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Abstract: The analysis of the spatial and temporal characteristics of urban built-up area is conducive
to the rational formulation of urban land use strategy, scientific planning and rational distribution
of modern urban development. Based on the remote sensing data in four separate years (1999,
2004, 2010 and 2014), this research identified and inspected the urban built-up area boundary
based on the temperature retrieval method. Combined with the second land investigation data and
Google map data in Jingzhou, this paper used the qualitative and quantitative analysis methods
to analyze the spatial-temporal characteristics of Jingzhou urban built-up area expansion over the
past 15 years. The analysis shows that the entire spatial form of the urban built-up area has been
evolving towards a compact and orderly state. On this basis, the urban area-population elasticity
coefficient and algometric growth model were used to determine the reasonability of the urban
sprawl. The results show that the expansion of built-up area in Jingzhou is not keeping up with the
speed of population growth.
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1. Introduction

Urban development is an organic process, and analyzing the urban built-up area expansion
characteristics is advantageous when determining the urban land use trend and intensive land
use degree. This will further benefit the reasonable formulation of urban land use strategies,
scientific planning of urban development and urban land layout. Extensive studies have been
conducted on urban built-up area expansion over the past several decades. GIS and remote sensing
technology have been used for dynamic simulation and monitoring of urban expansion, and several
models of urban expansion have been proposed [1–10]. The concentric zone model and fan-shaped
form of urban expansion were proposed by Burgess and Hoyt [8,9]. Since the 1960s, remote sensing
technology has been increasingly applied to the dynamic monitoring of urban land use. Jensen et al. [1]
and Marquez et al. [2] performed an empirical monitoring of residential lands at the urban margins.
They divided the expansion of urban construction land into three forms: marginal, compact and
multi-point. In 1989, Singh [3] summarized the major methods of remote sensing monitoring as
post-classification comparison, compositing of multi-phase images, image difference method/ratio
method, vegetation index method, principal components analysis and change vector analysis. In 2000,
Masek et al. [4] used the Landsat MSS and TM images of the years 1973, 1985, 1990 and 1996 to extract
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the urban expansion features of Washington D.C. and depict the dynamics of urban expansion. In 2003,
Zha et al. [5] presented a new method based on the Normalized Difference Built-up Index (NDBI),
and this method has been successfully applied to automatically extract the urban land in Wuxi City,
Eastern China, by manipulating the spectral bands of TM imagery. Data of MODIS and DMSP/OLS
nighttime lights were used to map urban areas and urban expansion in China in recent years [6–8].
In 2007, Braimoh et al. [11] explored the spatial factors of land use change and analyzed the urban
expansion of Lagos City on the west coast of the Gulf of Guinea. The Landsat TM data were used to
analyze the changes of urban land, and the spatial factors were discussed.

As the urban built-up area expands, the evaporation and heat loss of net radiation received
by the underlying surface of the urban built-up area are less than those of the suburban and rural
areas [12]. However, the heat stored in the heated underlying surface and the sensible heat flux are
greater than those of the suburban and rural areas [13]. The land surface temperature of the built-up
area is much higher than that of the suburban and rural areas due to the heat emissions from the
residences, traffics, industries and manual labor in the built-up area [14]. A clear boundary of land
surface temperature can usually be identified between the urban and rural areas [15]. The remote
sensing data in the thermal infrared band can be used to retrieve the land surface temperature [16].
On this basis, the threshold method can be used to extract the boundary between the urban built-up
area and the suburban and rural area. It was not until the 1980s that the algorithms for retrieving
the land surface temperature were developed [17,18]. Once the 1990s began, more intensive studies
were devoted to the algorithms for retrieval of land surface temperatures, as well as the discussions of
the ground emissivity and atmospheric transmittance as the important parameters for land surface
temperature retrieval [19–27]. There have been no less than 17 proposed split window algorithms so
far. Based on the methods used for parameter calculation, these algorithms fall into four categories:
specific emissivity model, composite model, two-parameter model, thermal radiation model and
simple model. From 2001–2015, a mono-window algorithm for retrieving the land surface temperature
was described based on the Landsat 5 [19] and 8 [22] thermal infrared images, followed by a thorough
analysis of the precision and error of land surface retrieval. This algorithm developed by Qin et al.
in 2001 [19] only requires three essential parameters for LST retrieval from the one TIR band data of
Landsat TM/ETM+: ground emissivity, atmospheric transmittance and effective mean atmospheric
temperature. In addition, a series of studies was performed on the techniques for estimating the
ground emissivity, basic atmospheric parameters and mean atmospheric temperature [27–31].

