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Abstract: Component substitution (CS) and multiresolution analysis (MRA) based methods have
been adopted in hyperspectral pansharpening. The major contribution of this paper is a novel
CS-MRA hybrid framework based on intrinsic image decomposition and weighted least squares filter.
First, the panchromatic (P) image is sharpened by the Gaussian-Laplacian enhancement algorithm
to enhance the spatial details, and the weighted least squares (WLS) filter is performed on the
enhanced P image to extract the high-frequency information of the P image. Then, the MTF-based
deblurring method is applied to the interpolated hyperspectral (HS) image, and the intrinsic
image decomposition (IID) is adopted to decompose the deblurred interpolated HS image into
the illumination and reflectance components. Finally, the detail map is generated by making a proper
compromise between the high-frequency information of the P image and the spatial information
preserved in the illumination component of the HS image. The detail map is further refined by the
information ratio of different bands of the HS image and injected into the deblurred interpolated HS
image. Experimental results indicate that the proposed method achieves better fusion results than
several state-of-the-art hyperspectral pansharpening methods. This demonstrates that a combination
of an IID technique and a WLS filter is an effective way for hyperspectral pansharpening.

Keywords: hyperspectral pansharpening; panchromatic; intrinsic image decomposition; weighted
least squares filter

1. Introduction

Hyperspectral pansharpening aims to combine the preponderance and complementary
information of the hyperspectral (HS) and panchromatic (P) images for image analysis and various
applications [1]. Spatial information and spectral information plays an important role in remote sensing
image analysis. Unfortunately, due to the limitation of sensor and theoretical aspects, most satellites
cannot provide a remote sensing image with both high spatial and spectral resolution [2,3]. However,
hyperspectral images with high spectral and spatial resolution have been in demand. Therefore, it is
important to introduce hyperspectral pansharpening techniques to improve the spatial resolution of
hyperspectral images.

Many methods dedicated to hyperspectral pansharpening have been proposed in the last two
decades [4,5]. These hyperspectral pansharpening methods can be grossly divided into four groups:
component substitution (CS), multiresolution analysis (MRA), matrix factorization, and Bayesian.
In recent years, there has been increasing interest in Bayesian methods and matrix factorization
methods. Bayesian methods usually model the HS and the P images as the degraded high-resolution
HS images and then restore the HS images through solving optimization problems, such as Sparse
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Representation [6,7], Bayesian HySure [8], and Bayesian Naive Gaussian prior (Bayesian Naive) [9].
Matrix factorization methods utilize the linear mixture model, and use it for the fusion optimization
model. The coupled non-negative matrix factorization (CNMF) [10] method is a representative among
the matrix factorization methods. Bayesian and matrix factorization methods have shown considerable
potential in improving the quality of the fused images. However, for purpose of estimating a good
solution, researchers have also made efforts to solve the ill-posed inverse problem, which is time
consuming and computational expensive [11,12]. From a perspective of practical applications, it is a
difficult problem.

The CS and MRA methods are easy and fast to implement [13,14]. The component substitution
(CS) methods include algorithms, such as intensity hue saturation (IHS) [15,16], Gram–Schmidt
(GS) [17], and principal component analysis (PCA) [18–20]. The primary concept of CS methods is
that the HS image can be separated into spectral and spatial components, and the P image is a good
substitution for the separated spatial component. The final fused image is obtained by the inverse
spectral transformation [21]. The fusion step of the CS methods is summarized as

Hk
F = Hk + αk(P− S) (1)

where, k = 1, 2, . . . , λ, λ is the number of the HS image bands, αk is the kth injection gain, matrix P is
the panchromatic image, matrix S is the spatial component of the HS image, P− S is generally called
the detail map, matrix H is the interpolated HS image, Hk

F and Hk are the kth band of the fused image
and the interpolated HS image, respectively. The injection gain is a gain used for merging the detail
map and the interpolated HS image into a fused HS image. The CS methods have simple and fast
implementation [22]. However, the spectral distortion is serious due to the spectral mismatch between
the P image and the replaced component [23].

The multiresolution analysis (MRA) has algorithms such as modulation transfer function
(MTF) generalized Laplacian Pyramid (MTF-GLP) [24], smoothing filter-based intensity modulation
(SFIM) [25] and MTF-GLP with high pass modulation (MGH) [26]. The spatial filtering is performed on
the P image to extract the high-frequency spatial details. The fused HS image is obtained by injecting
the extracted spatial details into each band of the interpolated HS image. Following, a formulation of
MRA methods is defined as [4]

Hk
F = Hk + βk(P− PL) (2)

where, k = 1, 2, . . . , λ, λ denotes the number of the HS image bands, βk denotes the kth injection gain,
and PL denotes low-frequency component of the P image. The advantages of the MRA methods are
good performance, temporal coherence, spectral consistency and acceptable computational complexity.
In addition, the MRA methods can be easily adopted when the source of the high spatial frequencies is
another multispectral/hyperspectral image [27]. However, blurry images may occur when the shapes
of low-pass filters adopted have problems [24].

