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Abstract: Radiation normalization is an essential pre-processing step for generating high-quality 
satellite sequence images. However, most radiometric normalization methods are linear, and they 
cannot eliminate the regular nonlinear spectral differences. Here we introduce the well-established 
kernel canonical correlation analysis (kCCA) into radiometric normalization for the first time to 
overcome this problem, which leads to a new kernel method. It can maximally reduce the image 
differences among multi-temporal images regardless of the imaging conditions and the reflectivity 
difference. It also perfectly eliminates the impact of nonlinear changes caused by seasonal variation 
of natural objects. Comparisons with the multivariate alteration detection (CCA-based) 
normalization and the histogram matching, on Gaofen-1 (GF-1) data, indicate that the kCCA-based 
normalization can preserve more similarity and better correlation between an image-pair and 
effectively avoid the color error propagation. The proposed method not only builds the common 
scale or reference to make the radiometric consistency among GF-1 image sequences, but also 
highlights the interesting spectral changes while eliminates less interesting spectral changes. Our 
method enables the application of GF-1 data for change detection, land-use, land-cover change 
detection etc. 

Keywords: kernel version of canonical correlation analysis; radiometric normalization; Gaofen-1 
satellite; nonlinear invariant features 

 

1. Introduction 

There is an increasing demand for image sequence analysis, because of the growing use of multi-
sensor and multi-temporal remote sensing data to monitor the land-use and land-cover change 
(LUCC) and climate change, as well as to analyze the global resource environment [1–4]. A satellite 
image sequence is usually constructed from multi-temporal images generated by one common sensor 
or multiple sensors. Radiometric normalization is a fundamental method used in the pre-processing 
of satellite image sequence analysis, especially in the pre-processing of change detection [5]. 
Radiometric normalization can directly make use of the pixel values of an image to establish the 
corresponding transformation equation for each multi-spectral band in multi-temporal remote 
sensing data, without the request of any other parameters such as the atmospheric conditions when 
the remote sensing data obtained [6]. In such a context, radiometric normalization is called spectral 
alignment [7]. Radiometric normalization builds not only the common radiometric scale/reference 
but also the radiometric consistency among an image sequence. 

Most radiometric normalization methods make use of the pseudo-invariant feature (PIF) to 
obtain the common scale among an image sequence (PIF)-based [5,8,9]. It is well-known that these 
invariant features—the targets whose spectral reflectance does not change over time, are necessary 
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for the atmospheric normalization of temporal image sequences, and thus they are the basis of image 
sequence analysis [10]. All the PIF-based methods are linear, and they minimize the image 
radiometric differences caused by different acquisition conditions, such as atmospheric conditions, 
earth-sun distance, detector calibration, illumination angles, viewing angles and sensor oscillation 
[5,6,11–13]. 

The core problem of PIF-based methods is the selection of appropriate PIF points [13]. From 
simple to sophisticated, various PIF-based methods were developed for image normalization, such 
as the Ridge method [2,14–16], Simple image regression [4], Dark set-Bright set (DB) [17] and 
Automatic Scattergram Control Regression (ASAR) [18,19], etc. Specifically, Canty and Nielsen 
developed a powerful and widely used method, the iteratively reweighted multivariate alteration 
detection (iRMAD) transformation, which is invariant to linear and affine scaling. One advantage of 
this method is that only one parameter needs to be specified, i.e., the chi-squared percentile [20–23]. 

However, such a linear radiometric normalization cannot eliminate the nonlinear spectral 
differences, especially the surface reflectance differences [24]. In fact, beside PIFs, there are another 
two kinds of features/targets in image sequences. One kind of features/targets is the feature whose 
spectral reflectance changes regularly or expectably over time, such as vegetation growth. The other 
kind of features/targets is the feature whose spectral reflectance changes irregularly over time, such 
as city expansion and human activity trails. When these irregularly changed features are analyzed in 
an image sequence, the regularly changed features are the disturbances that need to be eliminated or 
attenuated by radiometric normalization. The changes caused by the growth of the vegetation are the 
most typical non-linear changes in radiometric value of image sequence. Especially, they may induce 
serious disturbance when the human induced changes are detected. Therefore, different spectral 
changes need different radiometric normalization methods. If the change detection involves the 
vegetation variation which needs to be preserved and enhanced, the impact from other features’ 
changes should be eliminated as much as possible. 

