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Abstract: Ongoing information on snow and its extent is critical for understanding global water and
energy cycles. Passive microwave data have been widely used in snow cover mapping given their
long-time observation capabilities under all-weather conditions. However, assessments of different
passive microwave (PMW) snow cover area (SCA) mapping algorithms have rarely been reported,
especially in China. In this study, the performances of seven PMW SCA mapping algorithms were
tested using in situ snow depth measurements and a one-kilometer Interactive Multisensor Snow
and Ice Mapping System (IMS) snow cover product over China. The selected algorithms are the
FY3 algorithm, Grody’s algorithm, the South China algorithm, Kelly’s algorithm, Singh’s algorithm,
Hall’s algorithm and Neal’s algorithm. During the test period, most algorithms performed reasonably
well. The overall accuracy of all algorithms is higher than 0.895 against in situ observations and
higher than 0.713 against the IMS product. In general, Singh’s algorithm, Hall’s algorithm and Neal’s
algorithm had poor performance during the test. Their misclassification errors were larger than those
of the remaining algorithms. Grody’s algorithm, the South China algorithm and Kelly’s algorithm
had higher positive predictive values and lower omission errors than those of the others. The errors
of these three algorithms were mainly caused by variations in commission errors. Comparing to
Grody’s algorithm, the South China algorithm and Kelly’s algorithm, the FY3 algorithm presented
a conservative snow cover estimation to balance the problem between snow identification and
overestimation. As a result, the overall accuracy of the FY3 algorithm was the highest of all the
tested algorithms. The accuracy of all algorithms tended to decline with a decreased snow cover
fraction as well as SD < 5 cm. All tested algorithms have severe omission errors over barren land and
grasslands. The results shown in this study contribute to ongoing efforts to improve the performance
and applicability of PMW SCA algorithms.

Keywords: snow cover; passive microwave; FY-3C/MWRI; algorithmic assessment; China

1. Introduction

Snow cover is an important geophysical parameter for understanding global climate change,
the radiation budget and the water cycle [1,2]. Given the importance of snow, snow cover extent has
been a key observation target since the beginning of the satellite remote-sensing era dating to the
mid-1960s [3]. Snow cover area (SCA) monitoring using optical and microwave sensors has been
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reported for decades [4]. A number of snow cover detection algorithms using optical sensors have been
developed since the 1980s [5–9]. However, snow cover maps derived from optical sensors are strongly
influenced by observation conditions such as cloud obscuration and solar illumination. Inaccessibility
in cloud cover and weak sun exposure regions greatly limit the applicability of optical SCA products
in regional and global applications [4].

Passive microwave (PMW) observation is another data source for SCA detection [10–12]. Dry snow
is a type of microwave scattering material and can be identified by its volume scattering signature.
The positive brightness temperature (Tb) gradient between low and high frequencies is a crucial
criterion for snow cover identification [13]. Most PMW SCA detection algorithms are based on a
decision tree classification approach. Snow can be distinguished from other scattering or non-scattering
surfaces via various filters. These algorithms can be divided into three groups: (1) identify snow
with detailed types of snow [14,15]; (2) identify snow and non-snow types simultaneously [16,17];
and (3) simply identify snow without any in-depth information [18–20].

The primary advantage of using PMW data is the ability of microwaves to observe land surface
conditions through clouds during day and night. At present, the PMW SCA products have been
mainly used to fill the cloud gap of long-term optical SCA products [21–24] or act as a preprocessing
step for producing PMW snow water equivalent (SWE) and snow depth (SD) products [25–28].
Errors inherent to PMW SCA products propagate into and corrupt the combined products. The false
snow and snow-free identifications affect the accuracy of the associated SD, SWE and SCA products.
Thus, an in-depth evaluation is needed to understand the uncertainty of PMW SCA mapping methods
as well as to develop new methods.

In this study, seven PMW SCA mapping methods were tested, including Kelly’s algorithm [14],
the FY3 algorithm [15], Grody’s algorithm [16], the South China algorithm [17], Singh’s algorithm [18],
and Hall’s algorithm [19], Neal’s algorithm [20]. These algorithms were selected because they are
well-documented, have been successfully applied and have an indicative effect on later research.
Common approaches for evaluating satellite-derived SCA would be to compare it to in situ
measurements [11,29,30] or satellite images with higher spatial resolutions [8,31–34]. We used similar
strategies in this assessment. The performance of different PMW SCA mapping algorithms was
evaluated against in situ snow depth measurements along with the Multisensor Snow and Ice Mapping
System (IMS) snow cover product at a one-kilometer resolution. The one-kilometer IMS snow cover
product was taken as a validation dataset because it is cloud-free and of high spatial resolution
(compared to PMW observations) and is a high-quality SCA product.

This paper is organized as follows. Section 2 describes the data used and the PMW SCA algorithms.
Section 3 presents the evaluation results and the effects of land cover, snow cover fraction (SCF),
and snow depth on SCA mapping accuracy. Section 4 is dedicated to the discussion of the tested
algorithms. Finally, a conclusion has been presented in Section 5 for the whole work of this paper.

2. Data and Methodology

In this study, FY3C-MWRI data were used for snow cover mapping. In situ snow depth
observations together with the IMS snow cover product were used to evaluate different PMW SCA
mapping algorithms. The data and algorithms are described in detail in the following subsections.