To overcome the problems of the CS and MRA methods, the CS-MRA hybrid frameworks were
proposed [20,28,29]. These methods focus on fusing the P image and the spatial component of
the HS image by multiscale transforms. The final fused image is obtained by the inverse spectral
transformation. The performance of the CS-MRA hybrid methods has shown improvement compared
with that of the CS or MRA methods. However, the fused images obtained by these hybrid methods
suffer from spectral distortion of different degrees, since the structure of the HS image is not fully
considered. To overcome the drawbacks of the CS-MRA hybrid methods, we propose a new
CS-MRA hybrid framework based on intrinsic image decomposition and weighted least squares
filter. Specifically, we filter the sharpened P image by the weighted least squares (WLS) filter to
obtain the high-frequency component of the P image at first. Subsequently, the MTF-based deblurring
method is performed on the interpolated HS image. The intrinsic image decomposition (IID) is
applied to the deblurred interpolated HS image to extract the illumination component of the HS
image. The detail map is generated by merging the high frequency information of P image with
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the illumination component of the HS image. Finally, the detail map is injected into the deblurred
interpolated HS image to obtain the fused HS image.

The following are the major contributions of the proposed method using IID and WLS:

(a) It uses the IID technique which separates the deblurred HS image into the reflectance and
illumination components to extract the spatial information from the HS image.

(b) Unlike the traditional CS and MRA methods where the spatial details are just extracted from the
P image, the detail map in the proposed method depends on both the HS image and the P image.
The spectral distortion caused by the spectral mismatch problem can be reduced.

(c) The WLS filter preserves the spatial details on edges in a better manner compared to traditional
low pass filters, since it can make the best compromise between sharpening and blurring.
Therefore, the WLS filter is adopted to extract the high-frequency component of the P image in
the proposed method.

(d) Most CS and MRA methods are based on the assumption that each band of the HS image shares
the same detail map. We assume that different detail map is required by different bands of the HS
image. The detail map is generated according to the ratio of the information between different
bands of the HS image.

This paper is organized as follows. We describe the related work in Section 2. The proposed
method is discussed in Section 3. Section 4 displays the experimental results and discussion. Section 5
concludes the paper.

2. Related Work

2.1. Intrinsic Image Decomposition

Based on the principle of human visual perception, intrinsic image decomposition (IID) aims to
decompose an image into reflectance and illumination components [30]. The reflectance component
depends on the material of objects in an image. There is abundant edge and structure information
in an image. However, these information is not directly related to the reflectance component. Edge
and structure information is mainly preserved in the illumination component. The intrinsic image
decomposition process can be expressed as:

I = SR (3)

where matrix I represents an input image, matrices S and R represent the illumination and reflectance
components, respectively. From the aforementioned equation, it is obvious that estimating S and
R based on I is a difficult problem. In order to solve this problem, many solutions have been
presented in recent years [31–34]. Among these methods, user intervention [34], extra constraints [30],
and heuristic cues have shown good results to estimate the intrinsic image from the input image.
Retinex algorithm is a widely used image enhancement method based on scientific experiments and
analysis [35]. Compared with the traditional methods that can only enhance a certain characteristic,
the retinex algorithm can balance the dynamic compression, contrast improvement and constant
color. It is important that the detail information immersed in the light region or shadow can be
effectively displayed by the retinex algorithm. However, it is difficult to weigh up the relationship
between the detail contrast of the image and the color reservation by the single scale retinex algorithm.
Hyperspectral pansharpening aims at enhancing the spatial information while preserving the spectral
information. Multiscale retinex algorithm indeed shows the good performance in achieving this
objective [36]. Motivated by the aforementioned finding, the multiscale retinex based-IID algorithm is
really a good technique for hyperspectral pansharpening.
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2.2. Weighted Least Squares Filter

The WLS filter which is an edge-preserving filter has become a highly active research topic in
various image processing. Since the WLS filter do not blur strong edges in the process of image
decomposition, the ringing artifacts can be avoided. Compared with other edge-preserving filters,
the WLS filter can make a best compromise between sharpening and blurring [37]. The WLS filter
can be used for estimating the low frequency image of the input image. Specifically, the WLS filter
assumes that the filtered image f is as close as possible to the input image g, and should be as smooth
as possible everywhere, except across the edges. Farbman et al. [37] proposed that the filtered image f
can be obtained by seeking the minimum of the following equation

∑
p
(( fp − gp)

2 + γ(ωx,p(g)(
∂ f
∂x

)
2

p
+ ωy,p(g)(

∂ f
∂y

)
2

p
)) (4)

where p refers to the pth pixel. The first term ( fp − gp)
2 ensures the minimum distance between the

filtered image f and the input image g, ωx,p(g) and ωy,p(g) which depend on g are smoothness weights.
γ is a regular term parameter that balances the two terms.

3. Proposed Method

The schematic diagram of the proposed method is shown in Figure 1. It consists of three major
parts: (1) Extracting spatial details of the P image; (2) Extracting spatial detail of the H image;
(3) Generating the detail map; and (4) Obtaining the fused H image.
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3.1. Extracting Spatial Details of the P Image with Weighted Least Squares Filter

The P image contains plentiful spatial information. To enhance the spatial details of the P image
and reduce noise, we use the Laplacian of Gaussian (LOG) enhancement algorithm to sharpen the
spatial information of the P image. LOG algorithm can reduce image noise and sharpen structural
details. First, Gaussian convolution filtering is performed on the P image to remove the noise. Laplace
operator is then used for enhancing the spatial details of the denoised P image. The enhanced P image
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is finally obtained by combining the P image with the Laplacian filtered image. This process can be
expressed as

PS = P + a[P ∗ fL(x, y)] (5)

where, PS is the enhanced P image, fL(x, y) is the kernel function of LOG operator, a is a constant. a is
related to the central coefficient of the kernel fL(x, y). In this paper, the central coefficient of the kernel
is a negative value, and we set a to −1. fL(x, y) is defined as

fL(x, y) =
∂2

∂x2 fg(x, y) +
∂2

∂y2 fg(x, y) (6)

where, fg(x, y) = 1√
2πσ2 exp(− x2+y2

2σ2 ) is the Gaussian convolution function, and σ is the
standard deviation.

