic difference in direction relative to the wind direction observed in the buoy comparisons,
for the wind directions not heavily weighted by the total Doppler current direction.
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The δvr and vr2 parameters will introduce an upwind-downwind difference in FS and we plot the
magnitude of this difference in Figure 28, which is small for low winds, but increases to about 10 cm/s
for medium winds, while decreasing for higher winds. Since there is no reason for the true wind
driven currents to be different in the upwind and downwind directions, we ascribe this difference to
the effect of large-scale wave modulation of the scatterers. The third and fourth order harmonics are
generally small, and not nearly as significant as the other parameters. Additional discussion of the
behavior of FS and its relation with observations at other bands will be presented in Section 4.

Figure 27. Geophysical model function parameters, Equation (33), for speed bias (upper left); bias
relative to the raw surface current direction (lower right); and harmonic coefficients for the first
four harmonics, vr1 to vr4 (as indicated in the y-axis labels). Error bars are obtained using jackknife
resampling. Blue corresponds to using the wind direction heavily weighted by the Doppler direction,
while green is for lightly weighted winds.

Figure 28. Magnitude of FS in the upwind (green) and downwind (blue) directions, with the difference
plotted in orange. Error bars are obtained using jackknife resampling.

3.5. Ocean Current Retrieval Results

The comparison of synoptic surface current fields against in situ data is not easy since the radar
measured surface velocity is effectively at the surface, but in situ instrumentation typically measures
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the current at some depth. HF radars measure at a depth dependent on the radar wavelength [48,54],
which can be on the order of a meter, while surface drifters will measure currents at the depth they
were drogued. For our flights, we only had limited HF radar coverage and, although a large number
of drifters were deployed for SPLASH, they quickly converged along fronts and did not provide
a synoptic measurement of the total area covered by DopplerScatt. The detailed comparison of
DopplerScatt currents against these data is beyond the scope of this paper and will be addressed in a
subsequent publication.

To assess how reasonable the DopplerScatt synoptic measurements were, we will compare our
current retrievals against forecasts from the Navy Coastal Ocean Model (NCOM) [56] ocean model
running within the Coupled Ocean/Atmosphere Mesoscale Prediction Systems (COAMPS) system
produced by the NRL Ocean Dynamics and Prediction group, which were provided to us courtesy of
Dr. G. Jacobs (NRL) and the CARTHE/SPLASH team. Though the COAMPS system contains ocean,
wave, and atmospheric models, only the ocean model was run with external atmospheric forcing as
input. For the forecasts available to us, the main outflow of the Mississippi was routed to a different
mouth than the one the river actually used, so that the representation of the Mississippi plume was not
realistic (G. Jacobs, private communication), but the model, which was run at 250 m resolution, gave a
fair representation of the general submesoscale features in the area.

Figure 29 presents the comparison of the DopplerScatt retrieved current components against their
NCOM equivalents for data collected on 18 April 2017, as in the wind retrievals shown previously.
The DopplerScatt data have been masked along the nadir track and the outer swaths where the
estimated errors were greater than 20 cm/s (cf., Figure 10), leading to gaps in the coverage, which are
greater for the V (north) current component than for the U (east) component. As can be seen from
this figure, DopplerScatt captured well the general clockwise recirculation of the Mississippi plume
and westward current into Barataria Bay. Both the model and the DopplerScatt measurements show a
strong submesoscale front developing in the north-east quadrant of the Bay, but the exact location of
the front is a bit further west in the NCOM data. An additional source of comparison that is helpful
in the location of the plume, circulation, and the submesoscale front are provided by optical data
obtained by the Sentinel-3 satellite (Courtesy of Copernicus Sentinel, processed by ESA), which is
compared against the DopplerScatt surface current U-component in Figure 30. The figure shows close
agreement with DopplerScatt in the location of both the river plume and the submesoscale front.

Figure 29. DopplerScatt (upper panels a,b and NCOM (lower panels c,d) surface current components
for the Mississippi River plume and Barataria Bay on 18 April 2017. (NCOM data courtesy of Dr. G.
Jacobs NRL) and the NRL and CARTHE/SPLASH teams.) The U(V)-components are shown in the left
(right) columns.
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Although not definitive, we conclude that DopplerScatt data seems to have a good overall
agreement with NCOM and optical data, given model forecast limitations, both in the features present
and in the magnitudes of the currents. A more detailed comparison with both NCOM and in situ
measurements will be presented elsewhere.

Figure 30. Sentinel-3 optical data (upper) and DopplerScatt U-component of surface velocity (lower)
for the same region as in Figure 29. Notice that the location of the plume and frontal features agree well
between the two (Sentinel-3 data courtesy of Copernicus Sentinel, processed by the European Space
Agency (ESA)).

4. Discussion

Our results in the previous sections show that, although initially the effective wind-driven
surface currents vary linearly with wind speed, the dependence decreases substantially for wind
speeds ~4.5 m/s and greater. This is in contrast with the C-band results [8,13], which exhibit a strong
dependence on wind speed for most of the observed wind speed range. In Appendix E, we present the
theory behind the wind-driven surface current component, and show that it can be written as the sum
of free (Equation (A58)) and bound (Equation (A60)) Bragg waves propagating along or opposite the
azimuth look direction, and a term due to the uneven weighting of the large-scale wave orbital motion
due to fluctuations of the Bragg spectrum:

δvrS =

〈
δσ0

σ0

ˆ̀ · δvW
sin θ

〉
= cos φr

(
−∂ log σ0

∂θ
cot θUS +

〈
u

δB
B

〉)
− cot θ

〈
w

δB
B

〉
, (49)
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where δB/B are the normalized fluctuations of the Bragg wave (saturation) spectrum;
US (Equation (A65)) is the deep-water Stokes drift current; φr is the look direction azimuth angle
measured relative to the down-wind direction; and u and w are the horizontal and vertical orbital
velocities, respectively. There are several mechanisms for local Bragg spectrum variations, including
modulation of small waves by winds and larger wave orbital velocities [57]; enhanced roughness
due to wave breaking [58]; or generation of Bragg waves due to wave straining [31]. Rather than
select among these mechanisms, several of which will likely apply at any given time and that are
still not fully understood theoretically, we assume that, to the lowest order, the spectral modulation
can be captured as a linear effect through a Modulation Transfer Function (MTF) [59], as defined in
Equation (A66). In that case, we obtain a simple equation for δvrS

δvrS = US

[
cos φr

(
−∂ log σ0

∂θ
cot θ + mr

)
− cot θmi

]
, (50)

where mr and mi are the averages of the MTF real and imaginary parts, weighted by the Stokes drift
for each wavenumber (see Equation (A68)). This equation is equivalent to that derived by [18,60] when
the modulation transfer function is frequency independent. This result shows that the orbital velocity
bias is proportional to the Stokes drift current, and consists of two terms: the first term, proportional
to cos φr, behaves as a horizontal current and is due to coupling of the u-component of the orbital
velocity and spectral modulations, as well as brightness modulation due to changes in radar brightness
due to the large-scale wave slope. This first term changes sign when the look direction changes from
downwind to upwind. The second term, due to coupling of the vertical component of the orbital
velocity with spectral modulation, is independent of azimuth direction, and is responsible for the
difference in upwind and downwind speeds that is shown in Figure 28. Using the results shown in
this figure, we can estimate the imaginary part of the modulation function as

mi = tan θ
δvrS(φr = π)− δvrS(φr = 0)

US
. (51)

To obtain an estimate as a function of wind speed, we assume that the Stokes drift can be linearly
related to wind speed, US = βU10. To compare against other experimental data, we take β = 0.01,
which lies in the mid-range of values given in [48] (although β might itself contain some wind speed
variation), and present the results in Figure 31. We note in this figure the change of sign in mi, which
implies 〈wδB〉 < 0, which implies that, at high wind speeds, capillary wave roughness is enhanced
in the windward, rather than leeward, wave crest. This is consistent with past Ka-band observations
and with the hypothesis proposed by Yurovsky et al. [58] that this enhanced roughness may be due
to the residual roughness due to wave breaking, which travels at a velocity slower than the larger
breaking wave.