2.1. FY-3C/MWRI Data

The FY-3C satellite is one of the second generation polar-orbit meteorological satellite series
of China. The FY-3C satellite was launched on 23 September 2013 with the goal of observing
global atmospheric and geophysical features around the clock. The Microwave Radiation Imager
(MWRI) is one of the 13 remote-sensing instruments onboard the FY-3C satellite. MWRI is a
ten-channel, five-frequency, PMW radiometer system. It measures horizontally and vertically polarized
brightness temperatures ranging from 10.65 GHz to 89 GHz. The local time on the descending
node (LTDN) is near 10:00 a.m. Spatial resolution of the individual measurements varies from
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7.5 km × 12 km at 89 GHz to 51 km × 85 km at 10.65 GHz. The FY3C-MWRI L1 swath data are
available from the China Meteorological Administration/National Satellite Meteorological Center
website (http://www.nsmc.org.cn/).

2.2. In Situ Measurements

Daily meteorological data are provided by the National Meteorological Information Center,
China Meteorological Administration. Daily SD observations from 753 stations (Figure 1) were used
to evaluate the PMW snow cover detection algorithms during the snow season. Recorded variables of
weather stations include site name, observation time, site location (latitude and longitude in degrees),
geodetic elevation (m), surface temperature and snow depth (cm). The records were selected only if
the surface temperature was less than 0 ◦C to avoid the impact of wet snow.

Figure 1. Chinese meteorological stations used in this work.

2.3. IMS Data

The IMS snow cover product of the National Ice Center combines multiple data sources to map
daily cloud-free snow extent of the Northern Hemisphere at three different resolutions: 1 km, 4 km
and 24 km. The 1-km IMS data became available during December of 2014. In this study, 1-km IMS
data were used as the validation dataset. The data were obtained from the National Snow and Ice Data
Center (http://nsidc.org/).

2.4. PMW Snow Cover Mapping Algorithms

Dry snow is a type of strong scattering material. Snow cover produces a positive brightness
temperature gradient between low- and high-frequency channels [13]. Although this characteristic
of scattering materials identifies snow, it identifies other scattering materials such as precipitation,
deserts, and frozen ground [10] because these non-snow types may produce a spectral response in
the microwave similar to that of snow. To objectively detect snow cover, various filters are used to
separate scattering signals of snow cover from other scattering and non-scattering surfaces [35].

Seven PMW SCA mapping algorithms were selected for evaluation in this paper. Classification
criteria of these algorithms are shown in Table 1. The frequencies listed in Table 1 are subject to
FY-3C/MWRI. Grody’s algorithm and the South China algorithm identify snow and the non-snow
types (precipitation, cold deserts and frozen soil) simultaneously. The FY3 algorithm and Kelly’s
algorithm not only identify snow-covered areas but also divide snow into detailed categories. The last
three algorithms are simply designed to detect snow.

http://www.nsmc.org.cn/
http://nsidc.org/
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Table 1. Classification criteria of passive microwave (PMW) snow cover area (SCA) mapping algorithms.

Methods Classification Criteria Remark

Grody‘s algorithm

Scattering materials: Tb23V − Tb89V > 0 or Tb19V − Tb37V > 0

Snow: Non-snow

Do not meet the criteria of non-snow

Precipitation
(Tb23V ≥ 258)

or (Tb23V ≥ 165 + 0.49 * Tb89V)
or (254 ≤ Tb23V ≤ 258.0 & (Tb23V − Tb89V ≤ 2 or Tb19V − Tb37V ≤ 2))

Cold Desert: (Tb19V − Tb19H ≥ 18) & (Tb19V − Tb37V ≤ 10) & (Tb37V − Tb89V ≤ 10)

Frozen ground (Tb19V − Tb19H ≥ 8) & (Tb23V − Tb89V) ≤ 6 & (Tb19V − Tb37V) ≤ 2

Glacier (Tb23V ≤ 229 & Tb19V − Tb19H ≥ 23)
or (Tb23V < 210)

South China
algorithm

Scattering materials: DTb23V − DTb89V > 5 or DTb19V − DTb37V > 5

DTb: descending orbit
ATb: ascending orbit

ASCT = ATb23.8V − ATb89V
− (ATb18.7V − ATb37.5V)

F-: Forest-covered region or
dense vegetation coverd region

S-: Sparse-vegetation region

Snow Non-snow

S-region
snow:

(DTb23V − DTb89V≥22)
or (DTb23V − DTb89V < 22 & DTb37.5V < 260

& DTb37V − DTb37H ≥ 6) & (DTb23V −
DTb89V ≥ 12 or (DTb23V − DTb89V < 12 &

ATb37V < 265 & ASCT ≥ 0))

Precipitation:

(DTb23V ≥ 265)
or (DTb23V ≥ 169 + 0.5 * DTb89V)

or ((DTb23V − DTb89V ≤ 6 or DTb18V − DTb37V ≤ 6) or
(261 ≤ DTb23V ≤ 265))

Cold Desert: (DTb18V − DTb18H ≥ 18) & (DTb18V − DTb37V ≥ 14) &
(DTb23V − DTb89V ≤ 10)

F-region
snow

(DTb23V − DTb89V < 22 & DTb37V < 260 and
DTb37V − DTb37H < 6) & (ATb23V − ATb89V
≥ 3 or (ATb23V − ATb89V < 10 & ATb89V <

264 & ATb23V − ATb89V < 3))

Frozen/Thaw soil

F/S-Region: DTb23V − DTb89V < 22 & DTb37V ≥ 260

S-Region: (DTb23V − DTb89V < 22) & (DTb37V < 260) and (DTb37V − DTb37H ≥ 6) &
(ATb37V ≥ 265 or (ATb37V < 265 & ASCT < 0))