To extract the spatial details of the enhanced P image, the WLS filter is applied to the PS image.
Based on the principle of the WLS filter, the low-frequency image PL which should be as close as
possible to the PS image and be as smooth as possible except the edges can be obtained by the following
optimization equation.

argmin
PL

(‖PL − PS‖2 + γ(ωx(
∂PL
∂x

)
2
+ ωy(

∂PL
∂y

)
2
)) (7)

The first term ‖PL − PS‖2 ensures the minimum distance between PL and PS. γ is a regularization
parameter to balance the first term and the second term. The second term ωx(∂PL/∂x)2 +ωy(∂PL/∂y)2

aims to smooth the PL image by minimizing the derivatives of PL with respect to x and y. ωx and ωy

are smoothness weights. We rewrite Equation (7) by using matrix notation

(PL − PS)
T(PL − PS) + γ(PT

L ZT
x WxZxPL + PT

L ZT
y WyZyPL) (8)

where matrices Wx and Wy are diagonal matrices, the matrices Zx and Zy are the discrete differentiation
operators, and the smoothness weights ωx and ωy are contained in matrices Zx and Zy, respectively.
The following linear equation can be obtained by taking the derivative of Equation (8)

[(I + γ(ZT
x WxZx + ZT

y WyZy))]PL = PS (9)

where ZT
x WxZx + ZT

y WyZy is a five-point spatially inhomogeneous Laplacian matrix. We define ωx

and ωy in the same manner as in [38]:

ωx,p(PS)
= (

∣∣∣∣ ∂l
∂x

(p)
∣∣∣∣α + ε)−1, ωy,p(PS)

= (

∣∣∣∣ ∂l
∂y

(p)
∣∣∣∣α + ε)−1 (10)

where l is the log-luminance channel of the PS image, ε is a constant that is close to zero, the parameter
α controls the gradients of PS, and is set to 2.0 in this paper. By the above analysis, the low-frequency
image PL can be estimated. Considering the MRA formulation (Equation (2)), we can obtain the
high-frequency image PH by subtracting the low-frequency image PL from the enhanced P image PS.
This process can be expressed as

PH = PS − PL (11)

where PL and PH denote the low-frequency image and high-frequency image of the PS image,
respectively. We consider that most of the spatial details of the enhanced P image are contained
in the high-frequency image.
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Figure 2 shows the example of spatial detail processing of the P image. In this experiment,
the respective parameters are adjusted to the optimal values. From Figure 2b, it can be observed that
the Laplacian of Gaussian (LOG) enhancement algorithm indeed plays an important role in the spatial
details enhancement. Figure 2c shows the high-frequency image of the enhanced P image obtained by
the proposed method. To illustrate the effectiveness of the WLS filter in spatial extraction, Figure 2c is
compared with Figure 2d which is obtained by Gaussian filtering on the enhanced image. Similarly,
to illustrate the effectiveness of the LOG algorithm in spatial enhancement, Figure 2c is compared with
Figure 2e which is obtained by WLS filtering on the original P image. A comparison of Figure 2c with
Figure 2d,e shows that there is fine distinction between three filtered images. Figure 2d,e show that
some low frequency components are mixed with the high-frequency image, especially in spherical
regions. Therefore, the LOG enhancement algorithm indeed displays a good performance in spatial
detail enhancement, and the WLS filter is really suitable for extracting the high frequency component
of the P image.
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3.2. Extracting Spatial Detail of the HS Image with Intrinsic Image Decomposition

Upsampling is done on the original hyperspectral image (OH) to obtain the same size as the
P image.

UHk =↑ OHk (12)

for k = 1, 2, . . . , λ, where λ is the number of the HS image bands, ↑ is the upsampling operation,
UH is the interpolated HS image, OHk and UHk are the kth band of the original HS image and the
interpolated HS image, respectively.

A preprocessing step that performs MTF-based deblurring [39] on the interpolated HS image.
The MTF-based deblurring method is performed in the frequency domain as follows

Hk =
M∗

k∣∣Mk
∣∣2 + 1

SNR

UHk (13)

where, H is the Fourier transform of the deblurred interpolated HS image, Hk is the kth band of H,
UHk, andMk are the Fourier transform of UHk and the Fourier transform of the blurring kernel for
the kth band, respectively, 1/SNR is the noise-to-power ratio, andM∗

k is the complex conjugate ofMk.
1/SNR is a constant that is close to zero. The deblurred interpolated HS image H is obtained by the
inverse Fourier transform ofH. Subsequently, according to [39], we adopt the de-ringing technique to
decrease ringing artifacts caused by non-periodic boundaries.

