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Abstract: Road furniture plays an important role in road safety. To enhance road safety, policies
that encourage the road furniture inventory are prevalent in many countries. Such an inventory can
be remarkably facilitated by the automatic recognition of road furniture. Current studies typically
detect and classify road furniture as one single above-ground component only, which is inadequate
for road furniture with multiple functions such as a streetlight with a traffic sign attached. Due to
the recent developments in mobile laser scanners, more accurate data is available that allows for the
segmentation of road furniture at a detailed level. In this paper, we propose an automatic framework
to decompose road furniture into different components based on their spatial relations in a three-step
procedure: first, pole-like road furniture are initially detected by removing ground points and an
initial classification. Then, the road furniture is decomposed into poles and attachments. The result
of the decomposition is taken as a feedback to remove spurious pole-like road furniture as a third
step. If there are no poles extracted in the decomposition stage, these incorrectly detected pole-like
road furniture—such as the pillars of buildings—will be removed from the detection list. We further
propose a method to evaluate the results of the decomposition. Compared with our previous work,
the performance of decomposition has been much improved. In our test sites, the correctness of
detection is higher than 90% and the completeness is approximately 95%, showing that our procedure
is competitive to state of the art methods in the field of pole-like road furniture detection. Compared to
our previous work, the optimized decomposition improves the correctness by 7.3% and 18.4% in
the respective test areas. In conclusion, we demonstrate that our method decomposes pole-like road
furniture into poles and attachments with respect to their spatial relations, which is crucial for road
furniture interpretation.

Keywords: mobile laser scanning; road furniture; detection; decomposition; poles; attachments;
spatial relations

1. Introduction

Road safety has been one of the major focuses in public safety concerns for many years. In the
2015 global status report on road safety, the total number of worldwide road traffic deaths remains
unacceptably high at 1.25 million per year [1]. To conduct road safety inspections in Europe, a road
infrastructure safety management directive is adopted by the European Union [2]. The EU will
eventually have a role in the safety management of the roads belonging to European transportation
networks—which is set to encompass 90,000 km of motorway and high-quality roads by 2020—through
safety audits at the design stage and regular safety inspections of the network [3]. Similar policies also
have been made in the U.S. In 2014, the U.S. Department of Transportation developed a system named
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Model Inventory of Roadway Elements (MIRE) to inventory road furniture and improve roadway
safety [4]. Road safety can be enhanced by the inventory of road furniture which is strongly related to
road furniture detection [5].

Another rising general interest is autonomous driving, which facilitates driving safety and makes
life more convenient. In addition, it enables people such as the aged and disabled who cannot
drive to use a vehicle [6]. Although autonomous driving systems do not fully rely on 3D precise
maps, it is still crucial for the improvement of the safety and stability of automatic driving systems.
Road furniture detection plays an important role in both road furniture inventory and 3D highly precise
mapping, which consists of road detection, curbstone detection, pole-like road furniture interpretation,
and so forth.

Currently, the road furniture inventory mainly relies on visual inspection or semi-manual
interpretation, which is time-consuming and tedious. To facilitate this procedure, methods for
automatic road furniture detection relying on high-quality data are needed. Tools for capturing
three-dimensional road scene data are Mobile Mapping Systems (MMS) which have been developed
rapidly in recent years. They are often mounted on a vehicle and mainly composed of four parts:
Light Detection and Ranging (LiDAR) sensors that collect 3D point clouds, cameras that capture
2D imagery data, an accurate Global Positioning System (GPS) that records the position of the
previous two sensors, and an Inertial Measure Unit (IMU) that measures the pose of the sensors.
Compared with optical images acquirement, Mobile Laser Scanning (MLS) data collection is not
restricted by the illumination conditions such as good weather and daytime. Moreover, MLS data can
be obtained rapidly and accurately. Significant progress has been made on research related to road
furniture inventory in the laser scanning data field, which includes road detection and modelling [7–9],
curbstones mapping [10], railway modelling [11,12], pole-like road furniture interpretation [13–21],
tree inventory [22], and building detection [23–26]. In the urban scene, MLS data analysis has become
popular and essential for urban road environment analysis.

Individual road furniture can be interpreted as a single object or as multiple connected parts.
For instance, a streetlight with an attached traffic sign can be recognized as a streetlight at the object
level. It can also be interpreted as multiple connected parts: a pole connected to a traffic sign and a
streetlight. Numerous studies have been carried out on road furniture interpretation on the level of
single objects, while only a little attention has been paid to the more detailed segmentation of road
furniture based on spatial relations between object parts. Such a detailed segmentation, however,
is necessary since it provides more detailed partition information for the interpretation of road furniture.
The objective of this paper is to propose an automatic framework for road furniture decomposition.

The rest of the paper is organized as follows. Section 2 provides a review of related work on road
furniture interpretation and state of art of point cloud semantics segmentation techniques. In Section 3,
our method is described in three main stages: the initial road furniture detection, decomposition,
and final road furniture detection. We introduce the test sites, analyze the experimental results,
and give a comparison to other work in Section 4. The conclusions that are drawn and possible future
work can be found in Section 5.

2. Related Work

The reliability of MLS systems has improved remarkably in recent years. It is reported that the
accuracy of the advanced mobile laser scanning system is as high as 5 mm under a 30 m range [27].
Its ability to acquire road objects’ 3D structural information, which 2D optical cameras cannot directly
capture, is highlighted. An important factor of MLS data is the varying point density which impacts
the performance of 3D point cloud interpretation algorithms. This is because it is difficult to find a
reasonable neighboring size for feature extraction under these conditions. There are two elements
that affect the point density of MLS data. The first one is the distance between scanners and recorded
objects, which causes the change of the point density along the scanline direction. The latter one is
the vehicle speed, which adds to the variation of the point density between the different scan lines.
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Accounting for these properties, numerous studies on MLS data interpretation have been performed.
Work on 3D objects interpretation is summarized in two categories: unsupervised methods and
supervised methods.

Much research in recent years has focused on road furniture interpretation in the point cloud by
using unsupervised methods [13,14,16,17,28,29].