In recent years, Jingzhou City’s social and economic development has been accelerating under
favorable urban development strategies. However, the fast urban growth, is not properly supervised.
As an important city amidst the strategy of middle-part development and in the Yangtze River
Economic Belt, Jingzhou City already exhibits a more profound development potential than many
other small- and medium-sized cities. The research on the urban layout and functional division
can shed new light onto the reasonable formulation of urban planning strategies. In addition,
other similar small-sized cities can learn from the valuable experiences of Jingzhou [32]. The study
of spatial-temporal characteristics and driving forces of urban expansion will be helpful for the
monitoring of the dynamic change of urban land utilization in the process of urbanization and carrying
out macro-control and management of land resources. Based on which boundary of the urban built-up
area was extracted, we used the TM/ETM+/OLI_TIRS images of four time phases (1999, 2004, 2010 and
2014) to retrieve the land surface temperature. To identify the temporal-spatial characteristics of the
urban built-up area expansion of Jingzhou City over the past 15 years, the qualitative and quantitative
methods were combined. Finally, the urban area-population elasticity coefficient and algometric
growth model were used to determine whether the urban sprawl is reasonable.
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2. Materials and Methods

2.1. Area under Study

Jingzhou City is located in the south-central part of Hubei Province; the middle reaches the
Yangtze River. The city lies adjacent to Wuhan in the east, Yichang in the west, Changde in the
south and Jingmen and Xiangyang in the north (Figure 1). Jingzhou City has an abundant amount of
precipitation as it has a subtropical monsoon climate. With a relative altitude ranges from 20 cm–50 cm,
the plain area accounts for the highest proportion. Due to the strategies of the middle-part and
Yangtze River Delta zone developments, as well as the improvement of the investment environment,
Jingzhou City has witnessed a rapid urban sprawl in recent years. All of these have made a dramatic
impact on the ecological environment and basic farmland in the suburban areas of Jingzhou City.
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Figure 1. Geographic location of Jingzhou City.

2.2. Data Source and Pretreatment

The images were of high quality and lacked a cloud layer, and they were qualified for land surface
temperature retrieval. The data sources of images are shown in Table 1.

Table 1. Date source.

Satellite Sensor Day Time Spectral Band Resolution

Landsat 5 TM image 8 April 2004 GMT 02:41:57 3, 4, 6 30, 30, 120
Landsat 5 TM image 30 July 2010 GMT 02:52:55 3, 4, 6 30, 30, 120
Landsat 7 ETM image 10 September 1999 GMT 02:55:22 3, 4, 6 (high gain) 30, 30, 60
Landsat 8 OLI_TIRS image 6 May 2014 GMT 03:02:07 4, 5, 10 30, 30, 100
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The pretreatment of the remote sensing images consisted of geometric correction and cloud
removing. For geometric correction, the remote sensing images are projected onto a horizontal plane to
conform to the map projection system. Geographic referencing is the process of assigning coordinates
to the map. Combined with Gauss–Kruger projection and second-order polynomial curve fitting,
the nearest neighbor algorithm was used for resampling under the GIS software on a 1:50,000-scale
map. To perform a precise geometric correction of the remote sensing images, the obtained ETM+,
TM and OLI_TIRS images were subjected to Gauss–Kruger/Krasovsky projection [33].

2.3. Method

The basic principle was to use the Landsat TM/ETM+/OLI_TIRS images to extract the boundaries
of urban built-up areas in different periods. Then, the temporal-spatial characteristics of urban built-up
area expansion of Jingzhou in the past 15 years were analyzed. The conceptual and theoretical
framework of the study is shown in Figure 2.
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Figure 2. The flowchart of the study with key techniques and working procedure.

2.4. Extraction of Urban Built-Up Area Boundary

2.4.1. Rationale of Land Surface Temperature Retrieval

The mono-window algorithm was used to retrieve the land surface temperature due to its high
precision. This algorithm proposed by Qin et al. [19] is based on heat conduction equation and requires
no atmospheric correction. The atmosphere can be divided into several parallel, but distinct layers on a
clear day without an obvious vertical atmospheric vortex. The real-time ground meteorological
data (e.g., air temperature and atmospheric water content) can be combined with the standard
atmospheric data, even in the absence of real-time atmospheric profiles. This algorithm has the
following equation [19,20]:

Ts = [a × (1 − C − D) + (b × (1 − C − D)) + C + D] × TTIB − D × Ta]/C (1)
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where Ts is land surface temperature (K); Ta is mean atmospheric temperature (K); a and b are constants
(see Table 2); C and D are intermediate variables, with C = ετ and D = (1− τ) ([1 + (1− ε) τ]; ε is ground
emissivity; τ is atmospheric transmittance; TTIB (TIB is the thermal infrared bans which include band 6
of TM, band 6H of ETM+ and band 10 of TIRS) is the brightness temperature of the pixels (K) detected
by the sensor at the satellite altitude, and it represents the changes of surface thermal radiation and
surface temperature. Band 6H of ETM+ is high gain state data with slightly high sensitivity to inverse
brightness temperature than the low gain state.

Table 2. Determination of coefficients a and b [19,20,22].