According to the CS based method, the deblurred HS image H can be separated into spectral and
spatial information. IID is introduced to separate the spectral and spatial information. Based on the
principle of the IID, each band of the HS image is composed of two components, i.e., the illumination
component and the reflectance component. For the HS image, the reflectance component is identified
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as the spectral information, while the illumination component is the spatial information. Each band of
the deblurred HS image can be represented as follows

Hk(x, y) = Hk
R(x, y)× Hk

I (x, y) (14)

where (x, y) is spatial coordinate. Hk
R(x, y) which depends on the intrinsic nature of the objects

represents the reflectance component of the kth band of an HS image. Hk
I (x, y), which is related

to the structure information of the objects, represents the illumination component of the kth band
of an HS image. Based on the single scale retinex algorithm, the output can be estimated by the
difference between the input and the average of its neighborhood, which can be described by the
following equation

hk
R(x, y) = log(Hk(x, y))− log(Hk(x, y) ∗ F(x, y)) (15)

where hk
R(x, y) = log(Hk

R(x, y)), Hk is the kth band of the input image, hk
R is the kth band of the output

image, F is the Gaussian surround function, and symbol ∗ is convolution. Illumination estimation is
denoted by the convolution Hk(x, y) ∗ F(x, y). The Gaussian surround function F(x, y) can be given
as follows

F(x, y) = C exp[−(x2 + y2)/2σ
2
] (16)

x
F(x, y)dxdy = 1 (17)

where σ, the scale factor of the Gaussian kernel, controls the color information and the spatial resolution
of the image. σ cannot be determined and theoretically modeled. Generally, the larger the scale
parameter σ, the better the color fidelity and the lower the spatial resolution of the output image.
To make the compromise between the extraction of spatial details and the preservation of spectral
information, multiscale retinex is used for separating the reflectance component from the illumination
component of the deblurred HS image. This process can be given by the following formula

hk
MR(x, y) =

N

∑
n=1

ωnhk
R =

N

∑
n=1

ωn log(Hk(x, y))− log(Hk(x, y) ∗ Fn(x, y)) (18)

Fn(x, y) = Cn exp[−(x2 + y2)/2σ
2
n] (19)

where N represents the number of scales, and ωn represents the weighting factor. According to
experimental experience, N is set to 3, and ωn is set to 1/3. σ1, σ2, and σ3 are set as 20, 40, and
80, respectively. Obtaining the scale factor σn, Cn which denotes the normalization factor can be
determined by Equations (17) and (19). Then, the reflectance component of the deblurred HS image is
easy to be obtained

Hk
R(x, y) = exp(hk

MR(x, y)) (20)

According to Equation (14), the illumination component of the deblurred HS image is calculated by

Hk
I =

Hk

Hk
R

(21)

We consider that most of the spatial details of each band of the deblurred HS image are contained
in Hk

I .
In [29], the spatial details of each band of the HS image are extracted by average filtering. The right

picture of Figure 3b shows the detail map obtained by average filtering. The right picture of Figure 3c
shows the detail map obtained by the adopted IID technique. The detail map shown in Figure 3b
contains part of the spatial information of the HS image. The detail map obtained by the IID technique
contains most of the spatial information of the HS image. The IID is indeed an effective technique for
extracting spatial information of the HS image.
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Figure 3. Spatial details extracted by average filtering and intrinsic image decomposition methods.
(a) HS image; (b) Average filtering method (left: Spectral component of HS image; right: Spatial
component of HS image); (c) Intrinsic image decomposition method (left: Reflectance component of
HS image; right: Illumination component of HS image).

3.3. Generating the Detail Map

The CS methods suffer from the spectral distortion, since the detail map only depends on
the P image. To reduce the spectral distortion, the detail map in this paper depends on both
the P image and the HS image. The detail map of each band of the HS image is determined by
the illumination component of the HS image and the high-frequency component of the P image.
Specifically, after obtaining the high-frequency component of the P image and the illumination
component of the kth band of the HS image, the detail map can be generated by

Dk = ζPH + (1− ζ)Hk
I (22)

for k = 1, 2, . . . , λ, where ζ is a weight coefficient, and Dk is the initial detail map. Since the P image
contains much more spatial information compared with the HS image, ζ is set to 0.9. Many traditional
CS and MRA based methods assume that the same detail map is in demand by different bands of
the HS image. This hypothesis always produces spectral and spatial distortion. We consider that a
different detail map is required by different bands of the HS image. Assuming that the amount of
spatial detail required for different bands is proportional to the ratio of the information of that band.
It is helpful for reducing the spectral distortion to keep this ratio unchanged. Thus, we define the
following formula

Dk
F =

UHk

(1/λ)∑n
k=1 UHk Dk (23)

for k = 1, 2, . . . , λ, where λ is the bands number of the HS image, Dk
F denotes the final detail map

which is required by the kth band of the HS image.

3.4. Obtaining the Fused HS Image

According to Equation (1), we define a constraint parameter α to control the final detail map.
The fused HS image can be obtained by injecting the final detail map into the deblurred interpolated
HS image for each band.

Hk
F = Hk + αDk

F (24)

for k = 1, 2, . . . , λ, where HF is the fused HS image, and Hk
F is the kth band of the fused HS image. Since

the amount of the injected details is regulated by the parameter α, the spectral and spatial distortion
can be restrained.

4. Results

In the experiments, the test P and HS images are cropped from four different hyperspectral
remote sensing datasets, i.e., the Salinas dataset [12], the Pavia University dataset [12], the Washington
DC dataset, and Hyperion dataset [40]. Several widely used evaluation indexes are adopted to
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estimate the effectiveness of the proposed hyperspectral pansharpening method. Six representative
hyperspectral pansharpening methods are utilized for comparison, i.e., principal component analysis
(PCA) [18], Guided filter PCA (GFPCA) [41], HySure [8], coupled nonnegative matrix factorization
(CNMF) [10], MTF-GLP with High Pass Modulation (MGH) [26] and Sparse Representation [7].
The PCA method is a most representative among the CS-based methods. The MGH method is a
successful MRA-based hyperspectral pansharpening method. The CNMF method is one of the matrix
factorization algorithms. The Sparse Representation and HySure methods which were presented
recently belong to the Bayesian category. The GFPCA method has been awarded the “Best Paper
Challenge” in the 2014 IEEE data fusion contest. Therefore, in the experiments, these six methods are
compared with the proposed method.