Pu et al. [14] proposed a percentile-based method to recognize pole-like structures from mobile
laser scanning data for road inventory studies. Firstly, they used road parts to partition the unorganized
MLS data. Then they divided the point clouds into three parts: ground points, points connected to
the ground, and off-ground points. Finally, they used knowledge-based methods to recognize the
above-ground segments. The method was able to detect 61–87% of poles in the point clouds. Among all
the subclasses, the detection rate of trees was the lowest (29.5–63.5%). However, for this method,
there are problems with the detection of jointly connected pole-like objects such as trees connected
with pole-like objects. Li and Oude Elberink [16] optimized the method of Reference [14] by adding
reflectivity information. Because of the use of reflectance information and pulse count information,
the rate of street sign detection and tree detection is largely improved. However, connected pieces of
road furniture cannot be detected and recognized in these two methods.

Lehtomäki et al. [13] represents an early attempt which detects vertical-pole objects by using
scan line segmentation and cylinder fitting. At first, they extracted potential sweeps from the data,
removing long segments and keeping short segments. Then the segments are grouped based on their
profile information and horizontal plane position before these clusters that belong to one pole are
merged by distance and orientation check. Finally, these clusters are classified into poles and non-poles
according to their properties, such as height, shape, and orientation. The detection rate of the poles
is 77.7% and the correctness is 81.0%. It is hard for this method to detect some complex pole-like
objects that contain many points in the outer cylinder such as slanted pole-like road furniture or traffic
signs that consist of many signboards. With a similar cylinder model mask, Cabo et al. [17] proposed
a voxel-based algorithm to detect pole-like road furniture objects from MLS data. In order to make
the point clouds more uniform, they first voxelized the point clouds into grids. Then they analyzed
the three-dimensional information using two concentric cylinders. Finally, pole-like objects were
classified from point clouds. Although this method has acquired pretty good results, there are still some
limitations such as the detection of poles that are too close to bushes or guardrails. Nurunnabi et al. [28]
utilized a robust diagnostic principal component analysis (RDPCA) in combination with region
growing to segment road furniture into different parts. However, saliency features used in this method
strongly rely on a dense point cloud.

Several scholars have put effort into road furniture recognition by introducing supervised
approaches [18,30–36].

Golovinsky et al. [30] utilized a normalized cut method to localize objects of interest.
Different machine learning techniques in combination with shape features were used to classify these
above-ground objects into sixteen categories. In the work of Munoz et al. [31], a functional gradient
approach was proposed to label mobile mapping data by using Max-Margin Markov Networks (M3Ns).
This method was tested for both 3D point cloud classification and geometric surface estimation in 2D
images. However, this method still found it hard to separate and classify conjunctions which contain
multiple objects.

Different from these methods mentioned above, Huang and You [18] proposed a method in
combination with a Supported Vector Machine (SVM) to classify road furniture into four categories.
In order to localize pole-like objects, they implemented point cloud slicing, clustering, pole seed
generation, and bucket augmentation. In the following stage, ground points are removed and the
pole-like objects were extracted. In the end, six features are trained by the SVM to classify road
furniture into four types. The detection rate of pole-like road furniture was 75%.

Soilán et al. [34] used mobile laser scanning data in combination with images to recognize traffic
signs. At the first stage, the ground points were removed by using height and intensity constraints.
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Traffic signs were extracted with a reflectance threshold estimated by a Gaussian Mixture Model (GMM).
Then, geometric parameters of the extracted traffic signs were generated. Based on these geometric
inventories, these extracted components were projected onto the corresponding camera systems, after
which traffic signs can be found on the corresponding 2D images. In the end, Histogram of Oriented
Gradients (HOG) features trained by the SVM are adapted to recognize traffic signs. More than 85% of
pole-like traffic signs were detected. However, the detection of traffic signs in this methpd strongly
relies on the reflectance information.

Hackel et al. [35] described an efficient and effective method for point-wise semantic classification,
which can deal with point clouds captured by LiDAR or derived from photogrammetric reconstruction
with high-density variations. Instead of computing optimal neighborhoods for each point,
they down-sample the entire point cloud to generate a multi-scale pyramid with decreasing point
density and compute features for every voxel at every scale level. Then these features are trained and
discriminant ones are selected. Finally, Random Forest (RF) is used for semantically labeling. As a
drawback, RF cannot make use of contextual information. The precision of pole-like road furniture
recognition is less than 35%.

The Bag of Words (BoW) and Deep Boltzmann Machine (DBM) methods are applied by
Yu et al. [36] to detect and recognize traffic signs in mobile laser scanning (MLS) data. Here, the authors
first constructed a visual word vocabulary by using features encoded by a DBM model to detect traffic
signs. Similar to Li et al. [29], they separated the poles and traffic signs which are projected to 2D
images afterward. Lastly, these cropped traffic sign images were recognized by a pre-trained DBM
model. More than 90% of pole-like road furniture was detected in the high-quality MLS data. A 3D
convolutional neural network was proposed by Huang and You [33] to interpret urban scenes into
seven categories. They first used small grids to densely voxelize the original point cloud. Then feature
maps in combination with a convolutional neural network are trained to label the point clouds. 87% of
pole-like road furniture were identified.

Compared to unsupervised methods, supervised methods are more flexible in multi-class
identification problems. Normally, supervised methods need a lot of training data. For one-class
detection problems, unsupervised methods are more practical, especially when there is a limited
amount of training data. How to leverage these two methods or combine them still needs to be
explored. In this paper, we use a knowledge-driven method—in which generic rules are defined—to
detect and decompose road furniture.

All in all, significant progress has been achieved on 3D object classification and 3D scene labeling.
Nevertheless, no attention has been paid to the road furniture partitioning based on shape constraints
of different components, which is the innovation presented by this paper.

3. Methodology

In this section, the three main stages of our framework are presented: the initial road furniture
detection (Section 3.1), decomposition (Section 3.2), and the final road furniture detection (Section 3.3).
Firstly, road furniture were initially extracted from unorganized mobile laser scanning points. In the
following stage, these detected road furniture objects were decomposed into poles and attachments
based on their spatial relations. Road furniture detection is then refined by the feedback of road
furniture decomposition (Section 3.3). In addition, we introduced an approach to evaluate the result of
the decomposition which is explained in Section 3.4. The workflow of our framework is illustrated in
Figure 1.
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Figure 1. The workflow of our framework.