Once we have solved for mi, it is possible to model the FS data (Figure 26) as

FS(φr) = cpF(φr) + US cos φr

[(
mr +

UD
2US

)
− cot θ

∂ log σ0

∂θ

]
−US cot θmi, (52)

where we have ignored the Bragg bound wave contribution, assuming that under most open ocean
conditions at moderate winds and above free waves dominate; cpF (Equation (A58)) is the free Bragg
wave contribution, such that cpF(0) = −cpF(π) ≈ 0.31 m/s; finally, UD/2 is the total wind drift speed
at a given horizontal position averaged over wave motion, which introduces the factor of 1/2 [61].
Due to the limited angular extent of our data collection, calculating ∂ log σ0/∂θ from the data itself,
but we can estimate it from the theoretical Bragg cross section (Equation (A56)), the Ku-band NSCAT
GMF, or the results from Yurovsky et al. [23], which all give similar results and we use the NSCAT
result as the one with the greatest empirical data at high winds. Without a priori knowledge of UD,
we can only solve for an effective real part of the MTF, m̃r ≡ (mr + UD/2US), which includes not
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only wave modulation for total surface drift as well. Given these assumptions, we solve for m̃r using
the upwind and downwind data shown in Figure 28, and present the average of the upwind and
downwind results in Figure 31.

Figure 31. (upper) Effective real (m̃r) and (lower) imaginary (mi) hydrodynamic Modulation Transfer
Function (MTF) coefficients obtained by solving equations (51) and (52) using the data in Figure 28. For
comparison, MTF reported in the literature [58,62,63] are plotted as solid lines. Also shown (dashed
lines) are 1st (magenta) and 2nd (green) order polynomial fits of ln mr as a function of ln U10.

We compare these results against Ka-band results reported by by Keller et al. [62] in the
SAXON-FPN experiment in the North Sea; by Yurovsky et al. [58], acquired using a tower mounted
radar in the Black Sea; and by Laxague et al. [63] using an optical set up that allowed for the resolution
of Bragg-resonant waves in the high-frequency regime corresponding to Ka-band. Yurovsky et al.
reported the MTF values averaged over frequency and fit with single power-law fit with respect to
wind speed, which we present as the blue line in the figure. Keller et al. ([62], Figure 4) present the
mean and variance of the Ka-band MTF averaged over the frequency range 0.25 to 0.3125 Hz, and we
have fit a smooth polynomial through the means, which, after subtracting the tilt MTF appropriate
for their 45◦ incidence angle, we show as the green line in the figure. Laxague et al. subdivide the
spectral variability obtained by optical means into a region appropriate for Ka-band, and derive an
MTF, at a number of wind speed points, which we digitized and fit with a power-law, as with the
other MTFs, and the results are shown in orange. The agreement between the estimated MTF and the
one in the literature is fairly close for wind speeds above 6 m/s. The largest disagreement is with the
results of [58] for mr, but this may be partly an artifact of their modeling of mr as a simple power-law
in U10, since when we model our data in the same way, we also get large disagreements at lower wind
speeds, as shown in Figure 31. At speeds below 4 m/s, the agreement is not as good between any of the
models, perhaps reflecting the lack of data or the influence of non-wind-driven swell in the generation
of brightness modulations. Note that improved agreement with the other models could be obtained by
varying β and/or making it wind dependent. Given the scatter between the different measurements,
probably due to real-world variability, this is not a necessary refinement.

The main point of this discussion is to show that the wind speed behavior of FS is consistent
with biases due to σ0 variations along the large-scale wave via a linear modulation mechanism,
and that the magnitude of this modulation is consistent with previous Ka-band results. To get a better
understanding of the operating mechanisms, we present in Figure 32 the decomposition of the upwind
and downwind wind-driven surface velocities into contributions due to free Bragg waves and tilt
modulation, σ0 coupling to u through mr, and σ0 coupling to w through mi. We see that the free Bragg
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wave contribution accounts for the behavior at low winds, and the addition of tilt modulation, which is
proportional to the Stokes drift, accounts for a slow increase with wind speed in the upwind and
downwind biases. The rapid increase in FS at wind speeds smaller than about 4 m/s can be attributed
to the rapid increase in the coupling to the u component through mr. We speculate that this rapid
increase may be due to the presence of bound waves in the leeward side of the wave crests that may be
more noticeable at low wind speeds due to the smaller fraction of the area covered by free Bragg-wave
patches. The relative stability between 4 m/s and 12 m/s is attributed to the fact that, in this range,
mr decays with wind speed faster than U−1

S and this decay is sufficient to compensate the linear
increase due to tilt modulation. Coupling to the vertical velocity component has a relatively small
effect in the magnitude of upwind and downwind components, but is responsible for the asymmetry
in the response, since the other mechanisms have the same magnitude and opposite sign, while the
sign of mi does not depend on the look direction. We note that for wind speeds greater than about
12 m/s, the data scatter increases, but there is a small increase in the velocity magnitude, that could
be attributed to mr decreasing more slowly at higher winds, potentially due to the effects of wave
breaking. The bulk of the difference in the behavior of FS at Ka and C-bands [8,13] can be attributed to
the fact that the C-band data was acquired at lower incidence angles, so that the tilt modulation factor
∂ ln σ0/∂θ, which is ~3 at our incidence angles, can be as much as ~15 for the lower incidence angles of
the C-band SAR data. However, we note that the empirically observed fast decay of mr with wind
speed plays an additional role, as using the theoretical value [20] for mr results in greater wind speed
dependence than we observe (F. Nouguier, B. Chapron, personal communication).

Figure 32. Decomposition of upwind and downwind values of FS into contributing scattering components.
The MTF coefficients used are the low-order polynomial fits in log-domain shown in Figure 31.

In the previous discussion, we dealt only with modulation effects due to waves traveling along
the wind direction. To see how this one-dimensional assumption fits the data, we subtract the MTF
modeled wind driven surface velocities from the observed velocities, and present the results in
Figure 33. If the one-dimensional wave modulation accounted for all of the effects, the difference
between these two lines should be cpF, which, according to Equation (A58), should vary in the
range ±0.31 m/s with a top that reflects the broad capillary wave spectrum, as has been observed
experimentally for narrow beam radars as reported by, e.g., Moller et al. [49]. This is indeed what is
observed in Figure 33, where the cpF results are quite similar to the ones obtained in [49]. The main
discrepancy we observe is the fact that the zero-crossing of this function does not occur exactly at
φr = ±π/2, but is slightly broader in the downwind direction than upwind. We speculate that this
difference is due to the fact that, due to the angular spreading of the large-scale wave spectrum,
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there will be a resulting asymmetry in the up and downwind directions. Nevertheless, we find that the
simple MTF model provides a reasonable explanation of the FS features observed in the DopplerScatt
data, although we selected to use the empirical version of FS when removing the wind-driven currents
to account for the small disparities with the MTF model.
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Figure 33. (blue line) Mean of FS from Figure 26; (orange dashed line) modeled wind-driven velocity
bias, using the fit MTF coefficients; (green line) residual after subtracting orange from green lines, which
should be nominally the Bragg cpF. The upwind and downwind free Bragg velocities are indicated by
dashed gray lines.

5. Conclusions

This paper has presented DopplerScatt, a new instrument that provides estimated simultaneous
measurements of winds and currents using a Ka-band pencil-beam scanning Doppler scatterometer.
With the development of DopplerScatt, we have extended the theory and calibration of these
instruments beyond the existing literature [9]. Among the innovations presented in the system
understanding, algorithms, and calibration, we note:

1. Development of an end-to-end measurement model including several effects, such as quantifying
the impact of cross-section variations, not previously reported.