F-Region:
(DTb23V − DTb89V < 22) & (DTb37V < 260) & (DTb37V − DTb37H < 6) &

(ATb23V − ATb89V < 3) & ((ATb89V − DTb89V ≥ 10) or (ATb89V − DTb89V
< 10 & ATb89V ≥ 264))

Kelly‘s algorithm

Scattering materials: Tb18V−Tb37V > 0
KLVN = 58.08 − 0.39 × Tb19V

+ 1.21 × Tb23V-0.37 × Tb37H +
0.36 × Tb89V

Snow: Tb37H < 245 & Tb37V < 255

Moderate to deep snow Tb10V − Tb37V > 0 K or Tb10H − Tb37H > 0

Shallow snow (Tb89V < 255) & (Tb89H < 255) & (Tb23V − Tb89V > 0) & (Tb23H − Tb89H > 0) & (KLVN < 267)

FY3 SCA algorithm

Scattering materials: Tb23V − Tb89V ≥ 5 or Tb19V − Tb37V ≥ 5

Snow

Thick Dry snow Tb23V ≤ 260 & (Tb19V − Tb37V) ≥ 20 & ((Tb23V − Tb89V) − (Tb19V − Tb37V)) ≥ 8

Thick wet snow Tb23V ≤ 260 & (Tb19V − Tb37V) ≥ 20 & ((Tb23V − Tb89V) − (Tb19V − Tb37V)) < 8

Thin dry snow Tb23V ≤ 260 & (Tb19V − Tb37V) < 20 & ((Tb23V − Tb89V) − (Tb19V − Tb37V)) ≥ 8

Thin wet snow/forest-coverd
thin snow

Tb23V ≤ 260 & (Tb19V − Tb37V) < 20 & −5 < ((Tb23V − Tb89V) − (Tb19V − Tb37V)) < 8 & ((Tb19V − Tb19H) ≤ 6 or
(Tb19V − Tb37V) ≥ 10)

Thick wet snow Tb23V ≤ 260 & (Tb19V − Tb37V) < 20 & ((Tb23V − Tb89V) − (Tb19V − Tb37V)) ≤ −5

Hall‘s algorithm Snow: (Tb19V − Tb37H) × 1.59 > 8 & Tb37V < 250 & Tb37H < 240

Neal‘s algorithm Snow: Tb23V − Tb19V ≤ 4 & (Tb19V + Tb37V) − (Tb19H + Tb37H) > 8 & Tb19V − Tb37V > 6.5 & Tb19V − Tb19H ≥ 5 & Tb19V ≤ 257

Singh‘s algorithm Snow: Tb37V < 250 & Tb19V − Tb37V ≥ 9 & Tb37V − Tb37H ≥ 10 & 0.026 < (Tb37V − Tb37H)/(Tb37V + Tb37H) < 0.041
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3. Results and Analysis

To test and compare the performance of the seven algorithms, the SCAs derived from PMW SCA
mapping algorithms were quantitatively evaluated using in situ SD observations and the one-kilometer
IMS snow cover product. Only dry snow records of in situ observations were used for analysis because
the seven tested algorithms are mostly for dry snow discrimination. The one-kilometer IMS data were
reprojected to the projection of the PMW SCA maps. Then, the snow cover fraction in each PMW pixel
was calculated. We set the threshold of a snow cover fraction value to 50% to determine whether pixels
have snow or do not. All pixels with SCF less than the threshold were labelled snow-free.

Four assessment indexes, overall accuracy (OA), omission error (OE), commission error (CE),
and positive predictive value (PPV), were used for the analysis. OA describes the percentage of the
correct classifications including inerrant snow-covered and snow-free identifications. PPV describes the
probability that a pixel identified with snow indeed has snow [31]. OE and CE are both related to false
classification. OE indicates PMW snow map misclassifications as snow-free instead of snow-covered
and CE as snow-covered instead of snow-free. Given the available data, the testing period using
in situ measurements was from October 2013 to December 2015, and that using IMS data was from
December 2014 to December 2015. Table 2 shows the normal metrics used to evaluate the PMW SCA
mapping algorithms.

Table 2. Classification error matrix.

Reference SCA: Snow Reference SCA: Snow Free

PMW SCA: snow true positive (TP) false negative (FN)
PMW SCA: snow free false positive (FP) true negative (TN)
Overall accuracy (OA): (TP + TN)/(TP + TN + FN + FP)
Omission error (OE): FP/(FP + TP)
Commission error (CE): FN/(FN + TP)
Positive predictive value (PPV): TP/(TP + FP)
Reference SCA: Ice mapping system (IMS) SCA data and in situ measurements

Tests were conducted for both ascending and descending data. The FY-3C/MWRI L1 swath data
were resampled to a global equidistant cylindrical projection at 0.25◦ resolution for snow mapping.
It should be noted that the South China algorithm identified snow using both ascending and descending
data, resulting in a blended product for testing. The performances of the different PMW SCA maps
for 7 January 2014 are shown in Figure 2. Snow extent determined using the seven methods clearly
indicates the geographical distribution of snow over the three main seasonal snow-covered regions
(Northwest, Northeast, and Tibetan Plateau). All methods achieved similar SCA estimations in the
Northwest and the Northeast except for Singh’s algorithm, which missed significant snow. Over the
Tibetan Plateau, the Kelly SCA algorithm tended to identify more snow. The FY3 algorithm and Singh
algorithm, in contrast, estimated less snow.