3.1. Initial Detection of Road Furniture

The main objective of this paper is to segment road furniture within a certain distance from laser
scanners. It is difficult to segment long distance points that are captured with scanners because of
their low point density. Therefore, we defined a distance to remove points that are far away from the
road (trajectory line), which also helps to reduce the computation cost. At this stage, we started with
pre-processing, which divided the unstructured data into roadblocks, removed the ground points,
and obtained the above-ground components. Then, an initial classification was performed to remove
dynamic objects and detect building components. In the last step, we proposed a slice-based method to
extract pole-like road furniture, trees, and pole-like road furniture connected with trees and excluded
objects inside buildings by occlusion analysis. The workflow of the initial pole-like road furniture
detection is as shown in Figure 2.
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3.1.1. Pre-Processing

The original mobile laser point cloud files are often very large and result in computation and
memory problems when processed in one go. To circumvent these difficulties, we split the unorganized
point cloud into road parts along the trajectory line as described in Reference [14]. In this paper,
the length and width of a road part are specified as 50 m and 40 m, respectively. Since one piece of
road furniture could be separated into two parts, the length of the overlapping zone between two
neighboring road parts is set to 5 m.

Ground points are the main connection between different above-ground objects. In order to
separate different objects, ground points should be removed first. After splitting the point cloud
into road parts, the ground points were removed in each road part. As the road surfaces are smooth,
the height difference between all nearby points within a certain neighborhood was small. In contrast,
for above-ground objects, there was a large height difference between all nearby points within a certain
neighborhood. We calculated the height difference as the difference between the maximum height and
the minimum height within a point’s neighborhood [37]. In this paper, the neighborhood size was set
to be quite large (e.g., 100 nearest neighboring points) because of the high point density of the ground
points. When the point cloud is very sparse, it should be set lower. The height difference threshold
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was set to be 0.15 m. Based on this property, the ground points were removed. Compared to surface
growing, this method proved to be more efficient.

After the ground points are removed, the remaining above-ground points were clustered by
conducting a connected component analysis. This resulted in the above-ground objects for the
initial classification.

3.1.2. Initial Classification

During the collection of MLS data, many moving objects or pedestrians were scanned.
These unrelated objects should be removed to mitigate false positive detection of road furniture.
As mentioned in the introduction, our objects of interest were road-side objects which were assumed to
have traffic functionalities. However, large building façades also frequently occur in road environments.
Consequently, it is necessary to remove them to reduce the computational effort for road furniture
detection. On the other hand, buildings façades can provide useful information for pole-like road
furniture detection. For instance, some pole-like objects inside buildings can be eliminated by using
façade information. In this research, dynamic objects, buildings, and fences that are not related to road
furniture were labeled thusly in this period and removed before decomposition.

In the initial classification, we use the method described in Reference [37] to remove dynamic
objects. A component was labeled as a dynamic object if more than 90% of the points only had
k-neighbors from the same scanner. This can only be used for the data collected by multiple laser
scanners. A detailed explanation is given in Reference [37].

A large number of building points in the point cloud would lead to an unnecessarily high
computation time. Compared to other road objects, a façade plane is perpendicular to the ground, its
area is large, and it is above a certain height. Similar to the method in References [23,24], the orientation,
height, and area of the façade were selected as distinctive features to detect the façade components.
In this step, surface growing was utilized to extract the planes from the components. Based on an area
and angle threshold, the large vertical planes were retained afterward.

3.1.3. Slice-Based Pole-Like Road Furniture Detection

In this step, pole-like road furniture, vegetation, and pole-like road furniture connected to
vegetation were extracted. As known, many types of vegetation have small branches and massive
leaves. When a laser pulse hits small branches or leaves, this pulse usually splits into multiple pulses
before reaching the receiver sensor. In contrast, most points of other objects exclusively have a single
pulse count attribute [38]. Consequently, the ratio of points with a multi-pulse count is useful for tree
detection. However, there are points which belong to the edges of road furniture with multiple counts
as well. If we use the number of returns, the points belong to the edges of above-ground objects are
also labeled with multiple returns. Therefore, the value of the return number was utilized instead
of the number of returns as a feature to extract trees. In our research, the ratio Rpc of points with
the first return in above-ground components was also used as a feature to detect trees. In order to
extract pole-like road furniture, Pu et al. [14] proposed a framework which allows for the general
interpretation of road furniture. Their work represents an early attempt to utilize a percentile-based
algorithm to detect pole-like road furniture. However, it has difficulty in detecting road furniture with
a large number of attached components. For instance, it has difficulty extracting traffic lights that are
connected to many traffic signs and street signs. To overcome these difficulties, a slice-based method
was presented to detect pole-like road furniture. Occlusion analysis was used to remove pole-like
objects behind façades afterward. The workflow of this method is as shown in Figure 3.



Remote Sens. 2018, 10, 531 8 of 28
Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 28 

 

Remaining above-
ground components 

after initial 
classification

Remaining above-
ground components 

after initial 
classification

Cut into slicesCut into slices

VegetationVegetation

Every slice - connected 
component analysis

Every slice - connected 
component analysis

The displacement of 
center point of two 

slices

The displacement of 
center point of two 

slices

The difference of 
diameter between 

two slices

The difference of 
diameter between 

two slices

The maximum 
diameter of slices

The maximum 
diameter of slices

Pole-slice inspectionPole-slice inspection

Occlusion analysisOcclusion analysis

Pole-like road 
furniture 

candidates

Pole-like road 
furniture 

candidates

Pole-like road 
furniture

Pole-like road 
furniture

Façade 
components

Façade 
components

Multi-return analysisMulti-return analysis

Pole-like road 
furniture connected 

to vegetation

Pole-like road 
furniture connected 

to vegetation

Other above 
ground 

components

Other above 
ground 

components

 

Figure 3. The workflow of detecting pole-like road furniture. 

First, every individual above-ground component was cut into horizontal slices (Figure 4). Then 

a connected component analysis was performed for every slice to produce separated components. 