Data Type Temperature Range (◦C) a b

Landsat 5
0–70 −67.36 0.46
0–30 −60.33 0.43

20–50 −67.95 0.46

Landsat 7
0–70 −67.36 0.46

20–70 −70.18 0.46

Landsat 8
20–70 −70.18 0.46
0–50 −62.72 0.44
−20–30 −55.43 0.41

2.4.2. Calculation of Brightness Temperature

The pixel temperature can be directly obtained by Planck radiation [19,20,34] or the equation
below:

TTIB = K2/ln(1 + K1/L(λ)) (2)

where K1 and K2 are the band-specific thermal conversion constants for thermal infrared band.
For the Landsat 5 images (TM) and Landsat 7 images (ETM+), the spectral radiance computed

from the DN value has the following relation with its DN value [34]:

L(λ) = Grescale × QDN + Brescale (3)

In the formula, L(λ) is the spectral radiance (W·m−2·sr−1·µm−1) of the thermal infrared
band. QDN refers to the original DN value, 0 ≤ QDN ≤ 255. Grescale refers to the band-specific
rescaling gain factor (W·m−2·sr−1·µm−1/QDN). Brescale refers to the band-specific rescaling bias factor
(W·m−2·sr−1·µm−1).

For Landsat 8 images (TIRS), the spectral radiance computed from the DN value has the following
relation with its DN value [22]:

L(λ) = MLQDN + AL (4)

In the formula, ML (W·m−2·sr−1·µm−1/QDN) is the band-specific multiplicative rescaling
factor from the metadata (RADIANCE_MULT_BAND_x, where x is the band number),
and AL (W·m−2·sr−1·µm−1) is the band-specific additive rescaling factor from the metadata
(RADIANCE_ADD_BAND_x, where x is the band number). The constants for computing brightness
temperature are shown in Table 3.

Table 3. Constants for computing brightness temperature.

Images
Constants K1

(W·m−2·sr−1·µm−1) K2
Grescale

(W·m−2·sr−1·µm−1)
Brescale

(W·m−2·sr−1·µm−1)
ML

(W·m−2·sr−1·µm−1)
AL

(W·m−2·sr−1·µm−1)
Landsat5 TM (band 6) 607.76 1260.56 0.05632156 1.238 N/A N/A

Landsat7 ETM+ (band 6H) 666.09 1282.71 0.0371 3.2 N/A N/A
Landsat8 TIRS (band 10) 774.89 1321.8 N/A N/A 0.0003342 0.1
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2.4.3. Calculation of Atmospheric Transmittance

The Atmospheric Correction Parameter Calculator at http://atmcorr.gsfc.nasa.gov/ can be used to
calculate the atmospheric transmittance. Besides the year 2000, the values of atmospheric transmittance
after 2004 (2004, 2010 and 2014) were obtained as 0.89, 0.31 and 0.88, respectively.

According to Qin et al. [20], the values of atmospheric transmittance before 2000 can be calculated
from the atmospheric water content and air temperature. We used the 1999 remote sensing images
to perform atmosphere simulation (ENVI FLAASH). The results show that the average atmospheric
water content is 4.0492 g/cm−2, and the region of interest has a mid-latitude summer climate. Based on
Table 4, the atmospheric transmittance is 0.48.

Table 4. Estimation of atmospheric transmittance.

Atmospheric Profile
Atmospheric

Water Content (w)
(g/cm−2)

Atmospheric
Transmittance

Equation

Squared
Coefficient of

Correlation (R2)

Standard Error
of Estimate

(SEE)

Mid-latitude summer
climate

0.2–1.6 τ10 = 0.9184–0.0725 w 0.983 0.0043
1.6–4.4 τ10 = 1.0163–0.1330 w 0.999 0.0033
4.4–5.4 τ10 = 0.7029–0.0620 w 0.966 0.0081

2.4.4. Calculation of Mean Atmospheric Temperature

Using the air temperature data provided by the Jingzhou weather station, the surface air
temperatures T0 (2 m) at 10:55 a.m. on 10 September 1999, 10:41 a.m. on 8 April 2004, 10:52 a.m.
on 30 July 2010 and 11:02 a.m. on 6 May 2014 were estimated as 30.5 ◦C, 20.3 ◦C, 35.3 ◦C and 26.3 ◦C,
respectively. The annual mean atmospheric temperatures (Ta) in each year were then estimated as
297.254666 K, 287.807324 K, 301.700474 K and 293.36159 K, respectively, by using the mean atmospheric
temperature equation for the mid-latitude summer climate.

The mean atmospheric temperature equation for the mid-latitude summer climate is written
as [20]:

Ta = 16.0110 + 0.92621 × T0 (5)

2.4.5. Calculation of Ground Emissivity

For Landsat 5 Images and Landsat 7 Images

Combined with the algorithm proposed by Qin [20], the parameter values were assigned using
the equation proposed by Sobrino et al. [27]. Thus, for water bodies, εw = 0.995; for bare soil, εs = 0.972;
and for vegetation, εv = 0.986. Table 5 presents the ground emissivity equations for different land
cover types.