2. Detailed examination of the pulse-pair estimation algorithm, including deriving an error
estimator for the Doppler velocity and validating it with experimental data.

3. Development of an end-to-end error budget including both random and systematic errors.
The error model was validated against measurements and showed that the DopplerScatt
instrument had good stability and noise performance for both σ0 and Doppler velocities.

4. Development of new calibration techniques to remove errors caused by uncertainties in the
antenna pointing and other systematic (e.g., model function) errors.

5. Development of a wind estimation algorithm that uses backscatter and Doppler velocities in
an innovative way so that winds vectors can be estimated using a single beam, rather than the
traditional two-beam architecture.
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In addition to these technical innovations, we have collected an extensive data set of Ka-band
V-pol σ0 and Doppler velocities. Using these data, we have:

1. Determined the ocean correlation time at Ka-band as a function of wind speed. The correlation
times observed (>2 ms) indicate that this measurement is scalable to spaceborne applications
with reasonable performance.

2. Developed a Ka-band V-pol GMF which shows an overall sensitivity to wind speed similar to
the one predicted by the Ku-band NSCAT GMF. The main difference between the two GMFs is in
the much greater upwind cross-wind modulation seen at Ka-band, which will improve wind
direction estimation. The observed modulation also exceeds the one observed at Ka-band from a
platform in the Black Sea by Yurovsky et al. [23], but, due to platform geometry, the cross-wind
sampling may not have been optimal for these incidence angles. Yurovsky et al. also have a global
analytic form for their GMF that may constrain the modulation somewhat, and comparisons
against actual data points (Yurovsky, personal communication) show better agreement with
DopplerScatt observations than the analytic formula. Resolving these discrepancies will require
additional data, but the current results, as well as those of Yurovsky et al., show that there is
sufficient wind speed and direction sensitivity at Ka-band to obtain wind estimation performance
similar to that of Ku-band scatterometers, such as QuikSCAT. Formal errors in the estimated
wind speed and direction indicate performance better than spaceborne scatterometers, but the
limited comparison against buoy data shows similar performance, possibly pointing to needed
improvements in the GMF, possibly including current effects.

3. Examined the local wind dependent part of the Doppler velocity signature. While the signature
is roughly aligned with the wind direction, as for other frequencies, it deviates slightly from the
true wind direction, in a fashion consistent with expected direction differences consistent with
those expected for the sum of Lagrangian and Eulerian wind-driven currents [48]. However,
the wind speed dependence of the Doppler currents is quite different from the one observed
at C-band [8,13], where the Doppler velocity is nearly linearly dependent on wind speed.
By contrast, at Ka-band, there is only a linear dependence for low winds, and the magnitude
of the dependence stabilizes after a wind speed of about 4.5 m/s. In addition, the shape of the
wind-dependent response is close to a sinusoid with azimuth angle; i.e., the expected response
of a constant velocity vector, albeit, one that seems to propagate at a small angle to the wind
direction, consistent with wind-drift measurements with HF radars [48]. This behavior was
explained as due to the modulation of the backscatter cross section through a modulation transfer
function (MTF) consistent with those previously observed at Ka-band. The lack of dependence of
the wind correction with respect to wind speed makes the estimation of the non-wind driven
part of the surface current much less sensitive to wind speed variations, although still sensitive
to wind direction errors. Given that the wind-dependent correction can be made with the
same instrument used for estimating the Doppler velocities, this combination is scalable to a
spaceborne instrument.

The contribution of the wind-driven σ0 modulation to the estimated surface currents is on the
order of ±0.3 m/s (see Figure 33), which is of the same order of magnitude as many surface currents
and must be removed, in addition to the Bragg wave contribution. We rely on an empirical GMF for
removing this wind-driven component to obtain estimates of the surface current. Like the similar wind
GMF in scatterometry, the current GMF will need to be refined as additional data become available.

We note that the wind correction to the surface currents has scales characteristic of wind spatial
scales, which are much longer than ocean scales. Therefore, residual errors in the surface currents due
to errors in removing the wind-driven Doppler contribution will manifest themselves as approximate
biases over submesoscale and small mesoscale local ocean features. This means that estimates of
the surface current derivatives, which contribute to relative vorticity and divergence, key drivers of
ocean transport, will be far less affected by errors in the GMF removal. The situation is also helped by
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the relative insensitivity of the current GMF over much of the windspeed range, which make GMF
removal a more robust process than for other incidence angles or frequencies.

In the discussion above, we have assumed that waves were dominated by wind-driven waves,
so that a relationship between wind and waves could be used. At low wind speed, swell, which is not
generated locally by the wind, may play a role that needs further study. We have recently modified
DopplerScatt to measure wave spectra, and will present results of this new mode in subsequent
publications.
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Appendix A

The DopplerScatt concept relies on using the phase difference between pulse pairs to estimate
radial velocity components. In this section, we derive the expected characteristics of this quantity as a
function of the viewing geometry, surface and platform motion.

The return complex amplitude, Ei, for the ith pulse (i = 1, 2) in a pulse pair is given by

Ei(ti, r′) ∼ ni
(
ti, r′

)
+
∫

dS G(x, ti)χ(r′ − r (ti, x)) exp [−2ikr (ti, x)] s (ti, x) , (A1)

where ∼means equality up to a constant unimportant for our results; G (x) is the one-way antenna
pattern; χ (r) is the range point target response; r′ is the nominal pixel range in the time sampled
signal; k = 2π/λ is the radar wavenumber; ri(ti, x) is the range from the radar to the location x at time
ti; ni is the thermal noise contribution. Finally, s (ti, x) is the complex reflection coefficient, defined
such that averaging over speckle realizations, it satisfies the equation〈

s (x) s∗
(
x′
)〉

S = δ
(
x− x′

)
σ0 (x) γTS (|τ|) , (A2)

where 〈〉S denotes averaging over speckle realizations; σ0(x) is the normalized radar cross section
for the desired transmit/receive polarization combination; τ = t1 − t2 is the pulse-pair temporal
separation; and, finally, γTS (|τ|) represents the temporal correlation due to scattering patch velocity
deformation or lifetime, but does not include decorrelation due to resolved large wave motion. Over the
period of observations, we assume the radar cross section statistics remains homogeneous in time,
although σ0 varies in space. At this time, we do not have a good model for the patch decorrelation time,
but in Section 3 we show that it does not seem to be a major contributor to pulse to pulse correlation.

Similarly, the thermal noise contribution is assumed to satisfy
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〈n1n∗2〉S = δ1,2N, (A3)

where N is, up to a constant, the thermal noise power.
The expected value of the pulse-pair complex product averaged over speckle realizations, 〈E1E∗2 〉S,

is given by

〈E1E∗2 〉S ∼
∫

dS G2 (x) χ2 (r′ − ri (t, x)
)

σ0 (x) exp [−2ik (r (t1, x)− r (t2, x))] . (A4)

Assume that over the period of observation rP(t), is given by rP(t) = rP(0) + vPt, where the time
origin is chosen to lie at the mid-point of the burst of pulses used for observation. The position of
a small (i.e., on the order of a few wavelengths) patch of moving surface scatterers, rS(t), is given
by rS(t) = rS(0) + (vE + vW(x)) t, where vE is the Earth’s velocity in the inertial coordinate system,
and vW is the velocity of the water patch of scatterers. We do not make any assumptions about the
velocity of the scatterers, aside from the fact that their total velocity will consist of an intrinsic velocity
(which may, but need not be, be the Bragg velocity) superimposed on the wave orbital velocity and
additional current terms, possibly including wind drift and surface current components. The vector
pointing between the platform to the target patch of scatterers is then given by r(t) = rS(t)− rP(t) =
r(0) +