Eliminating the effects of the regularly nonlinear spectral differences caused by seasonal 
variation of natural objects requires a nonlinear radiometric normalization method. Histogram 
matching is a commonly used nonlinear method, but it only uses global statistical information. Thus, 
it is less flexible and so difficult to adapt to specific applications [4,25]. 

In this paper, we propose a novel method of nonlinear radiometric normalization to extract 
nonlinear relationship between multi-temporal image-pairs. The proposed method is based on the 
kernel version of canonical correlation analysis (kCCA) [1,26–31], that consists of two steps. First, the 
image-pairs are quantitatively evaluated to extract the unchanged pixels whose Features are 
Nonlinear Invariant in kernel space (NIFs). Second, the nonlinear transformation of image-pairs is 
obtained from the nonlinear regression of the NIFs extracted previously. We will analyze the 
characteristics of NIFs distribution, nonlinear transformations and radiometric normalization results 
from different temporal image-pairs and compare the results with PIFs-based (CCA-based) method 
and histogram matching method. The PIFs-based method is derived from CCA of the spectral 
alignment of linear transformations, and the histogram matching is derived from statistical 
distribution models. 

The paper is organized as follows: In Section 2, we describe the principle of the kernel version 
of CCA, as well as the selection of NIFs. Section 3 presents the test data and the experimental results, 
Section 4 is the discussion about the results. Section 5 we give the conclusion of the paper. 

2. Relative Radiometric Normalization Based on kCCA Transformation 

The proposed method contains two steps: the extraction of NIFs using kCCA and the use of NIFs 
to derive radiometric normalization. In this section, we review the kCCA transformation and how to 
extract NIFs based on it. 

2.1. kCCA Transformation and NIFs Extraction 

kCCA is the kernel version of CCA [7]. CCA is a multivariate feature extraction method that 
aims at finding the rotation of two sets of variables that maximizes their joint correlation [32]. In 



Remote Sens. 2017, 9, 432 3 of 22 

 

principle, CCA tends to select a group of representative indicators (linear combination of variables) 
from the two sets of random variables. These indicators express the correlation between the two sets 
of variables. 

kCCA introduces the theory of kernel functions into CCA, which maps data from a low-
dimension to a high-dimensional feature space. Each kernel function converts an n-dimensional inner 
product in low-dimensional space into an m-dimensional inner product in high-dimensional space. 
Let , ∈ , the nonlinear function ϕ( ) converts  to : → ϕ( ) ( ≪ ), using the kernel 
function: ( , ) =< ( ), ( ) >, (1)<, > is the inner product, and ( , ) is a kernel matrix [33,34]. It is not necessary to know the form 
and parameters of the nonlinear transformation function ( ) in advance. The kCCA method maps 
the target image and the reference image into high dimensional space in which their linear 
combination can be obtained. The canonical variable in high dimensional is defined as follows, = ( ), (2)= ( ), (3)

where  represents the target image matrix. Each row of  is a sample vector, and thus  has size ×  where n is the number of bands and  is the number of sample points of the image-pair.  
can be rewritten as × = ( , ⋯ ) by column vectors .  represents the reference image 
matrix and similarly  can be rewritten as × = ( , ⋯ ).  and  are constant vectors of 

. U denotes the linear combination of  in the high-dimensional feature space; and V denotes the 
linear combination of  in the high-dimensional feature space. The workflow of kCCA is shown in 
Figure 1. Similar to the solving process of linear correlation analysis, the first step is to solve  and 

 so that the correlation coefficients of the combined variables  and  are maximized. 

 
Figure 1. The workflow of kernel CCA. 

To solve the vectors  and  in a lower dimensional space,  and  (of length m) are 
projected onto the vectors  and  (of length n) with a lower dimension. = ∑ ( ), (4)= ∑ ( ), (5)

where × = ( , ⋯ ) , × = ( , ⋯ ) . Then the problem of solving the high-
dimensional vectors  and  is simplified as a problem of solving the low-dimensional vectors  
and . By substituting into Equations (2) and (3),  and  can be rewritten as: = ∑ < ( ), ( ) >, (6)= ∑ < ( ), ( ) >, (7)

According to Equation (1) of the kernel function and the description followed, the kernel matrix 
can be defined, ( , ) = , =< ( ), ( ) >, (8)
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( , ) = , =< ( ), ( ) >, (9)