The center point of every separated slice component was computed and a 2D connected component 

analysis was applied to connect the components which were very close to each other in the horizontal 

plane. Here, three constraints were applied to compute the number of pole-slices for the connected 

slice components in every individual above-ground component. The first constraint was the 

displacement 𝒅𝒔 of the center points of two neighboring slices (Figure 4). There should be no large 

displacement between the two neighboring slices. The second one was the difference of the diameter 

of two neighboring slices. The diameter of a slice was the 2D largest distance between two points in 

this slice. The difference of diameters between the two neighboring slices should be small (e.g., 0.2 

m), assuming that a part of the pole will have no attached objects. The third constraint was the 

diameter 𝒅 of a slice (Figure 4). The diameter of a slice should be smaller than a pre-determined 

threshold. Finally, the number of pole slices was checked for every individual above-ground 

component. If the number of pole-slices was larger than a specified threshold (set to 3) and the ratio 

𝑹𝒑𝒄 was smaller than a threshold (0.05), this component was labeled a pole-like road furniture. If the 

number of pole slices was larger than a specified threshold and the ratio 𝑹𝒑𝒄 was larger than the 

threshold, this component was labeled a pole-like road furniture connected to trees. If both of them 

were smaller than their corresponding thresholds, this component was labeled trees. 

Figure 3. The workflow of detecting pole-like road furniture.

First, every individual above-ground component was cut into horizontal slices (Figure 4). Then a
connected component analysis was performed for every slice to produce separated components.
The center point of every separated slice component was computed and a 2D connected component
analysis was applied to connect the components which were very close to each other in the horizontal
plane. Here, three constraints were applied to compute the number of pole-slices for the connected slice
components in every individual above-ground component. The first constraint was the displacement
ds of the center points of two neighboring slices (Figure 4). There should be no large displacement
between the two neighboring slices. The second one was the difference of the diameter of two
neighboring slices. The diameter of a slice was the 2D largest distance between two points in this
slice. The difference of diameters between the two neighboring slices should be small (e.g., 0.2 m),
assuming that a part of the pole will have no attached objects. The third constraint was the diameter d
of a slice (Figure 4). The diameter of a slice should be smaller than a pre-determined threshold. Finally,
the number of pole slices was checked for every individual above-ground component. If the number of
pole-slices was larger than a specified threshold (set to 3) and the ratio Rpc was smaller than a threshold
(0.05), this component was labeled a pole-like road furniture. If the number of pole slices was larger
than a specified threshold and the ratio Rpc was larger than the threshold, this component was labeled
a pole-like road furniture connected to trees. If both of them were smaller than their corresponding
thresholds, this component was labeled trees.
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Figure 4. The slice-based detection of pole-like road furniture.

Among the detected pole-like road furniture candidates, there were incorrectly detected objects
which were located behind façades. To exclude them, an occlusion analysis is performed. In the step
of the initial classification, façade planes were obtained through surface growing. Then these façade
planes were computed as constraints to determine if these pole candidates were located outside of the
façade planes (Figure 5). If they were positioned outside of the façade, they were labeled as pole-like
road furniture, otherwise, they were not.

Figure 5. Occlusion analysis.
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3.2. Road Furniture Decomposition

To address the problem that some road furniture had multiple functions, we presented a new
method to decompose road furniture into different components based on their spatial relations.
We analyzed the relationship between attachments and vertical and horizontal poles. Therefore, it is
crucial to know which points belong to which pole. The remaining points have spatial relations to
either horizontal or vertical poles. Based on these relations, we presented an optimal segmentation
procedure. The overall workflow of this method is as shown in Figure 6. There is a large variety of
structures and shapes in pole-like road furniture. It is difficult to extract all the poles using a single
method. Therefore, we first identified some key properties of the road furniture, based on which the
most suitable pole extraction method was selected (Section 3.2.1). Next, the poles were removed and
the attached components were separated into different parts (Section 3.2.2). In the end, the rule-based
splitting and merging were carried out to refine the decomposition.
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3.2.1. Pole-Extraction

Most pole-like road furniture comprise of poles and other attached components. These poles
are the link between different attached components. The motivation of this step is to extract this link.
A framework for pole extraction is presented in our previous work [29].

The structures and shapes of pole-like road furniture vary a lot, which makes it difficult to use a
single method to extract poles. For example, in the case of many attachments connected with poles,
it is difficult to directly extract poles based on their linear features. Thus, 2D point density can be
adopted as a feature to extract poles. We categorized the pole-like road furniture into three typical
types. The first type was road furniture with many attachments (the left image in Figure 7). The second
one was road furniture with horizontal poles (the middle image in Figure 7), and the third type was
normal road furniture (the right image in Figure 7). For these three different types of road furniture,
three corresponding pole extraction methods were proposed.
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In order to select the method to be used for pole-extraction, we first did the pre-identification to
get information from the road furniture such as the length and width of its bounding box. To obtain
the knowledge of the structure of the road furniture, we cut pole-like road furniture into slices and
computed the width of every slice. In the previous phase, we already cut the above-ground components
into slices to check if they were pole-like. We do not use the previous slicing information because the
width of the previous slicing in the pole-like road furniture detection stage is rather large (e.g., 0.3 m)
because it was used to connect small fragments together. In this phase, the width was set to 0.1 m.
The bounding box of every individual road furniture is then calculated. The median width of the slices
can be obtained by the statistics of every slice. The maximum variation of the distance between the
points of one road furniture item in the XY direction can be calculated based on its bounding box.

According to the properties of road furniture calculated in the pre-processing phase,
the corresponding pole extraction method was selected (Figure 8). If more than half of the pole
component consists of attached components, a 2D point density-based method was utilized. This can be
determined by comparing the smallest quartile width and median width. If there was a large difference,
we believed that there were many components attached to the pole. Otherwise, Random Sample
Consensus (RANSAC)-based line fitting was utilized if the horizontal poles were included in the
road furniture. These can be detected by checking the bounding box of the piece of road furniture.
If the length or width of the bounding box in the horizontal direction was larger than the threshold,
the decision that this road furniture likely contained horizontal poles was made. For normal road
furniture, there were more robust features to extract poles than using 2D point density features. If there
were not many attachments to the road furniture, the line fitting was more robust than extracting
points with high 2D point density. Consequently, we used the slice cutting based method to fit the
center lines of poles and perform pole extraction. Finally, when there were no attachments to the pole,
there was no need for decomposition.
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The brief explanation of these three pole extraction methods is given as follows. In the 2D point
density-based method, we first calculated the 2D point density around every point. Then we used a
region growing method to extract the clusters of points with high 2D point density (Figure 9a) which
were recognized as poles. In the second pole extraction method, points with high linearity were first
extracted by calculating the eigenvalues of every point’s neighboring points. Then the RANSAC
algorithm was adopted to extract lines from these points with high linearity. Poles were extracted by
detecting points within a radius to the fitted lines (Figure 9b). In the slice cutting method, we first
extracted the center lines by carrying out the RANSAC algorithm with the center points of the cut
slices. Similar to the second method, the poles were then extracted based on the distance between
the points and fitted lines (Figure 9c). A more detailed description of these three methods is given by
Li et al. (2016).
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Figure 9. The pole extraction. (a) Pole extraction using the 2D point density-based method; (b) pole
extraction using the RANSAC-based line fitting method; (c) pole-extraction using the slice cutting
based method.