For each algorithm, OA, PPV, OE and CE were calculated for the testing periods. Table 3
summarizes the evaluation results. For each algorithm, 276,946 station records were used for evaluating
the ascending PMW SAC mapping results, and 275,774 station records were used for the descending
data. Compared to in situ SD observations, all methods achieved a high OA ranging from 0.895 to
0.950. Grody’s algorithm, the South China algorithm and Kelly’s algorithm have higher PPV values
(from 0.656 to 0.827) and lower OE values (from 0.173 to 0.344). Singh’s algorithm, Hall’s algorithm
and Neal’s algorithm, with higher OE (from 0.492 to 0.860) and lower PPV (from 0.140 to 0.508) values,
severely underestimated SCA during the testing periods. The descending orbit shows lower PPV and
CE but higher OE than that of the ascending orbit. Because the local times on the ascending node and
descending node are near 10:00 p.m. and 10:00 a.m., respectively, microwave brightness temperature
at a high frequency may be more affected by atmospheric conditions during the descending orbits
than during ascending orbits [33,36]. In addition, snow would melt during the day (descending orbit),
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and moist or wet snow is difficult to separate from land, which may lead to an increasing OE and
decreasing PPV. Soil tends to be frozen during cold nights (ascending orbit), and it is difficult to
separate frozen soil from dry snow, resulting in a higher CE. Evaluation results using IMS snow cover
data as a reference are similar to the case using station observations. Whereas compared to evaluation
results based on in situ observations, the results based on IMS snow cover product show higher
classification error. The possible reasons for this difference include (i) the differences in the resolution
of the evaluation datasets (i.e., point scale vs. image scale); (ii) the different snow types of the two
datasets: only dry snow records of in situ observations were used for analysis, but IMS maps show
both dry and wet snow; and (iii) errors in the IMS snow cover product. The performance of the IMS
snow cover product deteriorates when identifying snow-free areas [37]. IMS is likely to overestimate
snow cover in rugged terrain and tends to map more snow when the snow cover is patchy [31].

Figure 2. Comparison of PMW SCA maps for 7 January 2014: (a) FY SCA map, (b) Grody’s SCA map,
(c) Hall’s SCA map, (d) Kelly’s SCA map, (e) Neal’s SCA map, (f) Singh’s SCA map, (g) the South
China SCA map. (blended SCA image (g) using both ascending and descending data for the South
China algorithm and descending SCA images(a–f) for the remaining PMW SCA mapping algorithms).

Monthly OA, OE, CE and PPV present a clear seasonal pattern as shown in Figures 3 and 4.
The OA of all algorithms is mostly high throughout the testing periods, and it improves to nearly
1.0 during the summer months when most regions are snow-free. Snow cover is small and patchy
during the shoulder seasons (i.e., autumn, spring, and summer) leading to deteriorating capability of
all PMW SCA mapping algorithms to detect snow. The OE and CE for all methods increase during the
shoulder seasons when snow is accumulating or melting. During winter, the OE and CE of the seven
algorithms mostly decrease to less than 0.5, and the PPV exceeds 0.5. Overall, the performance of the
seven algorithms is comparable except for that of Singh’s algorithm, which exhibits larger errors than
the others.



Remote Sens. 2018, 10, 524 7 of 22

Table 3. OA, OE, CE and PPV of the PMW SCA mapping algorithms.

SCA Reference

In Situ Measurements IMS SCA (SCF > 50%)

Algorithm OA OE CE PPV OA OE CE PPV Node

FY3 SCA
Algorithm

0.950 0.384 0.210 0.616 0.902 0.289 0.102 0.711 A 1

0.950 0.399 0.201 0.601 0.894 0.319 0.105 0.681 D 1

Grody’s
Algorithm

0.921 0.268 0.453 0.732 0.853 0.155 0.319 0.845 A 1

0.945 0.329 0.291 0.671 0.899 0.207 0.179 0.793 D 1

South China
Algorithm 0.919 0.173 0.498 0.827 0.958 0.164 0.420 0.836 A 1 and D 1

Neal’s Algorithm 0.926 0.606 0.348 0.394 0.782 0.487 0.395 0.513 A 1

0.934 0.645 0.187 0.355 0.820 0.531 0.239 0.469 D 1

Singh’s
Algorithm

0.920 0.855 0.178 0.145 0.745 0.831 0.431 0.169 A 1

0.921 0.860 0.040 0.140 0.764 0.860 0.160 0.140 D 1

Hall’s Algorithm 0.931 0.492 0.347 0.508 0.848 0.305 0.276 0.695 A 1

0.941 0.534 0.197 0.466 0.874 0.382 0.128 0.618 D 1

Kelly’s
Algorithm

0.895 0.280 0.549 0.720 0.713 0.299 0.526 0.701 A 1

0.931 0.344 0.387 0.656 0.754 0.347 0.469 0.653 D 1

1 A = ascending data, D = descending data.

Figure 3. Monthly OA (a), PPV (b), OE (c) and CE (d) of the seven PMW SCA maps based on in situ
SD observations.
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Figure 4. Monthly OA (a), PPV (b), OE (c) and CE (d) of the seven PMW SCA maps based on the IMS
snow cover product.

3.1. Effect of Land-Cover Types on Snow Cover Mapping Accuracy

The seven SCA identification algorithms presented in this study are all based on the decision
tree approach with fixed threshold filters. The thresholds remain constant within different land-cover
types. Because microwave radiation characteristics are related to land-cover types [13], the constant
thresholds may introduce errors into classification. Therefore, it is necessary to identify the effects
of land cover on PMW SCA mapping accuracy. Cropland, forest, grassland, and barren are the
main land-cover types of seasonal-snow-dominated regions in China [38]. Their influences on snow
mapping accuracy were analyzed using the land-cover map and in situ observational data.