Using the definition of kernel matrix in Equations (8) and (9), we obtain that the variance and 
covariance of  and  are as follows: ( ) = Var( ( )) = , (10)( ) = , (11)( , ) = , (12)( ) is the variance and ( ) is the covariance. The key step in the kCCA transformation is 
to solve the corresponding  and  when the correlation coefficient is maximized. According to 
the above formula Equations (10)–(12), we obtain, = max, ( , )( ) ( ) = max, ∙ , (13)

where  is the Pearson correlation coefficient. The problem can be simplified as an optimization 
problem, max,  . . ∶ = = , (14)

This optimization problem has the equality constraints that can be solved by the Lagrange 
multiplier, = − ( − ) − ( − ), (15)

By taking derivatives with respect to  and , we obtain, 
, = 0 ⟹ = ( + (1 − ) ) , (16)

, = 0 ⟹ = ( + (1 − ) ) , (17)

 and  are both regularization coefficients. Together with the constraints, Equations (16) and (17) 
implies that =  and we define = = . The above equation can be converted into the 
eigenvalue problem, ( + (1 − ) ) = ( + (1 − ) ) , (18)( + (1 − ) ) = ( + (1 − ) ) , (19)

By solving the above equation, we get  and the corresponding canonical vectors  and V in 
Equations (2) and (3). 

The non-linear NIFs can be chosen according to Nielsen’s [23,35]  method. The  
method uses the components of  and , i.e.,  and  to define the variation, = − , (20)

and we get, Cov − , − = 2 (1 − ), (21)

= 0 = ;1 ≠ ;. (22)

The covariance matrix of  variables is a diagonal matrix: 

∑ = Cov{ } = 0 ⋯ 00⋮ ⋮0 0 ⋯ 0⋱ ⋮⋯ . (23)
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The diagonal element  is the variance of , ordered decreasingly ≥ ≥ ⋯ ≥ , 
which gives = 2(1 − ). Using the concept of contribution proposed by Nielsen, the contribution 
of  is, = ∑ = 1,2, … , (24)

The formula Equation (24) indicates that the variable carries information of the ratio of the 
variation. Since the accumulated contribution of the first  variables ( ∑ ) is called the 
accumulative contribution ratio, the last few variables in −  contain the unchanged pixels 
between the image-pair, and we can select them as NIFs. If we denote, Z = ∑ ( ) , (25)

the points that satisfy the following probability conditions are selected as NIFs: ( ℎ ) = 1 − , ( ), (26)

where , () refers to a chi-square test of the  degrees of freedom. (  ℎ ) is used to 
select NIFs in the kernel space. Pixels above the fixed threshold τ, i.e., (  ℎ ) > τ, are NIFs. 
Normally, the threshold τ needs to be larger than 0.9 to masked out the water, cloud pixels, shadow 
points in the NIFs. The value of the threshold τ affects the number of the extracted NIFs, as discussed 
in detail in Section 3.4.2. 

2.2. Fitting Non-Linear Transformation for Radiometric Normalization 

Based on NIFs, the non-linear transformation can be derived by means of the least squares 
regression and the key is the selection of transformation. From Section 2.1, we know that NIFs = {( , ),1 − , ( ) > τ}, (27)

If we set the subspace = { , = ∑ , , ( , ) ∈ } as the reproducing kernel 
Hibert space of , , and = { , = ∑ , , ( , ) ∈ }  as the reproducing 
kernel Hibert space of , , we can regard ∈ , ∈ . 

The available kernels include: ( , ) = , (28)( , ) = ( + ) , (29)( , ) = (− ‖ − ‖ ), (30)( , ) = ( + ). (31)

In this paper, we choose polynomial kernel  with n = 3, γ = 1, c = 2 as an example, and 
we use a more general representation, (x) = + + + ⋯ + , (32)

where  is the pixel value of NIFs in the test data. We assume that  is the fitted value of the 
above equation.  is the corresponding pixel value of the reference image. The least square method 
is used to minimize | − ( )|  to solve the coefficients { , , , } of the above polynomial 
Equation (32). Once the coefficients are resolved, we use Equation (32) do the radiometric 
normalization. 
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3. Data and Results 

3.1. Test Data  

In this work, we use the subsets of 2025 × 2205 pixels of the Gaofen-1(GF-1) data with a spatial 
resolution of 16m as the test set. GF-1 was launched by China on 26 April 2013. It carries two cameras with 
2 m resolution (panchromatic) and 8 m resolution (multi-spectral), and four multi-spectral cameras with 
16 m resolution. The band setting of the GF-1 multi-spectral sensor is similar to that of other high-
resolution and wide-spectrum satellite sensors, such as QuickBird, IKONOS, and GeoEye-1, with blue, 
green, red, and near-infrared bands. We refer the parameters of payload of GF-1 to Table 1. 