4.1. Dataset Description

(1) The Salinas dataset: This dataset is composed of the urban and rural scene. The HS image
was collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Salinas Valley,
California [12]. The collected HS image is characterized by 224 bands in the spectral range of
0.4–2.5 µm. The water absorption and noise corrupted bands are removed, and 204 bands are used for
experimentation. In the experiments, the P image covers the visible spectral range with the spatial
resolution of 20 m. The dimensions of the HS and P images are 40 × 40 and 200 × 200, respectively.

(2) The Pavia University dataset: This dataset was acquired by the Reflective Optics System
Imaging (ROSIS) over Pavia, Italy [12]. ROSIS provides the dataset which covers the spectral range of
0.4–0.9 µm, and the dataset is characterized by 115 bands. After the water absorption and the noise
corrupted bands are removed, 103 bands are used for experimentation. The P image has a spatial
resolution of 1.3 m in the visible spectral range. The size of the HS and P images in the experiment are
40 × 40 and 200 × 200, respectively.

(3) The Washington DC dataset: This dataset was collected by the Spectral Information Technology
Application Center of Virginia over the Washington DC Mall. The dataset consists of 210 bands in
the spectral range of 0.4–2.4 µm. Some bands have been removed since the atmosphere is opaque,
and 191 bands are used for the experiment. In the experiments, the P image has a spatial resolution
of 0.8 m in the visible spectral range. The dimensions of the HS and P images are 40 × 40 and
200 × 200, respectively.

(4) The Hyperion dataset: The EO-I spacecraft which is operated by NASA carries two instruments:
Hyperion and Advanced Land Imager (ALI) [12]. Hyperion provides the HS image which is
characterized by 242 bands in the spectral range of 0.4–2.5 µm. The spatial resolution of the HS
image is 30 m. ALI instrument is capable of providing the P image which covers the spectral range of
0.48–0.69 µm with the spatial resolution of 10 m.

4.2. Quality Measures

Generally, the performance of a hyperspectral pansharpening method can be assessed by the
subjective effect and the objective indexes. The similarity of the colors between the reference HS image
and the fused HS image can be determined by the subjective evaluation. Objective indexes are used
for comparing the fusion quality accurately. This paper is limited to the five most widely used indexes,
i.e., cross correlation (CC) [42], spectral angle mapper (SAM) [43], root mean squared error (RMSE),
erreur relative globale adimensionnelle de synthèse (ERGAS) [44], and universal image quality index
(UIQI) [45]. The CC is the spatial measure, and SAM is the spectral measure. RMSE, ERGAS, and
UIQI are the global spectral and spatial measures. The formal definitions of these indexes are provided
below. In the definitions, matrix FH = [h1, . . . , hm] ∈ Rλ×m denotes the fused HS image with λ

bands and m pixels. RH ∈ Rλ×m represents the reference HS image. RHl and FHl represent the lth
columns of RH and FH, respectively. RH j and FH j represent the jth rows of RH and FH, respectively.
X, Y ∈ R1×m denote two single band images, and Xi denotes the ith element of X.
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(1) Cross correlation: The CC measures the degree of the geometric distortion. It is defined as follows:

CC(RH, FH) =
1
λ

λ

∑
j=1

CCS(RH j, FH j) (25)

The CCS characterizes the geometric distortion of a single-band image as follows:

CCS(X, Y) = ∑m
i=1 (Xi − µX)(Yi − µY)√

∑m
i=1 (Xi − µX)

2∑m
i=1 (Yi − µY)

2
(26)

where µX and µY are the means of X and Y, respectively. The optimal value of CC is 1.
(2) Spectral angle mapper: The SAM measures the spectral distortion between the fused image

FH and the reference image RH, which is defined as:

SAM(RH, FH) =
1
m

m

∑
l=1

arccos(
〈RHl , FHl 〉
‖RHl‖‖FHl‖

) (27)

The SAM is a spectral measure. The smaller the SAM value is, the better the fusion performance is.
(3) Root mean squared error: The RMSE which measures the standard difference between the two

matrices RH and FH, is defined as

RMSE(RH, FH) =

√
trace[(RH − FH)T(RH − FH)]

√
m ∗ λ

(28)

The optimal value of RMSE is 0.
(4) Erreur relative globale adimensionnelle de synthèse: The ERGAS, which is a global measure,

is defined as

ERGAS(RH, FH) = 100c

√√√√ 1
λ

λ

∑
j=1

(
RMSEj

µj
)

2

(29)

where, RMSEj = (

√
trace[(RH j − FH j)

T
(RH j − FH j)]/

√
m), c represents the ratio of the linear

resolution between the P and HS images, and µj is the mean value of the jth band of the reference
image. The optimal value of ERGAS is 0.

(5) Universal image quality index: The UIQI, which evaluates the similarity of the reference image
RH and the fused image FH, is defined as

UIQI(RH, FH) =
4σ2

RFµRµF

(σ2
R + σ2

F)(µ
2
R + µ2

F)
(30)

where, µR, σ2
R, µF, σ2

F are the sample means and standard deviations of the reference image RH and the
fused image FH, and σ2

RF is the covariance of the two images. The ideal value of the UIQI value is 1.