The land-cover map (Figure 5) used in this study is a resampled product from the Globeland30
land-cover map. The Globeland30 land-cover map was projected and resampled to the same projection
as that of the PMW SCA maps using the majority method. The majority algorithm assigns the most
popular values within the filter window as the label of a pixel. This provides a more interpretable
sense of the majority of land-cover types within each filter window. Pixels with a major land-cover
fraction less than 70% have been removed from analysis because they are dominated by more than one
land-cover type.

Figure 6 shows the OA, CE, PPV and OE of seven PMW SCA maps against station observations
over barren, grassland, cropland and forests. As seen in Figure 6, the OA of all algorithms is not
sensitive to land-cover type. Except for the South China algorithm, the CE of all algorithms over barren
land and grasslands is higher than over the other land-cover types. The misclassification over barren
land and grasslands may be a result of the difficulty in separating snow from frozen ground. Snow and
frozen ground are scattering materials and have similar microwave radiation characteristics, making
them difficult to distinguish. For the South China algorithm, severe omission error occurred over
barren land versus other types of land cover. The OE in the FY algorithm and Grody’s algorithm is not
sensitive to land-cover type. For Hall’s algorithm, Neal’s algorithm, Singh’s algorithm and Kelly’s
algorithm, the OE is slightly higher over forested areas than over other land-cover types.
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Figure 5. Globeland30 land-cover map.

Figure 6. OA (a), PPV (b), OE (c) and CE (d) of the seven PMW SCA maps compared to station
observations in different land-cover types.

3.2. Effect of SCF on Snow-Cover Mapping Accuracy

PMW SCA detection methods provide a binary snow classification that is sensitive to SCF [7,32].
Pixels with low SCF would be hard to detect using binary methods as the lack of snow signals
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can be captured by satellite sensors. The SCF values at 0.25◦ resolution were calculated using the
one-kilometer IMS snow-cover product. Because only the snow-covered pixels (SCF > 0) were part
of the analysis, the indexes OE and PPV were used for assessment. Figure 7 shows the statistics
of OE and PPV associated with SCF. An increase in SCF from 0 to 100% results in a linear decline
in underestimation of snow cover. In contrast to OE, values of PPV increase with increased SCF.
Generally, the binary SCA product derived from optical remote sensing intends to indicate snow
when the pixel’s snow cover exceeds 50% [7,32]. The PMW binary SCA does have apparent omission
errors of less than 50% snow cover as shown in Figure 7. Though the IMS product has the problem of
overestimating snow cover [31], it is still reasonable to believe that PMW binary SCA algorithms are
sensitive to SCF, and their capability to estimate snow cover improves with higher SCF.

Figure 7. OE (a) and PPV (b) of the PMW SCA mapping algorithms associated with different SCFs.

3.3. Effect of SD on Snow Cover Mapping Accuracy

Previous studies have shown the relationship between SD and the accuracy of SCA products: the
accuracy of SCA decreases with decreasing SD [39,40]. In this study, we found a similar relationship
between SD and PMW SCA. In addition, we found different effects of SD on the seven PMW SCA
mapping methods.

Figure 8 presents the PPV and OE of the snow-cover maps for different SD ranges. Observed
SD data were divided into six categories: SD < 5 cm, SD = 5–15 cm, SD = 15–25 cm, SD = 25–35 cm,
SD = 35–45 cm and SD > 45 cm. The omission errors of the seven PMW SC maps show similar
responses to SD ranges. The OE for all algorithms was highest when SD is less than five centimeters
and tended to decline as SD exceeded five centimeters. This can be explained by the positive relation
between SD (or SWE) and snow-cover fractions [41,42]. When snow surrounding the station is shallow,
snowfall events are more likely to occur within a small area of the sensor’s field of view. Under this
situation, pixels tend to be classified as snow-free generating increased OE. In contrast, when SD
observed by station is quite high, pixels tend to be entirely covered by snow resulting in a decreased
possibility of underestimation. PPV for all algorithms was lowest when SD is less than five centimeters.
PPV values were nearly greater than 0.7 for the FY3 algorithm, Grody’s algorithm, the South China
algorithm and Kelly’s algorithm when SD is greater than five centimeters. Variations in PPV of
Grody’s algorithm and Kelly’s algorithm were less affected by SD than that of the other algorithms.
These results indicate that Grody’s algorithm and Kelly’s algorithm are less sensitive to SD than the
other algorithms.
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Figure 8. OE (a) and PPV (b) of the seven PMW SCA maps compared to ground observations at
different snow depths.

4. Discussion

In this study, the performances of seven PMW SCA mapping methods in China were evaluated
using in situ snow depth measurements and the one-kilometer IMS snow-cover product. The purpose
of the study was to evaluate the differences among the PMW SCA mapping algorithms and to identify
the influencing factors on the algorithms. Previous studies have demonstrated several difficulties in
evaluating satellite-derived snow cover [30–32,39]. The use of point data and high-resolution SCA
products for evaluation are both problematic [43]. Which data source is better for validation needs
further study. However, to date, they are still the most reliable and useful validation datasets for
evaluating satellite-derived SCA products [8,11,29,32].