Table 5. Estimation of ground emissivity of Landsat 5 images and Landsat 7 images.

Ground Emissivity ε NDVI Land Cover Type

ε = εw = 0.995 NDVI ≤ NDVIW Water body
ε = εs = 0.972 NDVIW < NDVI ≤ NDVIS Bare soil

ε = 0.004PV + 0.986 NDVIS < NDVI < NDVIV Mixed Surface
ε = εv = 0.986 NDVI ≥ NDVIV Vegetation

The mixed surfaces are composed by bare soil and vegetation with different vegetation covers
and different values of soil and vegetation emissivities. Pv is vegetation cover, estimated by:

PV = [(NDVI − NDVIS)/(NDVIV − NDVIS)]2 (6)

http://atmcorr.gsfc.nasa.gov/
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NDVIW, NDVIV and NDVIS are the corresponding mean NDVI value of the water body,
vegetation and bare soil, which are extracted by supervised classification on the remote sensing
image processing platform. NDVI is the Normalized Difference Vegetation Index, and p3 and p4
represents the NDVI value of near-infrared band and red band respectively. NDVI is estimated by:

NDVI = (p4 − p3)/(p4 + p3) (7)

For Landsat 8 Images

Combined with the algorithm proposed by Wang et al. [22], the parameter values were assigned
using the equation proposed by Sobrino et al. [38]. Thus, for water bodies, εw = 0.991; for bare soil,
εs = 0.966. Table 6 presents the ground emissivity equations for different land cover types.

Table 6. Estimation of ground emissivity of Landsat 8 images [22,35–38].

Ground Emissivity ε NDVI Land Cover Type

ε = εs = 0.991 NDVI < NDVIW Water body
ε = εs = 0.966 NDVIW ≤ NDVI < NDVIW Bare soil

ε = 0.973PV + 0.966(1 − PV) + Cλ NDVIS ≤ NDVI ≤ NDVI V Mixed Surface
ε = 0.973PV + Cλ NDVI > NDVIV Vegetation

Subject to:
Cλ = (1 − 0.966) × 0.973 × F′(1 − PV) (8)

where C is a term due to surface roughness and F′ is a geometrical factor ranging between zero and one.
PV is estimated by:

PV = [(NDVI − NDVIS)/(NDVIV − NDVIS)]2 (9)

NDVIW, NDVIV and NDVIS are the corresponding mean NDVI value of the water body,
vegetation and bare soil, which are extracted by supervised classification on the remote sensing
image processing platform. The p4 and p5 represents the NDVI value of near-infrared band and red
band respectively. NDVI is estimated by:

NDVI = (p5 − p4)/(p4 + p5) (10)

3. Results

3.1. Results of Land Surface Temperature Retrieval

The land surface temperatures of Jingzhou City were retrieved in the thermal infrared
band for the years 1999, 2004, 2010 and 2014 by using the above of brightness temperature,
atmospheric transmittance and ground emissivity equations. Figure 3 shows the results.



Remote Sens. 2018, 10, 473 8 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 20 

 

heat to escape. Moreover, the rough surface and low vegetation cover in the urban built-up areas also 
cause an increase in temperature of the underlying surfaces, as compared with the farmland and 
water bodies. Suburban areas are generally covered by forestland, farmland and grassland, whose 
thermal capacity, thermal conductivity and thermal inertia are all smaller than those of the urban 
built-up areas. However, the soil water content and vegetation cover of the suburban areas are much 
higher than those of the urban built-up areas. This is the reason why the ground temperature of the 
suburban areas is much lower than that of the urban built-up areas. Water bodies have higher specific 
heat and thermal inertia, and therefore, the temperature increases more slowly and the surface 
temperature distributes more uniformly. During the daytime, water bodies have a lower temperature 
than the underlying surfaces of the urban built-up areas and suburban areas.  

 
Figure 3. (a) Image of land surface temperature in 1999; (b) image of land surface temperature in 2004; 
(c) image of land surface temperature in 2010; (d) image of land surface temperature in 2014. 

3.2. Urban Built-Up Area Boundary Extraction  

We drew four interpolated lines from high temperature areas to low temperature areas on the 
images of land surface temperature in the four years, respectively (Figure 4). The data of interpolated 
lines were then analyzed, and the temperature value of the lowest total frequency and maximum 
total frequency difference with the adjacent temperature value is extracted in each set of data. We 
found that these temperature values were concentrated within the two blue lines of the figure and 

Figure 3. (a) Image of land surface temperature in 1999; (b) image of land surface temperature in 2004;
(c) image of land surface temperature in 2010; (d) image of land surface temperature in 2014.