4.3. Analysis of the Influence of Parameter α

In the experiments, α is the parameter which determines the quantity of the final injected spatial
details and influences the fusion performance directly. To select an optimal parameter α, the proposed
method is performed on the Salinas dataset with different α settings. We apply five quality measures
to investigate the effects of the parameter α on the fusion performance. For clarity, the five quality
measures are normalized to [0, 1] by the min-max normalization method and are displayed in one
figure. Figure 4 shows the performance of the proposed method with different α settings. It can be
observed that the CC and UIQI values are increasing from 0 to 0.1 when α is increased from 0 to 0.1.
The CC value obtains the biggest value when α equals to 0.1. In addition, the values of SAM, RMSE,
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and ERGAS all are decreasing when α is increased from 0 to 0.1. While they will increase when α

equals to 0.1. Therefore, we can draw a conclusion that when α = 0.1, the performance of the proposed
method is the best. We have also performed the performance of the proposed method on various
hyperspectral remote sensing images. We found that α = 0.1 also give the best performance there.
Therefore, the parameter α is set as 0.1 in this paper.
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4.4. Experiments on Simulated Hyperspectral Remote Sensing Datasets

The Salinas dataset, Pavia University dataset, and Washington DC dataset are all simulated
datasets. For the simulated dataset, a reference high spatial resolution HS image is given. The simulated
P image and the simulated low spatial resolution HS image can be obtained by the Wald’s protocol [44].
We can use the reference high spatial resolution HS image as the reference image to evaluate the
performance of the fused image.

4.4.1. Salinas Dataset

The color displays of the fused HS images obtained by different methods are shown in Figure 5b–h.
As reported in some articles, the PCA method generates serious spectral distortion. The fused image
obtained by the GFPCA method looks blurry, since the injected spatial information seems to be not
sufficient. There is less spectral distortion generated by the GFPCA method compared with the PCA
method. The edges in the fused images obtained by the HySure and MGH methods appear too sharp
due to the artifacts occurred around the edges. The CNMF and Sparse Representation methods can
well preserve the spectral information of the original HS image. However, the edges in the vegetation
and roof areas are not clear in the fused images obtained by these two methods. The halo artifacts and
the blurring problems can be eliminated by the proposed method. It can be seen that the proposed
method performs well in both spectral and spatial aspects.

To further compare the visual quality of the fused images obtained by different fusion methods,
Figure 6 is given to show the difference images between the fused HS images and the reference
HS image. Here, the difference image is generated by subtracting the reference image from the
corresponding fused image, on a pixel by pixel strategy. It is observed that the difference image
between the reference image and the fused image obtained by the proposed method shows the light
blue color for almost the entire image. In other words, the proposed method causes the smallest value
difference between the reference HS image and the fused image compared with other methods, which
further proves that the outstanding fusion performance can be obtained by the proposed method.
The quality metrics of different methods for the Salinas dataset are shown in Table 1. We consider the
five quality metrics together to evaluate the performance of different pansharpening methods. It can
be seen that, for the Salinas dataset, the proposed method gives the optimal quality indexes in terms of
all the quality metrics. This means that the proposed method can perform well in both spectral and
spatial aspects.
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(a)Reference; (b) PCA; (c) GFPCA; (d) HySure; (e) MGH; (f) CNMF; (g) Sparse Representation;
(h) Proposed.
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Figure 6. Visual comparison of difference images (light blue means small differences) between each
fused HS image and the reference HS image (Salinas dataset). (a) PCA; (b) GFPCA; (c) HySure;
(d) MGH; (e) CNMF; (f) Sparse Representation; (g) Proposed.

Table 1. Quality metrics of different methods for Salinas datasets.

Index
Method

PCA GFPCA Hysure MGH CNMF Sparse Proposed

CC 0.5341 0.9335 0.9485 0.9569 0.9385 0.9443 0.9586
SAM 10.5815 3.5553 2.1523 2.2694 2.3919 2.7381 1.9475

RMSE 0.0661 0.0262 0.0224 0.0231 0.0220 0.0209 0.0188
ERGAS 6.6333 2.8157 2.2176 2.3604 2.0145 2.0087 1.1626

UIQI 0.9008 0.9776 0.9877 0.9838 0.9867 0.9877 0.9884

4.4.2. Pavia University Dataset

Figure 7a shows the reference HS image of the Pavia University dataset. Figure 7b–h show the
fused images obtained by different pansharpening methods. By visually comparing these fused images
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with the reference one, a similar conclusion as the above experiments can be drawn. The spatial and
spectral quality of the fused image obtained by the PCA method is not desired. The spectral distortion
caused by the PCA method is most visible, especially in the vegetation areas. The GFPCA method
improves with respect to the spectral aspect. However, the spatial quality of the fused image obtained
by the GFPCA method needs further improvement. The HySure and MGH methods produce halo
artifacts around edges, although such artifacts make the edges appear sharper. The CNMF method
introduces spectral distortion, since the color of the fused image obtained by the CNMF method is not
match to that of the reference image in roof area. By contrast, the fused images produced by the Sparse
Representation and the proposed method are the closest to the reference one.
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images and the reference HS image. The difference image of the proposed method is almost all light 
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Figure 7. Visual comparison of different hyperspectral pansharpening methods for Paiva University
dataset. (a) Reference; (b) PCA; (c) GFPCA; (d) HySure; (e) MGH; (f) CNMF; (g) Sparse Representation;
(h) Proposed.