All tested methods are based on the decision tree approach. The different SCA estimations
are attributed to various classification criteria. Criteria for identifying various types of snow
may lead to different positive predictive values and commission errors. Criteria for non-snow
type identification such as precipitation and cold desert may introduce omission errors into snow
identification. To determine whether these criteria can separate snow from other features accurately,
the performances of the criteria in each algorithm as listed in Table 1 were tested using in situ data as
described in Section 4.1. In addition, a classification structure of a decision tree was made of various
nodes [44]. For PMW SCA detection, the nodes of the decision tree were mostly constructed by a
selected multi-band combination of Tb or single-band Tb (hereafter termed Tb index) and the given
thresholds. Proper Tb indexes and thresholds would exactly and accurately separate snow cover from
other features. The performances and effects of Tb indexes and thresholds used in the seven PMW
SCA mapping algorithms were analyzed and are described in Sections 4.2–4.4.

It should be noted that this study tended to evaluate the capability of each tested algorithm on
snow identification, rather than on other feature classification. Thus, we only tested and assessed the
performance of each criterion on snow identification. The classification accuracy of non-snow features
such as precipitation, frozen ground, etc. are not discussed in this paper.

4.1. Criteria of PMW SCA Algorithms

Criteria of the testing PMW SCA algorithms for assessment are listed in Table 1. Evaluation
results are shown in Figure 9. For the FY3 algorithm, the criterion for thin dry snow had a much higher
PPV and slightly higher CE than that of the other four criteria. Therefore, the thin dry snow criterion
could be regarded as a more effective criterion than the other four criteria for snow identification in
China. The criteria of Grody’s algorithm for snow identification and Kelly’s algorithm for deep snow
identification had higher PPV values (>0.65) but introduced large commission errors. For Grody’s
algorithm, the OE caused by the non-snow identification criteria was very small (<0.023) except
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for the precipitation filter, which is the major OE source. Both the PPV and CE of the shallow
snow criterion of Kelly’s algorithm were near zero. These results indicated that the shallow snow
criterion was essentially useless for snow detection in China. The South China algorithm designed
two sets of criteria for identifying snow in forest- or dense-vegetation-covered regions (F-region)
and sparse-vegetation regions (S-region), respectively. Testing results showed that the F-region snow
criteria, with a higher PPV (>0.67) and lower CE (<0.18), performed much better than the S-region
snow criteria. The commission errors of the South China algorithm were mainly attributed to the
S-region snow criterion. The omission errors caused by each non-snow criterion were small (<0.14).
The frozen ground filters were the major OE source of the South China algorithm, and this could be an
important reason why severe omission errors occurred over barren rather than other types of land
cover. Singh’s algorithm, Hall’s algorithm and Neal’s algorithm have shown apparent underestimation
issues as shown in Figure 9, especially for Singh’s algorithm. The OE of Singh’s algorithm reached
0.86, the highest of the seven algorithms. Otherwise, the differences in error characteristics between
ascending and descending data are identical to the conclusion described in Section 3.

Figure 9. Cont.
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Figure 9. The evaluation results of classification criteria for each algorithm: PPV (a), CE (b), OE (c).

4.2. Tb Indexes of PMW SCA Algorithms

The ideal Tb index should exactly separate snow cover from snow-free land. This means the Tb
index values for snow and non-snow should be completely different. The decision tree would have
better classification if its Tb indexes had significantly different values for snow and non-snow.

The Tb indexes used in the seven tested algorithms can be divided into five classes: single-band
Tb, Tb gradient, polarization difference, polarization ratio and day–night Tb difference indexes.
The five classes of Tb indexes and their values for snow and non-snow are shown in Figure 10. Snow,
as a typical cold scattering material, has lower Tb values than the absorbing material (moist soil,
vegetation, etc.). The Tb of snow decreases with increasing frequency. Thus, single-band Tb
indexes and Tb gradient indexes are mainly used to identify snow from other absorbing or warm
materials [16,35]. As expected, values of the single-band Tb indexes for snow and non-snow
are largely different (Figure 10). These results demonstrate the availability of the single-band Tb
indexes for snow discrimination. Most of the Tb gradient indexes have similar snow discrimination
ability, except for (Tb23V − 0.49 × Tb89V). The index (Tb23V − 0.49 × Tb89V) has been used for
filtering precipitation [16,17]. In this study, precipitation is considered non-snow. The range
of (Tb23V − 0.49 × Tb89V) for snow entirely contains non-snow. This means snow would be
barely separable from any other features (including precipitation) using this index. The failure of
(Tb23V − 0.49 × Tb89V) in this study may have been caused by the insufficient training and analysis
data for a global algorithm development [16,35]. Previous studies have proven that the polarization
difference at 19 GHz for cold desert was greater than that of snow [16,18,35]. In this study, there is no
observation station in desert. The index (Tb19V–Tb19H) presents little effect on snow discrimination.
This is reasonable because the polarization difference for various absorbing materials and scattering
materials could be the same, although their scattering characteristics are different [16,45]. The capability
of the polarization difference index at 19 GHz should be investigated based on reliable data in further
studies. The day–night Tb difference index, the polarization difference and the polarization ratio index
at 37 GHz compromised with the Tb gradient indexes can be used to filter wet snow [17,18,45,46].
Only dry snow station records have been used in this study. Therefore, we just tested their effect on
dry snow detection. As seen in Figure 10, the three types of indexes previously mentioned do not
divide snow from non-snow effectively because the index values for snow and non-snow are very
similar. Further research needs to be completed to understand their effects on wet snow detection.