(
vW − vp

)
t, where vp = vP − vE is the platform velocity vector relative to the moving Earth,

and Earth motion is assumed to be constant over the radar footprint. With these conventions, the range
between platform and target can be approximated by

r(t, x) ≈ r(0, x)

[
1 +

ˆ̀ (x) ·
(
vW (x)− vp

)
t

r(0, x)
+ +O

((
vpt
r(0)

)2
)]

, (A5)

where ˆ̀ = r/r, and we can write the range difference as

r (t1, x)− r (t2, x) ≈ ˆ̀ (x) ·
(
vW (x)− vp

)
τ, (A6)

where τ = t1 − t2.
To make further progress, we introduce the system spatial weighting function f (x, y) defined by

f (x, y) =
G2 (x) χ2 (r′ − ri (t, x))∫

dS G2 (x) χ2 (r′ − ri (t, x))
(A7)

and define the power weighted centroid of any quantity η = ηC + η′ as

ηC =
∫

dS f (x, y)η(x, y), (A8)

where a prime denotes the variation of the variable relative to the centroid value. We evaluate
the integral in a horizontal coordinate system defined on the tangent plane, choosing the origin
of the coordinate system as (xC, yC) and writing the horizontal coordinate vector as x = (x, y) =

(xC + x′, yC + y′) = xC + x′. If ˆ̀C is the look vector from the platform to (xC, yC) the look vector will
be ˆ̀ = ˆ̀C + δ ˆ̀(x′, y′).

We decompose the water surface velocity into a constant component, vW , a gradient over the
resolution cell, and a “random” component, δvW (x′), due to unresolved wave motion and current
variability inside the resolution cell:

vW(x) = vW +
(
x′ · ∇H

)
vW (xC) + δvW

(
x′
)

, (A9)

where ∇H is the gradient in the tangent plane coordinates.
The σ0 is decomposed in a similar fashion
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σ0(x) = σ0 +
(
x′ · ∇H

)
σ0 (xC) + δσ0

(
x′
)

. (A10)

The mean and gradients of σ0 are mostly due to the mean wind speed and its spatial gradient,
while the random variations, δσ0, are due to cross-section variations within the resolution cell caused
by changes in the incidence angle by large-wave tilts and by hydrodynamic modulation of small waves
by large waves. In general, it will be assumed that the fluctuations of the cross section across the
footprint, δσ0, relative to the mean value, σ0, are small, and we can discard quadratic and higher terms
in δσ0/σ0.

After making these replacements, we can rewrite the total complex coherence, γ, as

γ (τ) = γNγTS (τ) γD (τ) , (A11)

where the noise correlation term is given by γN =
(

1 + SNR−1
)−1

, where SNR is the signal-to-noise
ratio. The Doppler correlation term is given by

γD (τ) = exp [−iΦC]
∫

dS f
(
x′
)

ID
(
x′
)

IG
(
x′
)

IR
(
x′
)

, (A12)

where ΦC is the phase contribution due to the Doppler shift between the platform and the mean
current over the footprint ΦC = 2k ˆ̀C ·

(
vp − vW

)
τ.

The terms in the integrand are: ID, the variations of the Doppler over the footprint; IG,
the contributions due to gradients in the current and σ0; and IR, random contributions from
sub-resolution cell variations in the wave velocities and hydrodynamic modulations of σ0. They are
explicitly given by

ID = exp
[
−2ikδ ˆ̀ (x′) · (vp − vW

)
τ
]

, (A13)

IG ≈ exp
[
2ik
(
x′ · ∇H

) ( ˆ̀C · vW

)
τ
] (

1 +
(x′ · ∇H) σ0

σ0

)
, (A14)

IR = exp
[
2ik ˆ̀C · δvτ

] (
1 +

δσ0

σ0

)
, (A15)

where we have neglected cross terms between the gradient and random variations of σ0, where we
expect little correlation due to the different generation mechanisms, and will disappear when averaging
over the random components, as described below.

Since it is not possible to resolve phenomena smaller than the resolution cell, we calculate the
expected value of the random term by performing averaging over unresolved wave and brightness
modulations, caused by waves. Note that, for small enough range resolutions, some of the wave
motions may be resolved and part of the observed Doppler shift. The average over unresolved waves,
which will be denoted by〈〉W , results in

〈IR〉W ≈ exp
[

2ik
〈

δσ0

σ0
ˆ̀C · δvW

〉
W

τ

]
γTW (τ) , (A16)

γTW (τ) = exp
[
−1

2
(2kτ)2

〈(
ˆ̀C · δvW

)2
〉

W

]
. (A17)

After averaging, neither of these terms depends on x′ and they can be extracted from the integral.
The phase term contributes a bias term that modifies ΦC with a shift due to correlation between wave
motion and σ0 modulations

Φ′ = 2k ˆ̀C ·
(

vp −
(

vW +

〈
δσ0

σ0
δvW

〉
W

))
τ. (A18)
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Note that the surface current part in the inner parenthesis can be written as〈
ˆ̀C · (vW + δvW) (σ0 + δσ0)

〉
W

〈σ0 + δσ0〉W
, (A19)

which is equal to the Doppler current term proposed by Chapron and collaborators [8] based on a
heuristic model that weighted the Doppler contribution for each surface patch by the local brightness.
This model has been subsequently been refined into the DopRIM model to include various scattering
mechanisms, and we refer the reader to this literature for a detailed discussion of this term [19–21].

The γTW term is a temporal correlation term due to the Doppler bandwidth of the surface
waves. It can be combined with the patch correlation term to give a total temporal correlation,
γT (τ) = γTS (τ) γTW (τ).

To perform the integral in Equation (A12), write the look vector as a function of the look angle, θ,
relative to the local vertical at the platform, ẑP, and the azimuth angle, φ, defined as the angle relative
to x̂P =

(
vp − ẑP · vpẑP

)
/
∣∣vp − ẑP · vpẑP

∣∣, the component of the Earth relative velocity vector in the
plane perpendicular to the local normal, which is assumed to be the plane of rotation of the antenna.
The look vector can then be written as ˆ̀ = (cos φx̂P + sin φŷP) sin θ − cos θẑP, where ŷP = ẑP × x̂P.
Expanding φ = φC + φ′, θ = θC + θ′, and aligning the tangent plane coordinate system so that the y′

coordinate is along the plane of incidence, one can write φ′ = x′/(rC sin θC) and θ′ = y′ cos θ
(i)
C /rC,

where θ
(i)
C is the local incidence angle at the resolution cell center. It is given by θ

(i)
C = θC + α, where α

is the angle between the platform and the resolution cell center, as measured from the Earth’s center:
sin α = (rC/RE) sin θC), where RE is the local Earth radius. With these definitions, we can write

δ ˆ̀ (x′) = [(−x̂P sin φC + ŷP cos φC)]
x′
rC

+ [cos θC (x̂P cos φC + ŷP sin φC) + ẑP sin θC]
y′ cos θ

(i)
C

rC
. (A20)

Collecting terms in x′, y′, the integral for γD (after removing the wave components) becomes

γD =
∫

d2x′ f (x′) exp
[
−i
(
κ · x′

)] (
1 +

x′ · ∇Hσ0

σ0

)
, (A21)

κx′(τ) = 2kτ

[
(−x̂P sin φC + ŷP cos φC)

(
vp − vW

)
rC

− ∂x

(
ˆ̀C · vW

)]
, (A22)

κy′(τ) = 2kτ

[
(cos θC (x̂P cos φC + ŷP sin φC) + ẑP sin θC)

(
vp − vW

)
cos θ

(i)
C

rC
− ∂y

(
ˆ̀C · vW

)]
.