Poles extracted by the first two methods (2D point density method and RANSAC line fitting
method) were often not accurate. For the 2D point density-based method, some points of attachments
that are near the poles have a high 2D point density. They can thereby be categorized as poles.
When points with high linearity were not extracted accurately enough, the center lines of the poles
cannot be estimated correctly using the RANSAC algorithm in the second method. If a pole is
inaccurately generalized to a line, this causes the imprecise extraction of the pole. For example, if the
generalized center lines inclined towards the street side (Figure 10a), the part of the points that would
be far away from the center lines and belong to the poles would not be extracted in this stage. To tackle
these problems, pole extraction was optimized by re-estimating the center lines of the poles. Similar to
the slice cutting, we cut the extracted points of poles into slices, computed their center points, and used
the RANSAC algorithm to extract the lines from these center points. By doing this, poles can be
extracted more accurately by using the precisely fitting center lines. The re-estimated center lines were
shown in Figure 10b.
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3.2.2. Decomposition into Poles and Attachments

In order to separate the attachments which are connected to the poles, we removed the extracted
poles and performed a connected component analysis [29]. As the components can be very close
to each other, the maximum distance and the size of the nearest neighborhood should be chosen
properly. Considering the distance between the scanlines and the point distribution on a single
scanline, the neighborhood size cannot be very small. Otherwise, points on different scanlines would
not be connected. The maximum distance between two scanlines here is 0.05 m. For a point, the number
of its neighboring points was typically 10 within the distance of 0.05 m in a single scanline. Here,
we set the maximum for the connected components to 0.15 m and the neighborhood size to 15 points.
The separated components are as shown in Figure 11. The best method for each piece of road furniture
was chosen automatically. Figure 11a shows the partitioning of the remainder of points which were
obtained from a 2D point density-based pole extraction method. Pole extraction in Figure 11b uses the
RANSAC line fitting method and pole extraction in Figure 11c,d utilized the slice cutting based method.
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Figure 11. Examples of the separated components.

Because of occlusion, low point density, and noisy points, it is sometimes difficult to connect all
the points that belong to the same attachment by leveraging the parameters of the aforementioned
connected component analysis. Examples are marked in Figure 11. To address this problem, we defined
a set of generic rules to split and merge the components. We first performed merging rules for the
components for horizontal poles. Then the components connected to vertical poles were analyzed to
see whether they could be merged or split. Then, the detached components were checked on whether
they could be merged with their nearby components.

As shown in the red circle of Figure 11b, one component attached to a horizontal pole can be
separated into two parts during the connected component analysis. If two components were attached
to the same horizontal pole and their positions overlap in XY-plane, these two components should be
merged. The merging analysis of the horizontal pole attached components was repeated until no such
components were found. Figure 12 shows the merged components after applying the merging rule.
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Figure 12. The left frame is the zoomed in image of the merged component after applying the
merging rule.

Another situation was that the attachments might be connected to each other because of noisy
points or imprecise pole extraction. An example is shown in the Figure 11c. In this situation, we increase
the width of the pole extraction. If one component can be split into two parts and they are not at the
same height, this component was split into two parts. This method is similar to erosion followed
by dilation.

Suppose Cverti(Pw) is a component which is attached to vertical poles when the width is set
to w for pole extraction. We increased w = {w1, w2, · · · , wn}—where wi is the width of the
cut slice i—and performed a connected component analysis. Once Cverti(Pw) becomes the two
components—Cverti(Pw′)i and Cverti(Pw′)j—and they are not at the same height, they should be
separated into two parts. This operation will continue until the increment of w reaches a predefined
value. In this paper, it is empirically set to 0.15 m for the splitting analysis.

There are single attachments which might be separated into two parts (Figure 11a). This case
occurs when the distance for connection is not large enough during the connected component analysis.
In this case, we conducted a merging analysis. We continued increasing the width of the pole extraction
to w′′ . Here, we set w′′ to be the normal size of traffic signs, for example, 0.5 m. Once the two
components Cverti(Pw′′ )i and Cverti(Pw′′ )j are wrapped by their connected vertical pole and once the
two components are in the same height, the connection line of their center points comes very near
to the pole line. Then they should be merged together. The merging analysis will be iterated until
no components can be merged. The components were split and merged as shown in the red circle of
Figure 13.
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Components that were not connected to poles (Figure 11d) were described as detached
components because of the low point density or occlusion. It is assumed that if one detached
component and an attachment were at the same height, on the same side, and their connection
line was very close to this pole, they should be one component and merged together. Then, this merged
component was added to continue with the detached components merging analysis. The detached
components were merged as illustrated in Figure 14.
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3.3. Final Detection of Pole-Like Road Furniture

The results of the decomposition were imported as it is feedback for the road furniture detection
stage. If there was no pole extracted from a road furniture item such as the pillars of buildings, this road
furniture item would not be labeled as pole-like. For example, the pillars of buildings can be detected
as a pole-like road furniture item at the detection stage. When such a pillar is decomposed by using
RANSAC line fitting, this pillar will probably not be extracted because the percentage of points which
belong to the pole is low when there are many points with a high linearity from the edges of façades
or fragments.

3.4. Road Furniture Decomposition Evaluation

In this section, an approach was presented to evaluate the accuracy of the decomposition. Based on
their spatial relations, the components of pole-like road furniture were manually labeled. For example,
street signs can be manually labeled as “pole and attachments”, as shown in Figure 15.
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In order to assess the results of the decomposition, we used a two-level evaluation method. One is
point-based evaluation and the other one is a component-based evaluation. We used completeness
and correctness to quantify the evaluation.