It can be seen from the above figures that in Jingzhou city, the vegetation (green regions and part
of the blue regions) follow the water bodies (blue regions and part of the green regions) as having
the lowest temperature. Farmland temperatures are higher than vegetation (yellow regions and part
of the green regions). Urban land surface temperature is much higher than the temperature of the
suburban areas (red regions), and this is the so-called urban heat island. Thus, the temperature varies
considerably for different types of underlying surfaces; the water bodies have the lowest temperatures,
followed by the underlying surfaces in the suburban areas (forest land, grassland and farmland);
the underlying surfaces of the urban built-up areas have the highest temperatures, including the
urban construction and industrial lands. Comparison of the air temperatures at the time of satellite
passing during the four years indicates that the underlying surfaces of the urban built-up areas
always have the highest temperature. Thus, the underlying surfaces of the urban built-up areas and
suburban areas will be higher than the air temperature during the daytime. The thermal properties
of the underlying surfaces, vegetation cover and soil humidity can be used to explain this difference.
Generally, the underlying surfaces of the urban built-up areas have a smaller reflectance than suburban
areas. This means the underlying surfaces of the urban built-up areas absorb a greater amount of
solar radiation. Impervious materials usually make up the road surface, which allows less heat to
escape. Moreover, the rough surface and low vegetation cover in the urban built-up areas also cause
an increase in temperature of the underlying surfaces, as compared with the farmland and water
bodies. Suburban areas are generally covered by forestland, farmland and grassland, whose thermal
capacity, thermal conductivity and thermal inertia are all smaller than those of the urban built-up
areas. However, the soil water content and vegetation cover of the suburban areas are much higher
than those of the urban built-up areas. This is the reason why the ground temperature of the suburban
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areas is much lower than that of the urban built-up areas. Water bodies have higher specific heat and
thermal inertia, and therefore, the temperature increases more slowly and the surface temperature
distributes more uniformly. During the daytime, water bodies have a lower temperature than the
underlying surfaces of the urban built-up areas and suburban areas.

3.2. Urban Built-Up Area Boundary Extraction

We drew four interpolated lines from high temperature areas to low temperature areas on the
images of land surface temperature in the four years, respectively (Figure 4). The data of interpolated
lines were then analyzed, and the temperature value of the lowest total frequency and maximum total
frequency difference with the adjacent temperature value is extracted in each set of data. We found that
these temperature values were concentrated within the two blue lines of the figure and only appeared
outside once. We can conclude that these are the temperature threshold’s range of the urban built-up
area boundary. After averaging these temperature values for each year, the temperature threshold of
four years can be obtained. The temperature thresholds for discriminating the urban built-up areas in
1999, 2004, 2010 and 2014 were set to be 27.3 ◦C, 23.2 ◦C, 24 ◦C and 26.8 ◦C, respectively. The regions
above the threshold values were extracted as the urban built-up areas. The boundaries extracted for
the four time phases are shown below.
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Figure 4. (a–d) are the profile graphs of interpolated lines in 1999; (e–h) are the profile graphs of
interpolated lines in 2004; (i–l) are the profile graphs of interpolated lines in 2010; (m–p) are the profile
graphs of interpolated lines in 2014. The blue lines are the temperature threshold’s range of the urban
built-up area boundary, and the red lines are temperature thresholds of the urban built-up boundary.

The extracted regions (red color) in the four maps basically coincide with the existing urban
built-up areas (Figure 5). From 1999–2014, the areas in red continue to expand, indicating a constant
increase of the urban built-up areas in the past 15 years. This is what we call the urban sprawl.
The lakes and greening areas in the urban built-up areas have a lower temperature and therefore are
not shown in red. Since the Jingzhou Industrial Park on Oriental Avenue is not yet connected to the
previously built-up area, it is removed from the map. Then, GIS software was used to process the
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small red patches, and image fusion was completed to obtain the built-up area boundaries during the
four years (Figure 6).
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4. Discussion