The visual quality of fused images obtained by different methods can be measured by the
difference images between the fused HS images and the reference HS image. Figure 8 is given to show
the difference images with outstanding defects and flat background between the fused HS images
and the reference HS image. The difference image of the proposed method is almost all light blue
with few yellow mixed. Based on the comparison of difference images, the proposed method indeed
displays the best performance in visual quality. Table 2 shows the objective quality assessment of
different methods for the Pavia University dataset. It can be clearly seen that the proposed method
shows the best objective performance in most measurement terms including CC, SAM, RMSE, and
ERGAS. The UIQI value of the proposed method is second largest. This further demonstrates that the
proposed method can obtain the state-of-the-art fusion performance.

Table 2. Quality metrics of different methods for Pavia University dataset.

Index
Method

PCA GFPCA HySure MGH CNMF Sparse Proposed

CC 0.8967 0.8203 0.9404 0.9308 0.8723 0.9012 0.9440
SAM 6.2287 9.2413 6.5623 6.2832 7.2820 8.4505 6.1135

RMSE 0.0489 0.0664 0.0385 0.0475 0.0548 0.0484 0.0330
ERGAS 6.8652 6.9343 3.4842 4.6084 5.8609 4.6880 3.4226

UIQI 0.7824 0.7356 0.8381 0.8133 0.7908 0.7739 0.8310
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4.4.3. Washington DC Dataset

Figure 9 shows the visual comparison of the fused images obtained by different fusion methods
for the Washington DC dataset. The reference HS image is displayed in Figure 9a. Figure 9b–h show the
fused images obtained by different fusion methods. It is apparent that the fused image obtained by the
PCA method suffers from the spectral and spatial distortion. The fused image obtained by the GFPCA
method shows improvement, but the spatial quality is not improved obviously. A visual comparison
shows that the MGH method performs well in spectral aspect, but the fused image obtained by the
MGH method looks blurry in some areas. The reason is that the injected spatial details is insufficient.
The CNMF and Sparse Representation methods are close to the reference image in spectral aspect.
However, the spatial quality of the CNMF and Sparse Representation methods in the edge regions is
not desired. The fused results obtained by the HySure and the proposed fusion methods have superior
performance in spectral and spatial aspects.
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(h) Proposed.
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Figure 10 shows the visual comparison of difference images between the fused HS images and
the reference HS image for the Washington DC dataset. The proposed method indeed performs best
in achieving the objective that the fused HS image should be as close as possible to the HS image
acquired by the high-resolution sensors. The quality metrics of different methods for the Washington
DC dataset are shown in Table 3. It can be seen that, for the Washington DC dataset, the proposed
method gives the smallest quality indexes for RMSE and ERGAS, and the optimal quality indexes
for CC and UIQI. Although the objective assessment of the proposed method is not always the best,
it achieves a very stable performance in terms of five widely used quality metrics. This means that
the proposed method can perform well in terms of providing the spatial details while preserving the
spectral information.
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Figure 10. Visual comparison of difference image (light blue means small differences) between each
fused HS image and the reference HS image (Washington DC dataset). (a) PCA; (b) GFPCA; (c) HySure;
(d) MGH; (e) CNMF; (f) Sparse Representation; (g) Proposed.

Table 3. Quality metrics of different methods for Washington DC dataset.

Index
Method

PCA GFPCA HySure MGH CNMF Sparse Proposed

CC 0.7724 0.7829 0.8782 0.8771 0.7720 0.8179 0.8940
SAM 8.8123 10.7545 7.3913 7.9453 8.6588 10.0145 7.7436

RMSE 0.0123 0.0139 0.0084 0.0132 0.0120 0.0119 0.0081
ERGAS 33.4070 39.5999 27.1998 35.3178 31.2027 30.8796 25.2085

UIQI 0.9227 0.8971 0.9541 0.9350 0.9391 0.9517 0.9584

4.5. Experiments on Real Hyperspectral Remote Sensing Datasets

The Hyperion dataset which is the real hyperspectral dataset is utilized to evaluate the
performance of the proposed method in real applications. For the real HS image, fusion is performed
at the full scale for the subjective evaluation. The dimensions of the test P image are 210 × 150, and the
size of the experimental HS image is 70 × 50. Figure 11a,b show the interpolated HS image and the P
image, respectively. Figure 11c–i displays the results of different pansharpening methods. By visually
comparing these fused HS images with the original HS image, it is clear that the blocking artifacts
exist in the fused image obtained by the PCA method. The result obtained by the GFPCA method
also looks blurry in this experiment. The HySure, MGH, and CNMF methods preserve the spectral
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information effectively, but the spatial quality of these methods is poor. The spectral distortion of the
Sparse Representation method is visible in some areas. The proposed method can well preserve the
spectral information and greatly improve the spatial quality of the original HS image.

The high spatial resolution HS image of the real dataset is generally not available. Fusion
is performed at the degraded scale for the objective evaluation. Specifically, according to the
literatures [46], we degrade the original HS and P images, and fuse the degraded HS and P images.
The original HS image is used as the reference. The fused image is compared with the original HS
image to evaluate the objective performance. Table 4 shows the quality metrics of different methods
for the Hyperion dataset. The proposed method shows the best objective performance in terms of all
the measurements terms including CC, SAM, RMSE, ERGAS, and UIQI.
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Figure 11. Visual comparison of different hyperspectral pan-sharpening methods for Hyperion dataset.
(a) Interpolated HS image; (b) P image; (c) PCA; (d) GFPCA; (e) HySure; (f) MGH; (g) CNMF; (h) Sparse
Representation; (i) Proposed.