Table 1. Parameters of payload of GF-1. 

Satellite Performance Technical Capability 

Satellite Orbit 

type Solar synchronous circular orbit 
Average orbit height 644.5 km 
descending/ascending nod sun-
synchronous 10:30 a.m. 

regressive period 41 days 

Revisit/Coverage characteristic 

Revisit: 4 days for 2/8 m camera under 
side sway 
Coverage:4 days for 16 m camera; 41 
days for 2/8 m camera; 

High resolution 
imaging 

Spectrum/um 
Panchromatic: 0.45–0.90um 
B1: 0.45–0.52 um; B2: 0.52–0.59 um; 
B3: 0.63–0.69 um; B4: 0.77–0.89 um; 

resolution 
Panchromatic: better than 2 m 
Multispectral: better than 8 m 

Swath width (km) >60 

Wide imaging 
Spectrum/um 

B1: 0.45–0.52 um; B2: 0.52–0.59 um; 
B3: 0.63–0.69 um; B4: 0.77–0.89 um; 

resolution Better than 16 m 
Swath width (km) >800 

To investigate the nonlinear transformation effects derived from NIFs in high dimensional 
space, 6 GF-1 images obtained from 2013 to 2014 each of which contains all 4 seasons (see Table 2 for 
details) are tested, as shown in Figure 2. The geographical area of the images is in the northern region 
of Beijing, China. Most of the land is covered by vegetation, man-made objects, water. 

Table 2. Acquisition date of test data. 

Image Name Image Date
Image0705 5 July 2013 
Image0717 17 July 2013 

Image1002reference 2 October 2013 
Image1214 14 December 2013 
Image0330 30 March 2014 
Image0403 3 April 2014 

The preprocessing of test data includes radiometric calibration, ortho-rectification, and image 
registration. Here radiometric calibration converts the DN value to the top of atmosphere reflectance 
(TOA). The GF-1 image acquired in 2 October 2013 is cloud free and has good visibility. There are 
visible seasonal differences between the image and the others. It is chosen as the reference in 
geometric space and radiometric space. Each of other test images is at first registered to it 
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geometrically, and then GF-1 and the test image are used as the image-pair to extract NIFs and do 
radiometric normalization. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 2. The GF-1 images of the test area (Beijing, China). The GF-1 data, (a–f) are image0330, image 
0403, image0705, image0717, image1002 and image1214, acquired in 30 March, 3 April, 5 July, 17 July, 
2 October, 14 December 2013. 

3.2. NIFs Distribution Map 

The parameters of the kCCA-based method used to extract NIFs include the regularization 
parameter = 0.0001 and threshold of ( ℎ ) τ = 99%. 

The distribution map of the extracted NIFs is indicated in Figure 3, where the NIFs are 
represented by green points. The total numbers of NIFs in image 0330, image 0403, image 0705, image 
0717 and image 1214 are 31027, 14839, 124071, 11466 and 10078, respectively. Most of NIFs locate in 
the vegetation area. The proposed method can extract much more NIFs than that of CCA-based 
method, which only extracts 2432, 2382, 1014, 2074 and 1069 PIFs, respectively. Here the points with 
a normalized vegetation index (NDVI) larger than 0.2 are considered as vegetation targets. Figure 4 
shows the ratio of NIFs in vegetation area to the total number of NIFs. The blue one in pie chart 
represents the percentage of NIFs in vegetation area. The ratio of NIFs in vegetation area are 55.1%, 
88.5%, 83.4%, 92.1% and 78.4%, respectively. 

According to the distribution map of NIFs, kCCA can select more NIFs than CCA, which 
indicates that the spectral variation of the corresponding points between the image-pair are mostly 
nonlinear. Moreover, since most NIFs are distributed in the vegetation area, it indicates that the 
spectral changes caused by vegetation growth over time are regular and predictable, and thus they 
can be detected by NIFs. 
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(a) (b) (c) 

 
(d) (e)

Figure 3. The distribution map of NIFs selected by the kCCA transformation. (a–e) are, in order, 
image0330, image0403, image0705, image0717 and image1214. The green points are the NIFs of each 
image. 