4.1. Overall Trend of Built-Up Area Expansion of Jingzhou

The built-up area boundaries were extracted from the pretreated remote sensing images of the
four time phases, along with the size of the built-up areas during each year. First, GIS was used for
superposition of the images, and the distribution of the built-up area expansion in the Jingzhou and
Shashi District of Jingzhou City was analyzed. Figure 7 shows the processed map, which indicates
a constant increase of the scale of the built-up areas in both the Jingzhou and Shashi District of
Jingzhou City from 1999–2014. The built-up area of 1999 is used as the center for both districts,
though the intensity of expansion varies in different directions, and the expansion is most intensive in
the axial direction.
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In 1999, the built-up area in Jingzhou City was 50.243 km2, and all of the area was distributed
between the Jingcheng District, Chongwen District community (CW C), Zhongshan Road community
(ZS C), Shengli Road community (SL L), Chaoyang road community (CY C), and Jingzhou Development
Zone. In 2004, the built-up area of Jingzhou had increased 11.035 km2 from 1999 to 61.278 km2. In the
Jingzhou District, the northward expansion towards the Xinsheng Village (XS V), Taihui Village (TH V)
and Jing’an Village (JA V) makes the greatest contribution. For the Shashi District, the built-up area
expansion is mainly contributed by the northward, east-northward and south-eastward expansion of
Jingzhou Development Zone. In 2010, the built-up area in Jingzhou had increased 5.264 km2 from 2004
to 66.542 km2. The new built-up areas in the Jingzhou District appeared in the periphery of the built-up
areas of 2004. They were mainly concentrated in the Jingcheng Village (JC V), Xinsheng Village (XS V),
Taihui Village (TH V) and Bailong Village (BL V). In addition to further enlargement of Jingzhou
Development Zone, the expansion from Jiefang Road Community (JF C) to the Sanbanqiao Village
(SBQ) and from the Shengli Road community (SL C) to the Tongxin (TX V) and Baishuo (BS V) villages
made the greatest contribution for the Shashi District. In 2014, the built-up area of Jingzhou reached up
to 73.898 km2. From 2010–2014, the new built-up areas in Jingzhou District were mainly concentrated
in the Jingcheng Village (JC V), Xinsheng Village (XS V), Taihui Village (TH V), Bailong Village (BL V)
and Sanhong Village (SH V). The new built-up areas in the Shashi District were mainly concentrated
in the Jingzhou Development Zone, with a mild expansion from the Shengli Road community (SL C)
to the Tongxin Village (TX V).

4.2. Spatial and Temporal Characteristics of Built-Up Area Expansion of Jingzhou

4.2.1. Expansion Quantity

We further extracted the size of the built-up area in the four years based on the extracted
boundaries of Jingzhou urban built-up areas, which are 50.243 km2, 61.278 km2, 66.542 km2

and 73.898 km2, respectively. The percentage of the urban expansion are 4.393% (1999–2004),
1.432% (2004–2010) and 2.764% (2010–2014). The trend of urban built-up area expansion of Jingzhou
was analyzed (Tables 7 and 8).

Table 7. Expansion quantity analysis of built-up area.

Year 1999–2004 2004–2010 2010–2014

Area increment (km2) 11.035 5.264 7.356
Increase rate of area (%) 21.963 8.590 11.055
Expansion rate (km2/a) 2.207 0.877 1.839

Expansion intensity index (%) 4.393 1.432 2.764

Table 8. Built-up area and related parameters in different periods.

Year Area
(km2)

Perimeter
(km2)

X Coordinate of
Barycenter (m)

Y Coordinate of
Barycenter (m)

Compactness
Index

Fractal
Dimension

Radial
Index

1999 50.24 174.99 618,442.07 3,355,657.91 0.14 1.93 50.11
2004 61.28 176.21 618,636.57 3,355,565.18 0.16 1.84 62.30
2010 66.54 173.47 618,727.33 3,355,721.82 0.17 1.80 56.02
2014 73.90 157.89 618,568.88 3,355,746.61 0.19 1.71 51.86
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4.2.2. Index Calculation

Compactness Index

The compactness index is an important index to measure the spatial morphological change of
urban built-up area [39] (see Equation (15)).

J = 2
√

πS/Z (11)

In the equation, J is the compact degree of urban built-up area, S is the area of urban built-up area and
Z is the perimeter of urban built-up area. If the shape of the urban built-up area is close to circular,
the compact index will be close to one, and the urban space is more compact. On the contrary, if the
compact index is far from one, the urban space is less compact. As shown in Table 8 and Figure 8,
from 1999–2014, the compactness index of the built-up area remains low, but a gradual increasing trend
is shown. Therefore, the morphology becomes simpler as the urban spatial compactness increases.
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Figure 8. Changes of the compactness index in Jingzhou’s built-up area.

Fractal Dimension

The spatial fractal dimension can be used to describe the complexity of urban boundary shape
and show the change of land use shape [40]. The fractal dimension of urban spatial shape can be
defined as:

2 ln (
Z
4
)/ ln (S) (12)

In the equation, F represents the fractal dimension of urban patches in a certain period, and S and
Z are the area and circumference of the patches in the urban built-up area in a certain period. The closer
the geometry is to the circle, the smaller is the fractal dimension, otherwise it is bigger. In the above
table, the fractal dimension from 1999–2014 is far from being one, indicating a complicated spatial form
of Jingzhou’s built-up area. In Figure 9, the fractal dimension of 1999 is the largest (1.9293), and that of
2014 is the smallest (1.7085). The fractal dimension decreases every year from 1999–2014. Apparently,
internal restructuring is the dominating trend in Jingzhou’s urban development over the past 15 years.
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Barycenter Index of the Built-Up Area