In the point-based evaluation, we first selected the corresponding true positive points of the
manually labeled ground truth component. We matched the corresponding decomposition result and
every ground truth component by selecting the largest decomposed component in this ground truth
component. The true positive points in an attachment are the points belonging to both this attachment
and its corresponding manually labeled attachment. Then the completeness of every component
was computed as the ratio of the number of points of the largest segment in this component to the
number of points of this component, Completeness = TP/(TP + FN). TP is the number of correctly
decomposed points in the manually labeled components, FN is the number of incorrectly decomposed
points in the manually labeled components. For example, in Figure 16, the true positive component of
the streetlight head is the decomposed component which is marked by the red circle 1 in the left figure.
Thus, the completeness of this component can be computed as the ratio of the number of points which
are in the overlap of the component labeled with the red circle 1 in the left figure and the component
labeled with green circle 1 in the right figure, to the number of points of the component labeled with
the green circle 1 in the right figure.
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The correctness of a separated attachment is the number of true positive points divided by the
number of points of this separated attachment. For example, in Figure 16, the correctness of this
component is computed as the ratio of the number of points which are the overlap of the component
labeled with the red circle 1 in the left figure and the component labeled with the green circle 1 in the
right figure, to the number of points of the component labeled with a green circle 1 in the right figure.
Correctness = TP/(TP + FP). FP is the number of incorrectly decomposed points in the components
produced by our algorithm. Those points which are labeled with the green circle 1 in the right figure
are included as well in the segment which is labeled with the red circle 1 in the left figure.

In the component-based evaluation, the largest segment in every manually labeled ground truth
component was selected as the corresponding segment of this component. Then we calculated the
completeness and correctness of every component by using point-based evaluation. If the completeness
was lower than the threshold over_decoth, this component was labeled as over-decomposed. If the
correctness was lower than the threshold under_decoth, this component was labeled as under-
decomposed. Otherwise, this component was an applicable decomposed component. Both over_decoth
and under_decoth were defined to be 0.6. For example, in the left image of Figure 16, component 2
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labeled with a green circle is under-decomposed with low correctness. In contrast, component 3 is
over-decomposed with low completeness.

4. Study Area and Experimental Result

To test the performance of the proposed framework, two datasets—one in Enschede and one in
Paris—are chosen. The Enschede dataset was used as a test case because there are many types of road
furniture and it is a typical Dutch city. The Paris dataset was a benchmark dataset and Paris is a French
city. The shapes of the road furniture in these two test sites are different because they are from two
different countries.

The test of the presented framework on the Enschede dataset is given in Sections 4.1 and 4.2
gives the experimental results of the Paris dataset. The analysis of the results is explained in the
corresponding sections. In Section 4.3, the limitations and applicability are analyzed.

4.1. Enschede

4.1.1. Test Site

This dataset was collected in Enschede, a medium-sized city located in the east part of the
Netherlands. It was acquired by TopScan GmbH in December 2008. The Optech LYNX mobile
mapping system was used to capture the laser scanning data. This system consists of two rotating laser
scanners, which were mounted on the backside of a moving vehicle. Their directions are perpendicular
and make a 45◦ angle with the driving direction. The frequency of both scanners was 100 kHz.
The platform was driven at a maximum speed of 50 km/h. In this dataset, the coordinates plus two
attributes—the pulse count and reflectance strength—are available.

The Enschede MLS data are about 1.25 km long, consisting of 19,945,716 points and 151 pieces
of road furniture. The point density ranges from 35 points per square meter to 350 points per square
meter. The test area was partitioned into 25 blocks along the trajectory line, with each block 50 m long
and 40 m wide.

4.1.2. Results

The road furniture detection of a single road part in the Enschede dataset is as shown in Figure 17.
The height difference was firstly estimated for every point in this road part. The height difference
threshold between all nearby points within a certain neighborhood in order to filter ground points
was set to 0.15 m. The neighboring size for the height difference calculation was set to be high
(for example, 100) due to the high point density of the road surfaces. Then points with a small height
difference were categorized as ground points (Figure 17a) and removed. The filtered ground points
were colored white. Subsequently, the above-ground components (Figure 17a) were produced by
removing the ground points and the connected component analysis. The dynamic objects were labeled
(Figure 17b) and eliminated from the above-ground components afterward. Most of them were cycling
bicycles, pedestrians, and moving vehicles. Because of the angles and occlusions, several objects
behind building façades were scanned by only one laser scanner. This leads to these objects behind
building façades being labeled as dynamic objects. Although this was incorrect, it does not affect our
results because we would like to eliminate these objects behind the façades anyway. Then the façades
were recognized (Figure 17b). More detailed information on this process was explained in Section 3.1.2.
At the end of the detection phase, the slice-based poles were analyzed. Vegetation, pole-like road
furniture, and road furniture connected with vegetation were detected as in Figure 17b. Due to the
close proximity, some vegetation connected with road furniture was also detected. Two trees connected
with one streetlight were colored as brown in this figure. Their separation was as shown in Figure 17c.
The detected pole-like road furniture were colored in purple. The detected pole-like road furniture
were as shown in Figure 18a. False positively detected road furniture inside buildings were excluded
after the occlusion analysis, shown in Figure 18b.
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Figure 17. The pole-like road furniture detection from the Enschede dataset. (a) ground points
(white points) and above-ground connected components; (b) detected vegetation (light green),
façade (light blue), dynamic objects (light yellow), detected pole-like road furniture (purple),
and pole-like furniture connected to vegetation (brown); and (c) the separation of pole-like road
furniture connected to trees.
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Figure 18. The occlusion analysis to exclude incorrectly detected pole-like objects inside buildings.
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At the stage of decomposition, particular attention was paid to complex structures rather than
bare poles. Therefore, we removed the bare poles and only complex structural pole-like road furniture
were identified as the input for the decomposition test. In this dataset, 115 pole-like road furniture
were detected, given in Figure 19a. The final results of the pole-like road furniture decomposition can
be found in Figure 19b.
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Figure 19. The pole-like road furniture detection and decomposition from the Enschede dataset.
(a) The identified pole-like road furniture (colored by the component number); (b) the decomposition
result after applying optimization and rules.