  
(a) (b) (c) (d) (e) 

Figure 4. The ratio of NIFs in vegetation area to the total number of NIFs. (a–e) refer to the result of 
image0330, image0403, image0705, image0717 and image1214, respectively. The blue represents the 
NIFs in vegetation area and the yellow is the other NIFs. 

3.3. Derive Nonlinear Transformations from NIFs 

Figure 5 is the scatter plot of the density of the NIFs in blue band of test data. The horizontal axis 
is the TOA value of the test data that linearly stretched from 0–1 to 0–255. The vertical axis is the 
corresponding value of the reference image. This density map apparently shows the non-linearity of 
NIFs between image-pairs. 
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(a) (b) (c) 

 
(d) (e)

Figure 5. The density scatter plot map of the NIFs. The horizontal axis in the figure is the TOA value 
of the original image that linearly stretched from 0–1 to 0–255, and the vertical axis is that of the 
reference image. (a–e) refer to the result of image0330, image0403, image0705, image0717 and 
image1214, respectively. 

Table 3 shows the fitting coefficients and regression error of Equation (27). Mr is the average of 
the residuals and Sr is the standard deviation of the residuals. As indicated in Table 3, the absolute 
values of the cubic coefficients of image0330, image0403 and image1214 are significantly larger than 
those of image0705 and image0717. 

Table 3. The coefficients and error ratios of regression equation a0, a1, a2 and a3 represent the 
coefficients of the constant term, the linear term, the quadratic term, and the cubic term, respectively. 
Mr is the average of the difference between the function value and the expected value, and Sr is the 
standard deviation. 

  a3 a2 a1 a0 Mr Sr 

Image 0330 

Band1 18.3284 −13.3953 3.1748 −0.1532 0.019194 0.000002 
Band2 21.5494 −14.4433 3.1393 −0.1489 0.019906 0.000003 
Band3 10.9105 −7.7441 1.8255 −0.0855 0.02473 0.000004 
Band4 1.4785 −1.7238 0.7561 0.072 0.035371 0.000007 

Image 0403 

Band1 −7.367 5.2422 −0.5349 0.0748 0.011784 0.000012 
Band2 −3.0287 2.4336 −0.0403 0.0372 0.01312 0.000013 
Band3 −1.8955 2.0456 −0.099 0.0288 0.018398 0.000015 
Band4 7.3705 −6.866 2.1832 −0.046 0.030512 0.000037 

Image 0705 

Band1 −0.7959 0.4918 0.194 0.0297 0.010231 0.000024 
Band2 −0.4582 0.0524 0.3273 0.0071 0.011725 0.00002 
Band3 0.173 −0.4517 0.4073 0.0041 0.015785 0.000023 
Band4 0.0878 −0.2848 0.3699 0.0379 0.0341 0.000083 

Image 0717 
Band1 −2.2136 2.4316 −0.445 0.0895 0.008238 0.000082 
Band2 −0.7765 0.7466 0.1471 0.0187 0.009817 0.00005 
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Band3 −0.0018 0.0113 0.3381 0.0061 0.013293 0.000033 
Band4 0.6642 −1.2344 0.9188 −0.0681 0.031373 0.000042 

Image 1214 

Band1 −87.0617 28.3288 −1.1949 0.0675 0.010096 0.000023 
Band2 −44.4402 12.7071 0.2623 0.02687 0.011614 0.000023 
Band3 −41.5801 14.5948 −0.1363 0.0267 0.017183 0.000032 
Band4 13.8154 −9.1873 2.0127 0.07651 0.026603 0.000044 

Figure 6 shows the transformation function between test image-pair. The red, green, purple, 
black, and cyan-blue curve denotes the transformation function between the image-pair (image0330, 
image1002), (image0403, image1002), (image0705, image1002), (image0717, image1002), and 
(image1214, image1002), respectively. (a–d) are the results fitted by NIFs, (e–h) are results fitted by 
PIFs. From (a–h), we find that the nonlinear relationship fitted by NIFs between image-pairs increases 
with the time span. Similarly, the absolute value of the cubic coefficient in Table3 is relatively larger 
and the slope of the linear relationship fitted by PIFs also increase with the time span. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 6. The fitted functions of the four band for the 5 test GF-1 image-pairs. (a–d) refer to the results 
of band1, band2, band3 and band4 based on the proposed method. (e–h) are the linear regression 
equations of the PIFs-based method. —is the fitted function of image0330 and the reference, —is that 
of image0403 and the reference, —is that of image0705 and the reference, —is that of image0717 and 
the reference, —is that of image1214 and the reference. 