Remote Sens. 2018, 10, 524 14 of 22

Figure 10. Box plots of the single-band indexes (a1,a2), the Tb gradient indexes (b1,b2), the polarization
difference indexes (c1,c2), the polarization ratio indexes(d1,d2) and the day–night Tb difference
indexes (e).
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4.3. Thresholds of PMW SCA Algorithms

Thresholds are the other important factor in decision trees. Figure 11 summarizes the Tb indexes
and thresholds used in the seven PMW SCA algorithms. Thresholds defined the upper bounds and
lower bounds of the Tb index values for classification. The upper bounds for snow identification
were mostly near the upper quartile of the snow box plots and lower quartile of the non-snow box
plots. In contrast, the lower bounds for snow identification were mostly near the lower quartile of
the snow box plots and the upper quartile of the non-snow box plots. These results mean nearly
75% of the snow could be detected and nearly 25% of the non-snow would be misclassified as snow.
Similarly, the upper (lower) bounds for non-snow identification were mostly near the upper (lower)
quartile of the non-snow box plots and the lower (upper) quartile of the snow box plots. These results
mean nearly 75% of the non-snow could be successfully filtered and nearly 25% of the snow would be
misclassified as non-snow.

4.4. Effects of Tb Indexes and Thresholds on PMW SCA Algorithms

The criteria for snow identification are essentially a compromising set of various filtering
conditions [16]. The classification results are the compromising product of multiple conditions.
The SCA mapping accuracy is attributed to all of the Tb indexes and thresholds used in the algorithm.
The assessment results are described in Section 3 and can be explained based on the analysis of Tb
indexes and thresholds.

Grody’s algorithm, the South China algorithm and Kelly’s algorithm have a higher PPV and
a lower OE than the other algorithms. As seen in Figures 10 and 11, it was found that most of
the Tb indexes used in the Grody’s algorithm, the South China algorithm and Kelly’s algorithm
have significantly different values for snow and non-snow. The proper Tb indexes provide a higher
possibility for snow discrimination. In contrast, the relatively poorer discrimination ability of the
Tb indexes for snow discrimination lead to misclassification, such as index (Tb23V − 0.49 × Tb89V).
The performances of (Tb23V − 0.49 × Tb89V) used in Grody’s algorithm and the South China algorithm
are unsatisfactory in this study. The index (Tb23V − 0.49 × Tb89V) should be an error source for the
two algorithms. The thresholds are the other important error source of the algorithms. For example,
most of the thresholds used in Kelly’s algorithm tended to identify more snow, resulting in higher
PPV and CE. Similarly, the thresholds of Tb89V and (Tb23V − Tb89V − Tb19V + Tb37V) used in the
South China algorithm were likely to overestimate SCA, leading to a higher PPV and CE. Compared to
Grody’s algorithm, the South China algorithm and Kelly’s algorithm, the compromising set of criteria
used in the FY3 algorithm is conservative for snow discrimination. It balances the problem between
snow identification and overestimation. Though the conservative criteria for snow identification
increases the OE, the FY3 algorithm still balances misclassification errors and snow identification well.
As a result, the overall accuracy of the FY3 algorithm was the highest of all the tested algorithms.

The misclassification problem is severe for Neal’s algorithm, Singh’s algorithm and Hall’s
algorithm. The three algorithms do not have typical criteria for identifying snow from other
scattering materials, and they build conservative condition criteria for snow detection. The lack
of filters and the strict criteria for snow are important error sources. In addition, there are some
other triggers for misclassification. For Neal’s algorithm, its Tb indexes have a poor ability
for snow discrimination (as seen in Figure 11). The threshold for the polarization ratio index
(Tb37V − Tb37H)/(Tb37V + Tb37H) used in Singh’s algorithm seems too high and tends to misclassify
snow as non-snow, leading to a high OE.
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Figure 11. Cont.
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Figure 11. Box plots of Tb index values and thresholds of the seven PMW SCA mapping algorithms:
Grody’s algorithm (a1,a2), Kelly’s SCA algorithm (b1,b2), the South China algorithm (c1–c3), FY SCA
algorithm (d1,d2), Neal’s algorithm (e1,e2), Singh’s algorithm (f1,f2), Hall’s algorithm (g1,g2). (The up
and down arrows indicate the lower bounds and upper bounds of the thresholds, respectively. Arrows
in red and in blue indicate thresholds for snow identification and non-snow identification, respectively.)

It was found that the thresholds and Tb indexes were identical for both ascending data and
descending data as shown in Figures 10 and 11. Though the difference between ascending data and
descending data for most Tb indexes was small, the identical thresholds used in the algorithms still
possibly generate false classification. Thus, the identical thresholds for ascending data and descending
data may be a reason why ascending data and descending data resulted in a different performance.

As shown in Table 4, data for algorithm training and for the presented assessment work are
from various satellite datasets, ground observation datasets and auxiliary datasets spanning different
regions and years. A rich data source for algorithm development as for Grody’s algorithm can
improve the stability of the algorithm. The South China algorithm and the FY3 algorithm were trained
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using Chinese local ground data. As a result, they were more likely to identify the land surface
characteristics as compared to the remaining algorithms over China. This should be a reason for their
good performance in the assessment.

The satellite data for developing the seven tested algorithms include AMSR-E data and SSM/I
data. The Tb data used for evaluating the algorithms are from FY-3C/MWRI. The frequencies for
MWRI are in accord with AMSR-E, and similar to SSM/I. MWRI, SSMI and AMSR-E have similar
configurations. The difference between MWRI, SSMI and AMSR-E observations approximates to
0–2 K [47,48]. The impact of inter-sensor calibration issue is around −0.064–0.056 for OE and CE
calculation, which has rarely affected the assessment results and conclusions shown in this paper.
If the difference between various satellite measurements is obvious, an assessment of the impact of
inter-sensor calibration issues should be carefully considered.

Table 4. Training dataset information for the tested algorithms.