(A23)

We can rewrite the γD terms as

γD =

(
1 + i

(∇Hσ0

σ0

)
· ∇κ

) ∫
d2x′ f (x′) exp

[
−i
(
κ · x′

)]
. (A24)

The integral is recognized as a Fourier transform, and we can write

γD ≈ exp [i2kτvrG] ·
∇κ f̃ (κ(τ))∣∣ f̃ (κ(τ))∣∣ , (A25)

vrG =
1

2kτ

(∇Hσ0

σ0

)
· <
(
∇κ f̃ (κ(τ))

)∣∣ f̃ (κ(τ))∣∣ , (A26)

where f̃ (κ) denotes the Fourier transform coefficient of f (x′) evaluated at kx, ky. We assume that the
change in cross section due to the long-wavelength σ0 gradient is small compared to the mean cross
section, and <(z) represents the real part of z. vrG is the error in the estimated radial velocity caused
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by gradients in σ0 over the footprint. If the function f (x) is asymmetric about the origin (e.g., due to
the antenna pattern not being symmetric in range or azimuth along the observed range slice), f̃ (κ(τ))
can be complex and we write it as f̃ (κ(τ)) =

∣∣ f̃ (κ(τ))∣∣ exp [iΦA], where the subscript A stands for
“asymmetric” or “antenna”. The phase term, if uncompensated through calibration, will induce a bias
in the estimated radial velocity, vrA, whose magnitude can be determined by rewriting the phase as
ΦA = 2kτvrA.

The correlation term γD captures the effect of the variation of the Doppler over the footprint,
with the greater variability resulting in reduced correlation and higher phase noise. The typical
variation over the footprint is given by κx∆x and κy∆y, where ∆X and ∆Y are the azimuth and range
footprint sizes, respectively. Typical range resolutions are small enough that κy∆Y � 1 and the Doppler
range variations can be ignored, so that the correlation will determined by the Doppler variations in
the azimuth direction. For a stationary target, this will be proportional to 4πvp · δ ˆ̀Cτ/λ, the ratio of
the Doppler bandwidth to the pulse-repetition-frequency (PRF) 1/τ. However, a linear azimuthal
variation of the radial current can also cause a Doppler phase ramp. The maximum value of the ratio
between the aircraft to surface current Doppler variations will be proportional to sin φCvp∆φ/δvry,
where δvry is the total variation of the y-radial velocity across ∆X and ∆φ is the antenna azimuth
beamwidth. For the DopplerScatt parameters, the surface velocity variations will only be important in
exactly the forward or aft directions, when the Doppler bandwidth vanishes, but deviation by just
1◦ from these directions would require a 10 cm/s variation in the linear part of the current over the
footprint, which is extremely unlikely. Therefore, we neglect the current contributions to the Doppler
variations and approximate κx′(τ) ≈ −2kvpτ sin φC/rC.

We summarize the final result for the complex correlations as

γ (τ) = exp [−iΦ] γNγT (τ) |γD(τ)| ,
|γD(τ)| =

∣∣ f̃ (κ(τ))∣∣ , (A27)

Φ = 2kτ

[
ˆ̀C ·

(
vp −

(
vW +

〈
δσ0

σ0
δvW

〉
W

))
−vrG − vrA]

≡ 2kτ
[
vrp − (vrW + vrR + vrG + vrA)

]
. (A28)

Φ is the expected value of the pulse-pair phase difference and forms the basis for the estimation of
the surface current. Equation (A28) shows that, if one desires to estimate the mean radial velocity over
the footprint, vrW = ˆ̀C · vW , one must take into account and properly remove the platform motion,
vrp = ˆ̀C · vp, the wave contribution, vrR = ˆ̀C ·

〈
δσ0
σ0

δvW

〉
W

, the contribution due to cross-section
gradients, vrG, and, finally the contribution due to system illumination asymmetries, vrA.

As an example applicable to DopplerScatt, consider the effects of a σ0 gradient when the range
resolution is fine enough compared to the velocity variations, and the weighting function, after a
change of variables to angular coordinates, can be approximated by

f ≈ δ(θ − θC)g(φa), (A29)

where g(φa) represents an iso-range cut of the two-way antenna pattern azimuth plane, normalized to
unit area. Using x = rCφa, the Fourier transform can then be written as

f̃ (κx) =
∫

dφa g(φa) exp [−iκx′rCφa] , (A30)

where φa = φ′ sin θC has been used. The DopplerScatt antenna pattern can be approximated by
a Gaussian
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g(φa) ≈
exp

[
− φ2

a
2σ2

φa

]
√

2πσφa
, (A31)

with σφa ≈ 0.02 ≈ 1.163◦ and we have that

f̃ (κx′) = exp
[
−2
(
kvpτ

)2
σ2

φa sin2 φC

]
, (A32)

γD = exp [i2kτvrG] f̃ (κx) , (A33)

vrG =

(
∆σ0

σ0
σφ

)
vp sin θC sin φC, (A34)

where ∆σ0 is the σ0 change over a distance ∆X = rCσφa and ∆φ = σφa/ sin θC is the magnitude of the
change in the azimuth angle. A simple calculation shows that the radial velocity bias is equivalent to
an azimuth pointing error, where the azimuth shift corresponds to the shift in the illumination centroid
due to the σ0 gradient. Examining this result shows that a gradient in the along-track x-direction will
always lead to a positive δvr, but cross-track gradients will lead to a complicated angular dependence
that vanishes at broadside and the fore and aft directions, is maximum at mid-swath, but has opposite
signs in the fore (|φ| ≤ π/2 ) and aft (|φ| > π/2 ) directions.

Appendix B

Appendix B.1. Estimator Derivation

Assume that the complex signal can be characterized as a set of Np uniformly spaced, correlated,
circular-Gaussian pulses [26,64] En (1 ≤ n ≤ Np), with the the elements of Σ, the Toeplitz Hermitian
covariance matrix given by

Σmn = 〈EmE∗n〉 = Pγ|m−n| exp [i (n−m)Φ] , (A35)

where angular brackets denote the expectation value, P = S + N is the total return power,
0 ≤ γ|m−n| ≤ 1 is the correlation coefficient between pulses separated by j = |m− n| sampling
intervals (γ0 = 1), and Φ = 2π fDτ is the pulse-to-pulse phase, which is the product of the Doppler
centroid fD, and the inter-pulse period, τ. Since it is an arbitrary positive multiplicative constant and
the results do not depend on it, P will be set to 1 henceforth.

The negative log-likelihood function is then given (up to a constant) by [26]

L(Φ) = − ln (L) = ln (|Σ|) + E†Σ−1E, (A36)

where |Σ| is the determinant of Σ (Φ), E is the vector containing the circular-Gaussian measured
samples, and † denotes the conjugate transpose.

In the following derivation, it will be assumed that γj is known a priori, so that the
maximum-likelihood estimate for Φ can be done independently of estimating γj. For the radar
case, this is reasonable since the pulse-to-pulse correlation is dominated by the signal-to-noise ratio
and illuminated area decorrelation factor from the van Cittert–Zernike theorem [64], which can be
calculated a priori. Making these assumptions, the maximum likelihood estimate for Φ can be obtained
by minimizing L with respect to Φ, or, equivalently, by solving the following equation for Φ:

∂L
∂Φ

= 0. (A37)

Solving the minimization can be helped substantially by noticing that the determinant of the
covariance matrix is independent of Φ, which, after some algebra, follows from the exponential form of
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the matrix elements. This fact then implies that, in order to obtain the maximum likelihood estimator,
it is sufficient to minimize E†Σ−1E, or, equivalently, to solve the maximum likelihood equation

E†(∂ΦΣ−1)E = 0. (A38)

There is no simple closed form solution to compute the inverse of Σ, although there are recursive
formulas to calculate its elements, since it is a Toeplitz matrix. Taking the derivative of ΣΣ−1 = 1,
one obtains that ∂ΦΣ−1 = −Σ−1 (∂ΦΣ)Σ−1. Notice that, from the Hermitian property, it follows that
Σ−1† = Σ−1 and the maximum likelihood equation can be written as

0 = u† (∂ΦΣ) u, (A39)

u = Σ−1E, (A40)

and we refer to u as the transformed pulse sequence. The derivative of element m, n of the covariance
matrix is easily computed to be ∂ΦΣm,n = i(n−m)Σm,n. Defining Uj and Lj to be matrices containing
ones in the kth upper or lower diagonal, respectively, or 0 otherwise, one can write

− i∂ΦΣ =
Np−1

∑
j=1

jγj

[
eijΦUj − e−ijΦLj

]
. (A41)

Define u†Uju = I∗j , so that Ij = ∑i uiu∗i+j is the interferogram for transformed pulse pairs

separated by j pulses. Taking the complex conjugate, Ij = uTUju∗, and the transpose Ij = u†UT
j u =

u†Lju, one can write the maximum likelihood equation as

Np−1

∑
j=1

jγje−ijΦ Ij −CC = 0, (A42)

where CC stands for complex conjugate. Notice that this equation depends on Φ both explicitly
through the exponential, and implicitly through Ij, which depends on the inverse covariance matrix,
a function of Φ.