The barycenter index can be used to describe urban spatial distribution. The barycenter of
the built-up area is the equilibrium point of the city’s uniform distribution. It can be obtained by
computing weighted average of the geometric center coordinates of each urban plot. Using the GIS
software, we calculated the coordinates of the barycenter for each year based on the geometric shape
of the built-up area (see the Figure 10). The map portrays the location of the barycenter of the built-up
area. In Figure 10, we observe that the barycenter of the built-up area barely shifts from 1999–2014.
This means that spatial extension is the primary form of urban expansion in Jingzhou.
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Radial Index

The radial index, also known as the Boyce–Clark shape index, was first proposed by Boyce and
Clark [39]. By using each year’s barycenter of the built-up area as the core, 24 radial lines are drawn
from the core. The inclusion angle between the two adjacent lines is 15◦ (Figure 11). As shown in
Figure 12, the radial indices of the built-up area from 1999–2014 were calculated. It is found that
the radial index is generally high, indicating spatial form irregularity of Jingzhou’s built-up area.
The radial index increases from 1999–2004, indicating the growing spatial form irregularity. After 2004,
the radial index consistently decreases, indicating the increasing spatial form regularity of Jingzhou’s
built-up area.
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Figure 12. Changes of radial index in Jingzhou’s built-up area.

Difference of Spatial Extent of Built-Up Area Expansion

By taking the position with average coordinates of the barycenter over four years as the center,
eight directions of built-up area expansion were drawn up. The calculation equation [41] is:

SBC =
n

∑
i=1

∣∣∣∣ ri
∑n

i=1 ri
× 100%− 100

n

∣∣∣∣ (13)

The SBC, ri and n in the upper equation represent the radial index, the radius of a graph center to
the periphery of the graph and the number of radiation radii with the same angle difference. Then,
the built-up area at two different positions in each of the eight directions (Figure 13) during each
period was calculated by using the GIS software. Thus, the standard deviations for each year were
obtained, as shown in Table 8.
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Figure 13. Eight directions of spatial expansion of Jingzhou’s built-up area.

It can be seen from Table 9 that throughout 1999–2014, the urban built-up area increases in
different directions. The land surface temperature retrieval is affected to some degree by cloud removal,
leading to an underestimation in the west-south-south direction in 2010 and 2011; when compared
with the former year, the built-up are is smaller, but within a range of allowable error. The change
of standard deviation of the built-up area from 1999–2014 indicates the spatial expansion in eight
directions, and the difference in area increments in the different directions continues to accumulate
over time. As shown in the figure below, from 1999–2014, the spatial extent of the built-up area differs
significantly in each direction, especially in the east-south-east direction and the west-north-west
direction (Figure 14).

Table 9. Built-up area’s spatial extent in eight directions in different periods (unit: km2).

Direction 1999 2004 2010 2014

East-east-north 2.63 3.08 5.09 5.57
East-north-north 1.30 1.77 2.92 2.98
North-west-north 6.47 6.46 7.95 8.56
West-north-west 16.86 20.58 20.63 23.22
West-west-south 1.06 1.84 2.07 3.12
West-south-south 0.64 0.74 0.66 0.79
South-east-south 5.98 6.32 6.68 7.45
East-south-east 15.30 20.48 20.55 22.22

Total 50.24 61.28 66.54 73.90
Mean 6.28 7.66 8.32 9.24

Standard deviation 6.03 7.68 7.43 8.13
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Figure 14. Change curves of Jingzhou’s built-up area in eight directions.

According to Table 10 and Figure 15, the expansion is fastest in the east-south-east direction from
1999–2004, followed by that in the west-north-west direction. From 2004–2010, the expansion is the
fastest in the east-east-north direction, followed by that in the east-north-north direction. The expansion
rate first decreases, then increases, and slows down from 2004–2010. The standard deviation is the
smallest from 2004–2010, indicating the smallest difference in the expansion rate of the built-up area in
the eight directions. In the last column, the total expansion quantity is the highest in the east-south-east
direction from 1999–2014, and it is the lowest in the west-south-south direction.

Table 10. Built-up area’s spatial expansion in eight directions in different periods (unit: km2).

Direction 1999–2004 2004–2010 2010–2014 1999–2014

East-east-north 0.45 2.01 0.48 2.94
East-north-north 0.47 1.16 0.05 1.68
North-west-north −0.01 1.48 0.61 2.09
West-north-west 3.72 0.06 2.58 6.36
West-west-south 0.78 0.23 1.05 2.05
West-south-south 0.10 −0.09 0.13 0.15
South-east-south 0.35 0.35 0.77 1.47
East-south-east 5.18 0.06 1.68 6.927

Total 11.04 5.26 7.36 23.66
Expansion rate 2.21 0.88 1.84 1.58

Standard deviation 1.82 0.73 0.794 2.25
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4.3. Rationality Evaluation of the Built-Up Area Expansion of Jingzhou City

4.3.1. Urban Area-Population Elasticity Coefficient

The urban area-population elasticity coefficient can be used to describe the relationship between
urban expansion speed and urban population growth rate [42]. The calculation equation is:

R(i) = S(i)/Pop(i) (14)

R(i), Pop(i) and S(i) respectively represent the expansion elastic coefficient of the built-up area,
the average growth rate of the urban population and the average growth rate of the built-up area
during the i period. The urban area used for the evaluation was the built-up area retrieved from the
remote sensing images. The China City Statistical Yearbook was referenced for the urban population.
Equation (17) was used to calculate the expansion elasticity index of Jingzhou’s built-up area from
1999–2014 (see Table 11).