Table 4. Quality metrics of different methods for Hyperion dataset.

Index
Method

PCA GFPCA HySure MGH CNMF Sparse Proposed

CC 0.7574 0.7430 0.5984 0.9087 0.8754 0.8273 0.9123
SAM 3.7563 4.6248 12.1445 2.7090 3.0467 4.5656 2.6637

RMSE 0.0353 0.0385 0.1012 0.0225 0.0249 0.0362 0.0220
ERGAS 8.5544 9.9020 22.0946 5.6159 6.6400 9.0590 5.4775

UIQI 0.9835 0.9797 0.8738 0.9922 0.9910 0.9775 0.9927

To verify the validity of the proposed method on the real HS images, the experiment is performed
on another Hyperion image. The test P image is of size 300 × 300 pixels, and the size of the test
HS image is 100 × 100. Figure 12a,b show the interpolated HS image and the P image, respectively.
The fused images obtained by different methods are displayed in Figure 12c–i. The color of the
fused image obtained by the PCA method is not match to that of the original HS image in some
areas. The GFPCA method produces the serious spatial distortion, although it performs better in
the spectral aspect compared with the PCA method. The fused images obtained by the HySure and
Sparse Representation methods appear too sharp due to the artifacts occurred around the edges.
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The color of the fused images obtained by the MGH, CNMF and the proposed methods is close to
that of the original HS image, which indicates the superiority of these pansharpening methods in
spectral preservation. However, the spatial quality of the CNMF method in some edges is not desired.
By contrast, the fused images produced by the proposed method and the MGH method obtain the
outstanding fusion performance in terms of spectral and spatial aspects. Table 5 shows the objective
quality evaluation of each method for the Hyperion dataset. The proposed method performs best in
terms of most of the indexes. The MGH method obtains the best ERGAS index. Although the objective
performance of the proposed method is not always the best, it has a stable performance. Based on
the analysis of the visual comparison and objective evaluation, we can draw a conclusion that the
proposed method obtains the excellent performance for the real hyperspectral dataset in terms of the
objective and subjective evaluations.
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Representation; (i) Proposed.

Table 5. Quality metrics of different methods for Hyperion dataset.

Index
Method

PCA GFPCA HySure MGH CNMF Sparse Proposed

CC 0.7077 0.8234 0.7543 0.9341 0.9219 0.8781 0.9344
SAM 4.7224 5.7334 6.8596 3.0803 4.3548 5.4651 3.0230

RMSE 0.0399 0.0253 0.0396 0.0185 0.0189 0.0206 0.0174
ERGAS 12.5797 10.0371 15.8318 6.2645 6.7987 8.6556 6.5841

UIQI 0.7886 0.7324 0.7837 0.9418 0.9025 0.8537 0.9446

4.6. Discussion

Experimental results demonstrate that the proposed method outperforms the other six
hyperspectral pansharpening methods. The proposed method has a good performance in the
spectral fidelity, since it always obtains an optimal SAM index. The HySure method has an excellent
performance on the simulated images, but it performs badly on the real HS images. The proposed
method performs well on the simulated and real hyperspectral images.

The superiority of the proposed method is owing to the employment of the weighted least squares
filter and the intrinsic image decomposition. The WLS filter can make a proper compromise between
sharpening and blurring, which improves the spatial quality of the fused image. The IID is an effective
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technique to separate the HS image into the reflectance and illumination components, which plays an
important role in reducing the spectral distortion.

A simple yet effective fusion rule is introduced in this paper α determines the quantity of the finial
injected spatial details and influences the fusion performance directly. We have tested the performance
of the proposed method on various remote sensing images and many real satellite images with different
α settings. We found that α = 0.1 always give the best performance. In future work, we plan to
improve the performance of the proposed method by adaptively selecting parameter.

5. Conclusions

Hyperspectral pansharpening is an important subdivision of remote sensing image processing.
A novel hyperspectral pansharpening method based on IID and WLS filter has been presented in this
paper. The proposed method first obtains the spatial information of the P image with a weighted
least squares filter, in which the LOG enhancement algorithm was used for the spatial enhancement.
Then, the illumination component which is considered the spatial information of the HS image is
estimated with the intrinsic image decomposition technique. The fused image can be obtained by
injecting the detail map into each band of the deblurred interpolated HS image. The final injected
spatial information takes full account of the P and the HS images. The impact of data independence
can be eliminated. The existing problem of the CS and MRA-based fusion methods can be well solved
by the combination of an IID technique and a WLS filter. Experiments conducted on six synthetic
and real hyperspectral datasets demonstrated that the proposed method performs better than the
state-of-the-art fusion methods as well as the CS and MRA-based fusion methods in terms of visual
inspection and objective analysis.
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Abbreviations

P Panchromatic
HS Hyperspectral
WLS Weighted least squares
IID Intrinsic image decomposition
OH Original hyperspectral image
UH Interpolated hyperspectral image
H Deblurred interpolated hyperspectral image
D Detail map
CC Cross correlation
SAM Spectral angle mapper
RMSE Root mean squared error
ERGAS Erreur relative globale adimensionnelle de synthèse
UIQI Universal image quality index
PCA Principal component analysis
GFPCA Guided filter PCA
CNMF Coupled nonnegative matrix factorization
MTF Modulation transfer function
MGH MTF-generalized Laplacian Pyramid with high pass modulation
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