It is instructive to see the form taken by the maximum likelihood equation in the case considered
by Madsen [12] when γj 6= 0 only for one value of j. In that, it is clear that a solution to the equation is
given by

Φ̂j =
1
j

arg Ij, (A43)

where Ij =
∣∣Ij
∣∣ ei arg Ij . This solution is quite similar to the maximum likelihood solution derived in [25]

for interferometric pairs, with the exception in the case that Ij is the interferogram of the original pulse
pairs, not the transformed ones. This difference is due to the fact the pulse pairs for interferometry
come from uncorrelated looks, whereas there is pulse to pulse correlation in the Doppler centroid case.
Equation (A43) is still not a solution for Φ, since it is contained implicitly on the right-hand side of the
equation. Given a good enough guess, the equation can be solved by iteration

Φ(n+1)
j =

1
j

arg Ij(Φ
(n)
j ). (A44)

As a starting guess, note that if the off-diagonal correlation elements can be neglected (i.e., γj � 1),
one has the Madsen jth estimator given by
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Φ(0)
Mj =

1
j

arg I(0)j , (A45)

where I(0)j is the interferogram of the original pulse-pair sequence. In practice, we find that a
one-dimensional numerical search around the Madsen estimator provides a reliable solution of the
MLE equations.

Appendix B.2. Cramér–Rao Bound

The Cramér–Rao bound [26] σ2
Φ, which is the inverse of the Fisher information J, sets a limit on

the minimum variance of any unbiased estimator. In our case, the Fisher information is given by

J = −
〈

∂2L
∂Φ2

〉
= −

〈
E† ∂2Σ−1

∂Φ2 E
〉

=

〈(
E† ∂Σ−1

∂Φ
E
)2〉

. (A46)

Generalizing the derivation in [26] to circular Gaussian variables, taking the expectation value
results in

σ2
Φ = J−1 =

(
tr
[

Σ−1 ∂Σ

∂Φ
Σ−1 ∂Σ

∂Φ

])−1
, (A47)

where the derivative of the correlation matrix is given by Equation (A41) and the inverse of the
covariance matrix can be calculated numerically or symbolically.

Although useful for computational purposes, the exact expression for the Cramér–Rao bound is
complex and does not lead to easy understanding of the orders of magnitude or parametric dependence
on the various factors. To improve our understanding, one can obtain a simple expression accurate to
second order in the correlations γ, which is suitable for many practical circumstances.

Using Σ−1 ≈ 1−A + A2 +O
(
γ3), the Fisher information is readily calculated by using〈
E†LjE

〉
=

(
Np − j

)
γjeijΦ, (A48)〈

E†UjE
〉

=
(

Np − j
)

γje−ijΦ, (A49)

so that, using
〈
E† (∂2A2/∂Φ2) E

〉
≈ 0,

−
〈

E† ∂2Σ−1

∂Φ2 E
〉

=

〈
E† ∂2A

∂Φ2 E
〉

=
Np−1

∑
j=1

2
(

Np − j
)

j2γ2
j .

The final result for the Cramér–Rao bound is given by

σ2
Φ ≥

[Np−1

∑
j=1

σ−2
Φj

]−1

, (A50)

σ2
Φj =

1
2
(

Np − j
)

j2γ2
j

,

where σ2
Φj is the phase variance when all γjs are 0, except the jth one. The special case of j = 1

corresponds to Madsen’s recommendation for SAR Doppler centroid estimation. Also note that this
bound is similar to the one derived by Rodríguez and Martin [25] for independent pulse pairs, which in
our case could be written as
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σ̃2
Φj =

1− γ2
j

2
(

Np − j
)

j2γ2
j

, (A51)

which predicts a lower variance by a constant factor of
(
2
(

Np − j
)

j2
)−1.

This first order formula suggests that the weighted estimator for Φ, defined as

Φ̂W =
Np−1

∑
j=1

wjΦj, (A52)

wj =
σ−2

Φj

∑
Np−1
j=1 σ−2

Φj

(A53)

would approach the Cramér–Rao bound if the estimated phases, Φj, given by either Equation (A43) or
(A45) could be considered independent variables.

Appendix C

The coefficients for the DopplerScatt geophysical model function are shown in Table A1 along
with their formal fit standard errors. These coefficients correspond to those given in Equation (A54),
below, which is the expanded form of Equation (46):

10 log10 (σ0) = C0 + C1θ + C2 cos (φ′) + C3 cos (φ′)θ + C4 cos (2φ′) + C5 cos (2φ′)θ + C6 log10 (U) + C7θ log10 (U10)+

C8 cos φ′ log10 (U10) + C9 cos (φ′) log10 (U10)θ + C10 cos (2φ′) log10 (U10) + C11 cos (2φ′) log10 (U10)θ.
(A54)

Table A1. Table of wind Geophysical Model Function (GMF) coefficients.

Coefficient Value Standard Error

C0 −54.278 6.527
C1 0.259 0.117
C2 16.361 8.442
C3 −0.267 0.152
C4 15.753 9.122
C5 −0.236 0.164
C6 39.533 6.892
C7 −0.318 0.125
C8 −25.563 8.779
C9 0.456 0.159
C10 −6.636 9.679
C11 0.127 0.175

Appendix D

Table A2. Table of wind GMF coefficients.

U10 δvr vr1 vr2 vr3 vr4 δϕ

1.5 −0.06± 0.04 +0.35± 0.05 +0.10± 0.06 +0.02± 0.06 −0.03± 0.03 −0.04± 0.22
2.0 −0.05± 0.02 +0.40± 0.03 +0.07± 0.03 −0.00± 0.03 −0.01± 0.05 −0.15± 0.13
2.5 −0.03± 0.02 +0.48± 0.04 −0.03± 0.03 +0.01± 0.02 −0.05± 0.02 +0.00± 0.05
3.0 −0.02± 0.01 +0.58± 0.04 −0.03± 0.01 +0.03± 0.02 −0.01± 0.01 −0.00± 0.02
3.5 −0.02± 0.01 +0.65± 0.05 −0.02± 0.01 +0.01± 0.02 +0.01± 0.01 +0.03± 0.03
4.0 −0.02± 0.01 +0.69± 0.06 −0.03± 0.01 +0.00± 0.02 −0.00± 0.00 +0.04± 0.03
4.5 −0.01± 0.01 +0.75± 0.05 −0.04± 0.02 −0.00± 0.01 +0.00± 0.01 +0.03± 0.02
5.0 −0.02± 0.01 +0.79± 0.03 −0.06± 0.02 −0.01± 0.01 +0.01± 0.01 +0.03± 0.02
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Table A2. Cont.