Figure 7a–e shows a superimposed display of the NIFs and the fitted curve of NIFs and Figure 7f–j 
shows that of the PIFs and the curve of the fitted functions based on the PIFs described in Figure 6. 
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(a) (b) (c) 

 
(d) (e) 

 
(f) (g) (h) 

 
(i) (j) 

Figure 7. The superimposed display of the NIFs and PIFs distribution map and the curve of the fitted 
functions based on the NIFs and PIFs described above. The horizontal axis in the figure is the TOA 
value of the original image, and the vertical axis is that of the reference image. (a–e) refer to the NIFs 
results of image0330, image0403, image0705, image0717 and image1214, respectively. (f–j) are that of 
PIFs results. 

3.4. Radiometric Normalization Results 

According to the transformation given in Table 3, the image can be radiometrically normalized. 
Figure 8 shows the radiation normalization results of the CCA, kCCA and the histogram matching. 
Each image in Figure 8 is a mosaic image of the reference image (right) and the normalization result 
(left). Figure 8a shows the original mosaic images and the reference, in which the spectrums of the 
image-pairs are visually different and in particular, the spectral difference of vegetation increases with 
the time span between the image-pair. The normalization results of the PIFs-based method (Figure 8b) 
show that the spectral differences still exist, especially in the vegetation area. The normalization results 
of the kCCA-based method (Figure 8c) show the spectral differences are significantly reduced, even 
though the vegetation in spring of image0330 and in winter of image1214 shows similar spectral 
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characteristics with the vegetation in early autumn of image1002. The results of the histogram matching 
(Figure 8d) show that spectral differences are well reduced. 

   

  
(a) 

   

  
(b) 
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(c) 

   

  
(d) 

Figure 8. The comparison of the results of radiometric normalization based on the kCCA 
transformation, the CCA method and the histogram matching. Each image is a mosaic image. The left 
one is the corrected image, and the right one is the reference image. (a) is the test data and the reference 
image; (b) is the results of the CCA algorithm and the reference images; (c) is the results based on 
NIFs extracted by the kCCA transformation; (d) is the results of the histogram matching. 

3.4.1. Clouds Pixels in the Image 

Towards a quantitative comparison of the proposed radiometric normalization with the CCA-
based method and with the histogram matching method, we first discuss the effects of cloud pixels 
and threshold τ for NIFs extraction and radiometric normalization transformation. The effect caused 
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by cloud pixels is an unavoidable problem that must be considered in remote sensing image 
radiometric normalization. The usual approach is to mask out the cloud pixels from an image-pair. 
We use the automatic threshold method to do cloud detection [36]. In fact, if cloud pixels are falsely 
selected as NIFs, bias will be induced into transformation. The image0330 with clouds is randomly 
selected as a test image. Following the NIFs extraction steps in Section 3.2, if the cloud pixels have 
not been masked out, some cloud pixels are selected as NIFs, as shown in the distribution map of 
NIFs (Figure 3a). 

Figure 9a,b show the radiometric normalization results of image0330, showing NIFs with and 
without cloud pixels. Visually, the brightness of the result including cloud pixels is relatively lower. 
This can be explained by the normalization transformation derived from NIFs. Figure 9c–f show the 
histogram of image0330, where we can see that the pixel values are mainly concentrated in [0.1, 0.4]. 
Figure 9g–j are the fitting curves of the four bands of the image-pair (image0330, image1002). The red 
and green curves denote the fitted curve from NIFs with and without the cloud pixels, respectively. 
According to the histogram, we notice that the TOA values of NIFs are mostly distributed between 
0.1 and 0.4. In this interval, the fitting values of the NIFs without cloud pixels in Figure 9 are obviously 
larger than that of the NIFs with cloud pixels, while out of this interval, the fitting values of the NIFs 
without cloud pixels is smaller. The resulting normalized image of NIFs with cloud fitting is darker 
than that without cloud fitting. 