4.1.3. Performance Analysis and Parametric Sensitivity Analysis

For the evaluation of pole-like road furniture detection, we manually inspected every detected
pole-like road furniture. The completeness and correctness of pole-like road furniture detection are
as shown in Table 1. The correctness is 96.0% and the completeness is 94.7%. In total, 149 pole-like
road furniture items were detected, 6 of which were incorrectly recognized. Among these false
positive detected entities, there were small garbage boxes and thin trees. Small garbage boxes were
partially scanned and they were similar to short poles such as road piles. Thin trees without many
branches and leaves were also easily recognized as pole-like road furniture. This was because it
was difficult to distinguish them from pole-like road furniture only from the structure information.
Future research could be to investigate the color information in combination with the point cloud.
Two pole-like road furniture items were not identified because of the noisy points and low point
density. Four traffic boards are identified as pole-like road furniture. Although their structure is
obviously non-pole-like, they can still be categorized as road furniture because of their salient traffic
functionalities. Nevertheless, we strictly consider the detected traffic boards as negative results.

The accuracy evaluation of the decomposition of the pole-like road furniture from the Enschede
dataset is given in Table 2. The completeness is above 79.5% and the correctness is 92.3%. Compared to
our previous work in which pole extraction optimization and rules were not applied, the performance
improved significantly in the point-wise evaluation. Due to the high point density of this dataset,
the components were already well-separated in the point level. The ratio of the correctly decomposed
components increases from 72.2% to 79.5%, which proves the improvement of the decomposition after
the addition of pole extraction optimization and rules for the decomposition part.

In order to set proper parameters, we chose one block which contained 22 pieces of road furniture
to train the parameter settings. In the detection phase, the threshold of the maximum diameter of
pole-like slices was obtained by using a grid search. The optimal threshold was 0.50 m. Then we
used the trained parameter to detect pole-like road furniture. In the decomposition phase, we also
use a grid search to obtain the optimal ratio of the width of every slice for pole extraction. A set of
parameters {0.25, 0.5, 0.75, 1.0, 1.25, 1.50} was tested on the sampling data. A value of 0.75 proved to be
the optimal parameter.
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Table 1. The accuracy of the road furniture detection in the two test sites.

Test Site Enschede, NL

Visual interpretation 151
Correctly detected (before/after the feedback) 145/143

Total detected (before/after the feedback) 154/149
Correctness (before/after the feedback) 94.2%/96.0%

Completeness (before/after the feedback) 96.0%/94.7%

Table 2. The accuracy evaluation of the decomposition in the Enschede dataset

Enschede, NL Previous Framework Current Framework

Point wise
Completeness 79.5% 83.2%

Correctness 92.3% 92.3%

Component wise

Visual inspection 327 327
Correctly decomposed 236 260

Over-decomposed 55 34
Under-decomposed 58 54

Correctness 72.2% 79.5%

4.2. Paris

4.2.1. Test Site

The test data of Paris (France) was captured in January 2013 by a Stereopolis II system, an MLS
system developed by the French National Mapping Agency IGN. This is the IQmulus & TerraMobilita
Contest dataset [39]. This dataset contains MLS data from a dense urban environment, composed of
300 million points, covering approximately 10 km. In addition, it is an accessible benchmark dataset.
In this dataset, there are two available attributes: reflectance and pulse count information.

The Paris MLS data was acquired in 10 zones. Compared with other zones, most road furniture
was in zone 7. For this reason, it was selected as the test data zone. This test area is about 0.43 km
long, consisting of 13,776,061 points and containing 132 pieces of road furniture. The test area was
partitioned into 13 blocks along the trajectory line. We designed each block to be 40 m long and 30 m
wide because the Paris streets are fairly narrow. The point density ranged from 72 points per square
meter to 500 points per square meter. Compared with the Enschede dataset, the point distribution of
the road furniture in the Paris dataset was quite uneven. This was because the scanning pattern was
different. The Paris dataset was collected by only one laser scanner.

4.2.2. Results

The original point cloud of one road part was as shown in Figure 20. The detected ground points,
above-ground components, and façade points were as shown in Figure 20a. The detected pole-like
road furniture before and after occlusion analysis are illustrated in Figure 20b,c.

Some entities behind the façades were detected as vegetation. The reason for this was that these
objects were collected with multiple echo count information when the laser pulses passed through the
windows and hit objects behind the windows. As this dataset was captured by using only one laser
scanner, dynamic objects were not detectable by our framework.
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Figure 20. The pole-like road furniture detection from the Paris dataset. (a) the ground points and 

above-ground components; (b) the detected façade (light blue) and road furniture (purple). The 

entities behind façades were incorrectly detected as road furniture in the left green frame; (c) the label 
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after occlusion analysis. 

In this dataset, 41 pole-like road furniture items were identified as poles with attachments (see 

Figure 21a), and 97 were identified as bare poles. The detected poles with attachments were used to 

quantify the decomposition results. The pole-like road furniture decomposition result was as 

depicted in Figure 21b. 
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Figure 20. The pole-like road furniture detection from the Paris dataset. (a) the ground points and
above-ground components; (b) the detected façade (light blue) and road furniture (purple). The entities
behind façades were incorrectly detected as road furniture in the left green frame; (c) the label of
incorrectly detected pole-like objects inside the buildings in the left green frame were redressed after
occlusion analysis.

In this dataset, 41 pole-like road furniture items were identified as poles with attachments
(see Figure 21a), and 97 were identified as bare poles. The detected poles with attachments were
used to quantify the decomposition results. The pole-like road furniture decomposition result was as
depicted in Figure 21b.
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Figure 21. The pole-like road furniture decomposition from the Paris dataset. (a) The detected
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4.2.3. Performance Analysis and Parametric Sensitivity Analysis

By means of visual inspection, the performance of pole-like road furniture detection in the Paris
dataset was evaluated. Table 3 shows that the correctness was 91.3% and the completeness was 95.4%
in this dataset. In total, there were 138 pole-like road furniture items detected, 12 of which were
incorrectly recognized. Among these false positive detected entities, most of them were pedestrians
and entities whose point clouds were partially acquired. Pedestrians are similar to pole-like road
furniture, especially in a noisy dataset. Another factor is that some road objects like fences were only
partially scanned and are similar to pole-like road furniture in appearance. It is still a challenging
task to distinguish them. Six pole-like road furniture items were not identified because of the low
point density. Similar to the Enschede dataset, we also selected the optimal parameters by using a grid
search in the Paris dataset. The optimal threshold of the maximum diameter of the pole-like slices was
determined to be 0.30 m. The optimal ratio of the width of every slice for pole extraction was 0.50.