U10 δvr vr1 vr2 vr3 vr4 δϕ

5.5 −0.03± 0.01 +0.79± 0.03 −0.06± 0.02 −0.02± 0.01 +0.01± 0.01 +0.02± 0.03
6.0 −0.03± 0.01 +0.78± 0.04 −0.06± 0.01 −0.02± 0.01 +0.02± 0.01 −0.01± 0.04
6.5 −0.04± 0.01 +0.78± 0.04 −0.07± 0.01 −0.01± 0.02 +0.03± 0.02 −0.03± 0.05
7.0 −0.04± 0.01 +0.78± 0.03 −0.08± 0.01 −0.01± 0.02 +0.04± 0.01 −0.04± 0.04
7.5 −0.04± 0.01 +0.77± 0.02 −0.07± 0.02 −0.02± 0.02 +0.03± 0.01 −0.04± 0.04
8.0 −0.04± 0.02 +0.78± 0.02 −0.05± 0.02 −0.01± 0.02 +0.03± 0.01 −0.03± 0.04
8.5 −0.03± 0.02 +0.77± 0.03 −0.04± 0.02 −0.01± 0.02 +0.03± 0.01 −0.01± 0.05
9.0 −0.03± 0.02 +0.76± 0.03 −0.05± 0.02 −0.03± 0.01 +0.03± 0.01 −0.01± 0.05
9.5 −0.02± 0.01 +0.75± 0.04 −0.06± 0.02 −0.03± 0.02 +0.02± 0.01 −0.01± 0.05
10.0 −0.02± 0.01 +0.75± 0.05 −0.07± 0.03 −0.04± 0.03 +0.01± 0.01 −0.00± 0.05
10.5 −0.02± 0.01 +0.75± 0.03 −0.07± 0.03 −0.05± 0.02 +0.02± 0.02 +0.01± 0.03
11.0 −0.01± 0.01 +0.76± 0.03 −0.06± 0.03 −0.05± 0.01 +0.02± 0.02 +0.01± 0.02
11.5 −0.00± 0.01 +0.76± 0.03 −0.07± 0.03 −0.06± 0.01 +0.02± 0.02 +0.01± 0.01
12.0 −0.00± 0.02 +0.77± 0.05 −0.07± 0.03 −0.05± 0.01 +0.02± 0.02 +0.01± 0.02
12.5 +0.00± 0.02 +0.79± 0.06 −0.07± 0.03 −0.05± 0.02 +0.02± 0.03 +0.00± 0.02
13.0 +0.01± 0.02 +0.81± 0.07 −0.06± 0.04 −0.04± 0.02 +0.03± 0.03 −0.00± 0.03
13.5 +0.01± 0.02 +0.82± 0.09 −0.05± 0.04 −0.02± 0.03 +0.02± 0.04 −0.01± 0.03
14.0 +0.01± 0.02 +0.85± 0.11 −0.03± 0.05 −0.01± 0.04 +0.03± 0.05 −0.01± 0.04
14.5 +0.01± 0.02 +0.86± 0.14 −0.02± 0.05 −0.00± 0.06 +0.03± 0.05 −0.01± 0.04
15.0 +0.02± 0.02 +0.85± 0.14 −0.01± 0.05 −0.01± 0.07 +0.04± 0.05 +0.00± 0.04
15.5 +0.03± 0.02 +0.83± 0.05 −0.00± 0.05 −0.02± 0.06 +0.03± 0.04 +0.02± 0.04

Appendix E

In this appendix, we derive the expected joint behavior of σ0 and measured radial velocity
following and approach similar to [8,19,23,32,58], but without making any explicit assumption
regarding the spectral and wind dependence of the modulation coefficients. We assume that two-scale
Bragg scattering dominates for V-pol, σ0 for a patch tilted such that the local incidence angle is given
by θ′ = θ + ∆θ, where ∆θ is due to the long waves. This model can accommodate the effects of
wave breaking, as long as it is not caused by scattering through double-bounce wedge scattering, but
through an increase in surface roughness; this effect of breaking waves has recently been observed
experimentally by Yurovsky et al. [58], where they show that the effects breaking events do not
generally propagate with the speed of the breaking wave facet, but at a lower speed. It can also
accommodate bound waves, as described below.

Since Bragg waves traveling along or opposite to the look direction have opposite-sign Doppler
signatures and may have different brightness, we introduce the directional backscatter cross section,
σ0D(θ, φr), where −π < φr < π is the Bragg wave propagation direction relative to the wind, and in
general σ0D(θ, φr) 6= σ0D(θ, φr + π). The usual normalized cross section, due to Bragg waves traveling
in both directions, is then given by σ0(θ, φr) = σ0D(θ, φr) + σ0D(θ, φr + π). (In our convention, φr = 0
when looking downwind). Assuming two-scale scattering, the V-pol σ0D(θ, φr) due to Bragg waves
traveling on an azimuth of φr riding on a large scale wave tilted by ∆θ is given by [29,32]

σ0D(θ
′, φr) = A(θ′)B(φr, kB), (A55)

A(θ′) = π

(
1 + sin2 θ′

)2

tan4 θ′ (cos θ′ + 0.1111)4

(
1 +

1
B

∂B
∂k

∣∣∣∣
k=kB

2kB cos θ∆θ

)
, (A56)

where kB = 2kr sin θ is the Bragg wavenumber, kr the radar wavenumber, and B(φ, k) = k4F(φ, k) is the
directional saturation (or curvature) spectrum [32,65] when F(φ, k) is directional wave height spectrum.
The total cross section is σ0 = A(θ′)Br(φr, kB), where Br(φ, k) = B(φ, k) + B(φ + π, k) ≡ k4Fr(φ, k)
is the folded saturation spectrum used in [29,32]. The Bragg wavenumber changes little with small
changes in the incidence angle, and we assume that the saturation spectrum can be evaluated at
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the nominal incidence angle, and its angular variation included into the A term as a linear term.
If the surface elevation is given by η, to first order in the surface slope, one will have that ∆θ =

−
(
cos φrηx + sin φrηy

)
and, assuming that the large-scale waves have a narrow spectral distribution

and they travel along the x-direction, we can neglect the slope in the orthogonal direction, ηy ≈ 0.
To the lowest order, observed Doppler shifts will be due to either free Bragg waves, generated by

the wind or wave breaking, or bound Bragg waves generated by wave straining. The free Bragg waves

have a phase speed that is independent of azimuth angle: cpF =
√

g
(
1 + γk2

B/g
)

/kB ≈ 0.31 m/s

(γ ≈ 7.14× 10−5 m3s−2 is the surface tension divided by the density of seawater). Since any footprint
will have Bragg waves traveling with and against the radial direction, cpF, the net surface-projected
radial velocity, will correspond to the power-weighted average of the two velocities:

cpF(φr) = cpF
σ0DB(θ, φr)− σ0DB(θ, φr + π)

σ0DB(θ, φr) + σ0DB(θ, φr + π)
, (A57)

= cpF
Φ(kB, φr)−Φ(kB, φr + π)

Φ(kB, φr) + Φ(kB, φr + π)
, (A58)

where we have used the Bragg scattering approximation in the second line, and define the spectral
spreading function [65], Φ(k, φ) = B(k, φ)/

∫
dφ B(k, φ), which has previously been parametrized as

either ∼ cos (φr/2)2s [49] or [1 + ∆(k) cos (2φr)] [65]. Notice that cpF(φr) = −cpF(φr + π) and, if the
spreading function is symmetric about the wind direction, one must have cpF(±π/2) = 0.