Table 11. Expansion elasticity index of the built-up area in different years.

Period 1999−2004 2004−2010 2010−2014

S(i) 4.39 1.43 2.76
Pop(i) 0.51 0.32 −0.32

R(i) 8.55 4.42 −8.54

Through a comprehensive analysis of the urbanization process in China, scholars believe that
a reasonable value of R(i) is 1.12 (if urban population increases by 1%, the area of built-up area
should increase by 1.12% [42]). If R(i) < 1.12, urban construction land will be in short supply;
if R(i) > 1.12, the efficiency of land use is low. According to the above table, the urban area-population
elasticity coefficients of Jingzhou City are all above the empirical value of 1.12. The built-up area
continues expanding even with a negative population growth, especially during the years 2010–2014,
indicating that the expansion rate of Jingzhou’s built-up area is much faster than the population
growth rate.

4.3.2. Allometric Growth Model

The spatial and temporal evolution of urban and urban systems will obey the law of
hetero-velocity growth in some sense [43]. The calculation equation is:

A = aPt
b (15)

A represents the area of the built-up area; a is the proportional coefficient; and b is the scaling factor.
P stands for urban population, and t stands for the year. The scaling factor b indicates the different
growth relation of different speeds [43]: when b = 0.9, the urban area and urban population are growing
at a same growth rate, and their growth rate is more appropriate; when b < 0.9, the growth is negative,
and the growth of the urban area is slower than the urban population; when b > 0.9, the growth is
positive, and the growth of the urban area is expanding faster than the urban population.

By using statistical software, the allometric growth model was derived based on the built-up area
of Jingzhou in the Jingzhou Statistical Yearbook (1999–2014) and the urban population of Jingzhou in
the China City Statistical Yearbook (1999–2014):

At = 3.166 × 10−5Pt
3.072 (16)

The goodness-of-fit is 0.403, and it passes the significance test at the 0.01 level. The scaling factor
b = 3.072, which is above the empirical value of 0.9. Hence, the rate of spatial expansion of Jingzhou’s
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built-up area is greater than the population growth rate. This means the urban sprawl is unreasonably
fast for the urban population growth of Jingzhou.

5. Conclusions

(1) Based on land surface temperature retrieval from the remote sensing images, this study
established the procedures for extracting the built-up area boundary of Jingzhou. The Landsat
5, 7 and 8 images were chosen as the data sources by considering the features of the study area,
research goals, requirements on remote sensing images for retrieval and availability of the remote
sensing images. After pretreatment, the land surface temperature maps of Jingzhou in different
years were calculated by using the mono-window algorithm. The threshold method was used to
extract the built-up area from the remote sensing images.

(2) Urban sprawl of Jingzhou uses the 1999 built-up area as the core, and the expansion rate differs in
different directions. The expansion is the fastest along the axial direction. The expansion quantity
and expansion rate both increase initially, then decrease. The development trend of the expansion
speed is extra high-speed (urban expansion intensity >1.92) and high-speed (1.05 < urban
expansion intensity < 1.92) and then extra high-speed. With a gradual improvement of the
urbanization level, the intensity of the expansion initially increases, then decreases. There seems
to be a trend of growing compactness over time for the spatial form of the built-up area, with the
contour of the built-up area becoming increasingly regular. From 1999–2014, the spatial form
of the built-up area evolves towards a more compact and orderly state. The barycenter of the
built-up area barely shifts over time, indicating that extension from the initial site of the built-up
area is the dominant form of expansion. However, over the past 15 years, the spatial extent of the
built-up area has significantly differed in different directions. The expansion is the fastest in the
east-south-east direction, followed by that in the west-north-west direction; the expansion in the
west-south-south direction is the slowest.

(3) According to the calculation of the urban area-population elasticity coefficient, the urban sprawl
of Jingzhou is much faster than the population growth rate. The algometric growth model has
proven this. In conclusion, the expansion of Jingzhou’s built-up area is too fast for the local
population growth.

The urban built-up area boundary extraction, based on land surface temperature retrieval, can be
applied to most cities that have a significant urban heat island effect and be helpful for carrying out
macro-control and management of land resources. However, there are some cities that have a cold
island effect. Future research will focus on the urban built-up area boundary extraction of types of
cities and improving the precision of land surface temperature inversion and the setting of temperature
thresholds of the urban built-up boundary.
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