 
(a) (b) 

(c) (d) (e) (f) 

(g) (h) (i) (j) 

Figure 9. The results of the radiometric normalization of image0330 based on two NIFs set and the 
fitted curve of the two normalized results. (a) is the result based on all NIFs (including the cloud-
NIFs), (b) is the result based on NIFs without cloud pixels, (c–f) are histogram of image0330. (g–j) are 
the fitted curve of four bands of image-pair (image0330 and image1002). — denotes the fitted curve 
using all NIFs including cloud pixels. — is the fitted curve using NIFs without the cloud pixels. 
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3.4.2. The Threshold Parameters τ for NIFs Extraction 

We use the formula ( ℎ ) = 1 − , ( ) > τ  to extract the NIFs. The threshold τ 
directly determines the number of NIFs selected. The number of NIFs increases with the value of τ. 
In Section 3, τ = 0.99  is used. Here we set the threshold to 0.95, 0.90 and 0.85 respectively to 
investigate the changes of NIFs distribution map and the normalization function. 

Table 4 is the number of NIFs with different τ of the image pair (image0717, image1002). It shows 
that the total number of NIFs and the number of NIFs in the vegetation area increase as the τ 
decreases, and the ratio change of NIFs in vegetation area changes is <0.5%, which is relatively stable. 
Figure 10a–c show the distribution maps of NIFs with different threshold τ. Figure 10d–g show the 
histogram of image0717. We can see that the pixel values of the red, green, and blue bands are mainly 
concentrated in [0.1, 0.4], and the pixel values of near infrared band are distributed between 0.1 and 0.8. 
Figure 10h–k are the fitting curves of the four bands using the above NIFs. It shows that the fitting curves 
for different thresholds τ are very similar in the corresponding interval range of the TOA values. 

 
(a) (b) (c) 

(d) (e) (f) (g) 
 

(h) (i) (j) (k) 

Figure 10. The distribution map of NIFs based on different threshold τ. The data is image0717. (a–c) 
are the distribution maps when τ = 0.95, τ = 0.90 and τ = 085. (d–g) are histogram of four bands of 
image0717. (h–k) are fitting curves of four bands based on the above NIFs. 

Table 4. The number of NIFs with different τ. 

 = 0.99 = 0.95 = 0.90 = 0.85 
Total number of NIFs 11466 27596 41421 53453 

NIFs in vegetation area 10563 25319 38021 49097 
Ratio of NIFs in vegetation area (%) 92.12 91.75 91.79 91.85 
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3.4.3. Quantitative Comparison of the Radiometric Normalization Results 

We use the root mean square error (RMSE), Pearson correlation coefficient and histogram 
similarity to evaluate the similarity of the radiometric normalization results of proposed method with 
the CCA-based method and the histogram matching method.  

RMSE is used to evaluate the similarity between the normalized image and the reference image. 
RMSE is defined as follows, RMSE = | | ∑ ( − ) , (33)

where  is the pixel value of the normalized data,  is the pixel value of the reference image, 
and| | is the total number of pixels. The smaller the value of RMSE is, the higher the similarity 
of the two images is.  

Pearson correlation coefficient is used to measure the linear correlation between the normalized 
image and the reference image. The Pearson correlation coefficient is defined as follows, = ∑( )( )∑( ) ∑( ) , (34)

where  denotes pixel value of the normalized data,  denotes the average of the normalized data, 
 denotes the corresponding pixel value of the reference data, and  denotes the average of the 

reference data. 
Histogram similarity measured by the histogram correlation which is used to calculate the linear 

correlation between the two histograms of the normalized image and the reference image. The 
histogram correlation is defined as follows, ( 1, 2) = ∑( )( )∑( ) ∑( ) , (35)

where 1 is the histogram of the normalized data, 1 is the mean of 1, 2 is the histogram of 
the reference data, 2  is the mean of 2 . The similarity positively correlates to the histogram 
correlation. 

Table 5. RMSE is the RMSE of the test data and reference image, ρ  is the Pearson correlation 
coefficients of the test data and reference image,  is histogram correlation of the test data and 
reference image. 