Resonant Bragg bound waves generated by straining waves give rise to a net effective
speed, cpS(φr)

cpS(φr) =

∫
dk cp(k)σ0S(k, φr)

σ0S(φr)
, (A59)

where the integral is taken over the range of wavenumbers for straining waves, σ0S(k, φr) is the
normalized backscatter cross section of the bound resonant Bragg waves given a straining wavenumber
k, and σ0S(φ) =

∫
dk σ0S(k, φ) is the total bound wave cross section. Presently, we do not have a

good prediction for σ0S(k, φr), but it is expected to be concentrated about short (O (20 cm)) steep
gravity waves, which have a much narrower spectral width than of the Ka-band capillary free waves.
Analogous to Equation (A57), the bound wave net surface-projected radial velocity will be

cpS(φr) =
cpS(φr)σ0S(φr)− cpS(φr + π)σ0S(φr + π)

σ0S(φr) + σ0S(φr + π)
. (A60)

The total lowest order surface projected radial velocity will be given by cp(φr) = fBcpF + (1−
fB)cpS, where fB is the fraction of the surface dominated by free waves, which will change as function
of wave development.

The next order effect is due to the local modulation of the saturation spectrum B(φr, k′B) due to
Bragg wave amplitude modulation by the large wave orbital velocity, or generation of new capillary
waves by either breaking or starining. We model it as δB(ψ), where ψ is the Hilbert phase of
the large-scale waves [66]. The waves will have maxima when ψ = 0, minima when ψ = ±π,
and zero-crossings when ψ = ±π/2. With these approximations, to second order the δσ0/σ0 term in
Equation (2) will be

δσ0

σ0
≈ −∂ log σ0

∂θ
cos φrηx +

cos2 φr

2A
∂2 A
∂θ2 η2

x +
δB(ψ)

B
− 1

2
∂ log σ0

∂θ

δB(ψ)
B

cos φrηx, (A61)〈
δσ0

σ0

〉
≈ 1

2A
∂2 A
∂θ2

〈
η2

x + η2
y

〉
− 1

2
∂ log σ0

∂θ

〈
δB(ψ)

B
cos φrηx

〉
, (A62)

where we have averaged over the long waves in the second equation to obtain a term showing a
reduction in the mean cross section and a second term that produces the mean upwind-downwind
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modulation, in agreement with [29,32]. The normalized upwind-downwind asymmetry, ∆σ0UD/σ0,
will be proportional to the cross-correlation between surface slope and hydrodynamic modulation,
and will be given by

∆σ0UD
σ0

=
∂ log σ0

∂θ

〈
δB(ψ)

B
ηx

〉
. (A63)

Since σ0 decreases with angle, and we know that in general ∆σ0UD > 0, we must have 〈δB(ψ)ηx〉 <
0; i.e., the net maximum change in the spectrum will generally occur when ηx < 0, or in the leeward side
of the waves. This conclusion does not depend much on the details of the scattering model assumed.

To assess the effects of σ0 modulation on the Doppler, we must look at the correlation between
Equation (A61) and orbital velocity fluctuations. The fluctuating orbital velocity components will be
assumed to be dominated by deep-water gravity waves in the linear approximation

η = ∑
n

an cos Θn,

ηx = −∑
n

ankxn sin Θn,

u = ∑
n

anωn cos Θn,

w = ∑
n

anωn sin Θn,

where Θn = kxnx − ωnt + δΘn, ωn =
√

gkxn, δΘn is a uniformly distributed random phase,
and 〈an cos Θnam cos Θm〉 = δmnF(kxn)dk such that

〈
η2〉 = ∑n F(kxn)dk →

∫
dk F(k). The Hilbert

phase, ψ, and amplitude, H, are defined by [66] H exp [iψ] = η + iη̌, where η̌ is the Hilbert transform
of η, η̌ = ∑n an sin Θn. The ground-projected radial velocity due to the wave orbital velocity will
be ˆ̀ · δvW/ sin θ = u cos φr − w cot θ. With these results, we can compute δvrS, the ground-projected
radial velocity bias caused by large scale waves in Equation (2) as

δvrS =

〈
δσ0

σ0

ˆ̀ · δvW
sin θ

〉
= cos φr

(
−∂ log σ0

∂θ
cot θUS +

〈
u

δB(ψ)
B

〉)
− cot θ

〈
w

δB(ψ)
B

〉
. (A64)

We have used
− 〈ηxw〉 = US =

∫
dk kxωF(kx), (A65)

where US > 0 is the deep-water Stokes drift current [8]. The first term inside the parenthesis in
Equation (A64) is due to the increase in backscatter with decreasing incidence angle (tilt modulation),
while the next two terms are purely due to hydrodynamic modulation of the scatterers. Since σ0

generally decreases with incidence angle, the sign of the first term will be determined by cos φr, so that
it behaves like a current traveling in the x-direction.

The presence of the cos φr factor multiplying the parenthesis in Equation (A64) indicates that
the terms in the parenthesis will behave as a horizontal current and result in a bias that is equal in
magnitude but opposite in sign in the upwind and downwind directions. On the other hand, the last
term in Equation (A64) is independent of the azimuth direction, and behaves as a net vertical velocity
term, which does not disappear when performing weighted averaging over the long wave. Since this
term is the only one that does not change sign when as the look direction changes from upwind to
downwind, it is responsible for the upwind/downwind difference in FS. The upwind radial velocity
magnitude will be greater than the downwind component (as in Figure 28) if

〈
w δB(ψ)

B

〉
> 0; i.e., if the

saturation spectrum increases in the leeward side of the wave (0 ≤ ψ ≤ π). If
〈

w δB(ψ)
B

〉
< 0, as can

happen due to wave breaking roughness in the windward part of the wave [58], the downwind velocity
magnitude will be greater. The difference in magnitudes will be given by |∆vrSud| =

∣∣∣2 cot θ
〈

w δB(ψ)
B

〉∣∣∣.



Remote Sens. 2018, 4, 576 56 of 59

There are several mechanisms for generating δB: (a) changes in local currents and acceleration,
which can modify the small wave amplitude and wavenumber [32,63]; (b) generation of bound capillary
waves, through wave straining in leeward wave faces by intermediate wavelength waves [30–32,50];
(c) through increase in surface roughness through wave breaking [32,58]. To lowest order, we assume
that all of these effects can be captured by a linear effect that can be incorporated in a modulation
transfer function (MTF) [57,59]. While the MTF theory is well developed for short gravity waves
riding on long waves under a constant wind, capillary waves have additional complications and
their modulation can be significantly larger than given by the standard theory, as discussed by
Chen et al. [67], or can include contributions due to bound waves or breaking. Rather than try to derive
the magnitude of the MTF, we merely assume a linear effect and deduce features of this modulation by
comparing against our measurements. The hydrodynamic modulation can be written as

δBH(ψ)

B
= ∑

n
kxnan (mr(kxn) cos Θn + mi(kxn) sin Θn) , (A66)

where mr and mi are the wavenumber dependent real and imaginary components of the MTF,
respectively. Replacing into Equation (A64) and averaging over wave realizations, we find that the

δvrS = US

[
cos φr

(
−∂ log σ0

∂θ
cot θ + mr

)
− cot θmi

]
, (A67)

mr/i =

∫
dk mr/i(kx) kxωF(kx)

US
, (A68)

where mr and mi are the averages of the MTF weighted by the Stokes drift for each wavenumber.
We note that the wavenumber averaged MTF is sufficient to characterize the effects of large-scale wave
modulation on the wind-induced Doppler bias. We also note that these average MTF parameters can
be obtained by fitting the spectrum modulation as a function of the slope, ηx, and it Hilbert transform,
η̌x; i.e., δB/B = mr η̌x −miηx.

This result is similar to [8,19], but we recognize that the modulation coefficients at Ka-band will
be inversely proportional to some power of the wind speed, so that they decrease with increasing
wind speed, rather than remain constant as implicit in [8]. Notice that the sign of mi is the same as
the sign of 〈wδBH(ψ)〉, so that, by the previous discussion, generally mi > 0, or arctan (mi/mr) =

ψH > 0, but the sign can reverse at high winds, leading to the wind dependence results in Figure 28.
This means that in general the phase of the hydrodynamic modulation must be negative, and the
hydrodynamic modulation will have a maximum on the windward side of the wave; this consistent
with the observations [58,63,68] that Ka-band and for winds above light winds.
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