The performance of our previous work and the current framework is illustrated in Table 4.
Compared with the Enschede dataset, the quality of the Paris dataset is lower. For example, in the
Paris dataset, the point distribution was uneven because of the usage of a single scanner. Because the
decomposition method required a high-quality point cloud, the performance of our previous work
tested on the Paris dataset was not satisfying. As shown in Table 4, the results of the decomposition
were obtained by our previous work [29] in which we did not utilize pole extraction optimization
and rules. With the addition of pole extraction optimization and rules in the decomposition part,
the completeness was improved to be above 80%, the correctness was improved to be 92.6%, and the
rate of correctly decomposed components was enhanced to 72.0%. The results prove the effectiveness
of the proposed framework.

Table 3. The accuracy evaluation of the decomposition in the Paris dataset.

Test Site Paris, FR

Visual interpretation 132
Correctly detected (before/after the feedback) 126/126

Total detected (before/after the feedback) 142/138
Correctness (before/after the feedback) 88.7%/91.3%

Completeness (before/after the feedback) 95.4%/95.4%
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Table 4. The accuracy evaluation of the decomposition in the Paris dataset.

Paris, FR Previous Framework Current Framework

Point wise
Completeness 69.0% 80.0%

Correctness 90.0% 92.6%

Component wise

Visual inspection 125 125
Correctly decomposed 67 90

Over-decomposed 24 12
Under-decomposed 45 29

Correctness 53.6% 72.0%

4.3. Discussion

Our carried out research aimed to decompose pole-like road furniture into poles and attachments
based on their spatial relations such as connectivity. In this study, we developed a new framework
to detect and decompose pole-like road furniture automatically. As our results show, pole-like road
furniture were detected accurately and automatically. Approximate 90% of pole-like road furniture
items were detected and more than 90% was correctly detected in both test sites. The correctness of
road furniture detection was 92.3% and completeness was 83.3% in Cabo et al. [17]. In Yang et al. [32],
their achieved correctness and completeness of road furniture detection was higher than 90.0%.
The average completeness of our framework is 95.0% and the average correctness is 93.6%.
Our framework is competitive with the current state of the art in the field of pole-like road furniture
detection. The completeness of decomposition was above 80% and the correctness of decomposition
was above 90% in both experimental areas. Besides that, we introduced an automatic method
to evaluate the accuracy of the decomposition instead of the visual inspection mentioned in our
previous work.

A significant advantage of this framework is the adoption of occlusion analysis. All pole-like
objects inside buildings were eliminated in the Enschede test case, and only four pole-like objects
inside buildings were not filtered out in the Paris test site. These four objects were located close to
building façades whose normal direction was almost parallel to the trajectory direction. Our occlusion
analysis was not able to cope with such situations. The pole-extraction optimization, defined merging,
and splitting rules also improved the performance of the decomposition. It enhances the ratio of
correctly decomposed components by 7.3% in the Enschede test site and 18.4% in the Paris test area.
Some well-decomposed road furniture is shown in Figure 22.
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Figure 22. The correct decomposition results.

Even though the accuracy of pole-like road furniture detection is already high, some problems still
remain. In both of the two test sites, small booths supported by pillars were recognize as pole-like road
furniture. These booths have pillars whose appearance is very similar to poles. The detection algorithm
was not good enough to discriminate the difference. Therefore, additional structural relations will
be added later to address this problem. In the slicing-based pole-like road furniture detection step,
trees connected to the pole-like road furniture were detected. We have yet been unable to thoroughly
separate them (Figure 17d).
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The remaining problems with decomposition are divided into two types. The first one is the
problem with the data itself. Specifically, it involves point density, point distribution, and noisy points.
In Figure 23a, the two connected traffic signs should have been separated. If there are many noisy
points around one road furniture item, it is even harder to separate these attached components by
visual interpretation. Under such circumstances, our decomposition algorithm does not work. If the
point density is extremely low, points cannot form an individual component. For example, in the
Paris dataset, a few traffic lights were documented by several points, which led to the fragmented
unstructured components during the decomposition (Figure 23b). In contrast, most of the traffic
signs were decomposed as individual components owing to their adequate point density. Therefore,
the point density cannot be very low. The point spacing between points in the trajectory direction
is normally higher than 0.05 m. The point spacing was about 0.02 m within the scanlines. The point
spacing in these two directions was different. The second problem originates from the scene. Currently,
curved poles cannot be extracted as the assumption is that pole-like road furniture contains straight
poles. Beside this, pedestrian-oriented traffic lights (Figure 23c) which consist of traffic light heads
connected with each other cannot be decomposed correctly (Figure 23d).
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Figure 23. Incorrectly decomposed road furniture. (a) two traffic signs were not separated; (b) one
traffic light was decomposed to two fragmented components; (c) the image and (d) the point cloud of
two traffic lights which were not separated.

5. Conclusions

In this paper, we proposed a new framework to detect pole-like road furniture and decompose
them into different components based on their logical relations. This innovative framework is tested
in two test sites. After being processed by our new framework, the road furniture were detected
and interpreted by logical relations, which can be used for precise semantics labeling. This proposed
framework can be potentially used for high defined 3D mapping. In this framework, we improved
road furniture detection by combining dynamic objects removal, pole slicing, and occlusion analysis.
The completeness and correctness values of the pole-like road furniture detection were higher than
90% in both the Enschede dataset and the Paris dataset. The main contribution was the decomposition
of the road furniture and its evaluation. Compared with our previous work, the current framework
is completely automatic and the performance of decomposition has been improved by applying
defined rules.

The next stage of our work will focus on the classification of decomposed road furniture.
Even though logically separated components were obtained, the meaning of every component has not
been assigned yet. Therefore, in order to make use of the components for further applications such as
mapping, these components will be semantically labeled based on their features.
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In our research, road furniture items have been decomposed into components by using mere
geometric features. Color information has also been beneficial to the detection and decomposition.
Many techniques on image semantics labeling such as the convolutional neural network can be applied
to our research. 2D image data were also captured by two cameras mounted on a moving vehicle.
The clear detection, decomposition, and classification of road furniture could benefit from the color
information given by the 3D point cloud.
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