Methods
Information of the Training Datasets

Spatial Coverage Temporal
Coverage

Satellite
Data Ground Truth Data and Auxiliary Data

Grody‘s
algorithm

Various regions in the world
including the USA, Canada,
Africa, Australia, etc.

Various days in
1987 and 1993 SSM/I Surface survey reports including

precipitation, snow cover, etc.

South China
algorithm

North China Plain, the South
China and the southern part
of Inner Mongolia

1 Jaunary 2008–20
February 2008 AMSR-E Chinese Meteorological observations,

one-kilometer Chinese land-use map

Kelly‘s
algorithm Northern hemisphere 2007–2008 winter

seasons AMSR-E

Snow climatology dataset
Land, ocean, coasts and ice product,
MODIS land cover product
Forest characterization map

FY3 algorithm
North-east Inner Mongolia
Autonomous Region and
Taklamakan Desert

October
1998–March 2003
winter seasons

SSM/I Chinese Meteorological observations,
NOAA/AVHRR snow cover map

Neal‘s
algorithm USA Several days

during 1987–1988 SSM/I
Major Land Resource Region classification
of the Soil Conservation Service; NOAA
cooperative network of stations

Singh‘s
algorithm Red River basin in USA 1988,1989 and 1997

winter seasons SSM/I Airborne gamma radiation survey dataset
of NWS-USA

Hall‘s
algorithm A modified version of Chang snow depth algorithm (SD = 1.59 × (Tb19H − Tb37H)) for dry snow identification

5. Conclusions

PMW SCA products are an important data source for snow cover monitoring. However, to date,
uncertainty analysis for current PMW SCA mapping methods is rarely reported, especially in China.
To investigate the performances of existing PMW SCA mapping algorithms in China, a thorough
quantitative assessment of seven PMW SCA mapping algorithms in China was conducted in this study.
Taking in situ SD observations and IMS snow cover as “ground truth” references, we compared the
results of the PMW SCA maps derived from the seven algorithms.

Evaluation results for the PMW SCA maps showed the OA to be generally greater than 0.713
and 0.895 with respect to IMS and in situ observations, respectively. Grody’s algorithm, the South
China algorithm and Kelly’s algorithm had higher positive predictive values and lower omission errors
than the remaining studied algorithms. Their major error sources were the commission errors, which
means they tended to estimate more snow. The FY3 algorithm estimated snow conservatively to reduce
these commission issues. The overall accuracy of the FY3 algorithm was the highest of all the tested
algorithms. Because of their conservative criteria for snow detection and the lack of filters for eliminating
non-snow scattering materials, Singh’s algorithm, Hall’s algorithm and Neal’s algorithm had greater
misclassification errors. The descending orbit exhibited a larger PPV, OA, and CE but a smaller OE for
all of the algorithms. The difference in SCA accuracy between the descending and ascending orbits may
be driven by the different atmospheric conditions and daily freeze/thaw cycles. The OA, OE and CE of
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each algorithm showed a clear seasonal pattern, decreasing at the onset of winter and increasing as the
shoulder seasons progressed, while the PPV had the opposite seasonal trend.

The effects of land-cover type, SCF and SD were also analyzed in this study. The results indicated
that serious underestimation of snow occurred over barren land and grasslands using the tested
algorithms. All algorithms are sensitive to SCF and SD. However, Grody’s algorithm and Kelly’s
algorithm are less sensitive to SD than the other algorithms. The capability of the PMW SCA mapping
methods improved as SCF increased as well as when the SD exceeded five centimeters.

In addition, we analyzed each criterion used in the seven PMW SCA mapping algorithms.
The characteristics of the Tb indexes and thresholds used in the tested PMW SCA algorithms were
dissected. We found that some criteria used in the algorithms did not work effectively as designed.
The failure criteria had a slight contribution to snow identification or introduced large classification
errors. Revising the failure Tb indexes and thresholds would be a means to improve the algorithms.
For example, the omission error is the main error course of FY algorithm. Extending the snow criteria
of FY algorithm is the proposed method to reduce its omission error. For Kelly’s algorithm, Grody’s
algorithm and the South China algorithm, their main error source is the commission error. It means
these three algorithms tend to overestimate snow. Tightening their criteria for snow may reduce
their omission error and improve their accuracy. Our analysis can be useful in understanding the
uncertainties and the weaknesses of different PMW SCA mapping algorithms. The results shown in
this study can be useful in developing new methods and can be taken as a reference when using PMW
SCA products in different applications.
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Abbreviations

PMW Passive microwave
SCA Snow cover area
SCF Snow cover fraction
SD Snow depth
SWE Snow water equivalent
Tb Brightness temperature
DTb Brightness temperature of descending orbit
ATb Brightness temperature of ascending orbit

10 H, 18 H, 23 H, 37 H, 89 H
Brightness temperatures at the frequencies of 10.65 GHz, 18.7 GHz, 23.8 GHz,
36.5 GHz and 89.0 GHz for horizontal polarization

10 V, 18 V, 23 V, 37 V, 89 V
Brightness temperatures at the frequencies of 10.65 GHz, 18.7 GHz, 23.8 GHz,
36.5 GHz and 89.0 GHz for vertical polarization

ASCT = ATb23.8V − ATb89V − (ATb18.7V − ATb37.5V)
KLVN = 58.08 − 0.39 × Tb19V + 1.21 × Tb23V − 0.37 × Tb37H + 0.36 × Tb89V
F-region Forest-covered region or dense-vegetation-covered region
S-region Sparse-vegetation-covered region
OA Overall accuracy
OE Omission error
CE Commission error
PPV Positive predictive value
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