 RMSE
image pair (imag0330, image1002) 
Band 1 0.09 0.32 0.04 
Band 2 0.09 0.40 0.03 
Band3 0.12 0.45 -0.05 
Band 4 0.06 0.36 0.74 

image pair (imag0403, image1002) 
Band 1 0.07 0.80 0.02 
Band 2 0.07 0.77 0.05 
Band3 0.10 0.71 -0.02 
Band 4 0.06 0.51 0.69 

image pair (imag0705, image1002) 
Band 1 0.15 0.80 0.07 
Band 2 0.15 0.77 0.09 
Band3 0.13 0.78 0.09 
Band 4 0.42 0.40 0.24 

image pair (imag0717, image1002) 
Band 1 0.15 0.89 0.07 
Band 2 0.14 0.87 0.08 
Band3 0.11 0.86 0.07 
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Band 4 0.38 0.46 0.23 
image pair (imag1214, image1002) 
Band 1 0.03 0.81 0.43 
Band 2 0.02 0.81 0.78 
Band3 0.02 0.73 0.75 
Band 4 0.11 0.67 -0.04 

Tables 5 and 6 are the RMSE, Pearson correlation coefficient and histogram similarity between 
each multi-temporal image and the reference image before and after radiometric normalization. Here 
RMSECCA is RMSE of the radiometric normalization results from the CCA-based method, RMSEkCCA 
is RMSE of the results from the kCCA-based transformation, and RMSEH is RMSE of the results from 
the histogram matching method. ρ , ρ  and ρ  are Pearson correlation coefficients of the 
radiometric normalization results from the CCA-based, kCCA-based and the histogram matching 
methods, respectively. ρ , ρ  and ρ  are histogram correlation of the radiometric 
normalization results from the CCA-based, kCCA-based and the histogram matching methods, 
respectively. 

Table 6. RMSECCA is the RMSE of the radiometric normalization results based on CCA algorithm, 
RMSEkCCA is the RMSE of the results based on NIFs extracted by the kCCA transformation, RMSEH is 
the RMSE of the results based on the histogram matching method. ρCCA, ρkCCA and ρH are the Pearson 
correlation coefficients of the radiometric normalization results based on the CCA algorithm, kCCA 
transformation and the histogram matching method. ρ , ρ  and ρ  are histogram correlation 
of the radiometric normalization results based on the CCA algorithm, kCCA transformation and the 
histogram matching method. 

 RMSECCA RMSEkCCA RMSEH CCA kCCA H   
image pair (imag0330, image1002) 

Band 1 0.02 0.02 0.02 0.32 0.42 0.32 0.58 0.69 0.98
Band 2 0.02 0.02 0.02 0.40 0.47 0.39 0.77 0.78 0.97
Band3 0.03 0.02 0.03 0.45 0.47 0.41 0.73 0.75 0.98
Band 4 0.04 0.03 0.04 0.36 0.37 0.37 0.81 0.82 0.94

image pair (imag0403 image1002) 
Band 1 0.01 0.01 0.01 0.81 0.81 0.80 0.95 0.95 0.98
Band 2 0.01 0.01 0.01 0.78 0.78 0.77 0.93 0.93 0.99
Band3 0.02 0.02 0.02 0.71 0.72 0.71 0.86 0.93 0.99
Band 4 0.06 0.03 0.04 0.51 0.55 0.55 0.74 0.89 0.95

image pair (imag0705, image1002): 
Band 1 0.02 0.01 0.01 0.80 0.83 0.81 0.92 0.93 1.00
Band 2 0.02 0.01 0.01 0.77 0.80 0.78 0.98 0.94 0.91
Band3 0.03 0.01 0.02 0.78 0.79 0.77 0.97 0.91 0.88
Band 4 0.06 0.03 0.04 0.41 0.42 0.38 0.82 0.81 0.99

image pair (imag0717, image1002): 
Band 1 0.01 0.01 0.01 0.89 0.89 0.89 0.94 0.94 0.99
Band 2 0.01 0.01 0.01 0.87 0.87 0.87 0.94 0.94 0.98
Band3 0.02 0.01 0.01 0.86 0.86 0.86 0.93 0.93 0.98
Band 4 0.06 0.03 0.04 0.47 0.47 0.46 0.88 0.88 0.99

image pair (imag1214, image1002): 
Band 1 0.01 0.01 0.01 0.83 0.85 0.85 0.81 0.85 0.85
Band 2 0.01 0.01 0.01 0.81 0.82 0.82 0.86 0.88 0.88
Band3 0.02 0.02 0.02 0.74 0.76 0.74 0.74 0.79 0.86
Band 4 0.03 0.03 0.03 0.67 0.68 0.67 0.77 0.90 0.92
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4. Discussion 

The paper focused on the radiometric normalization of satellite image sequence analysis, 
especially, the elimination of the spectral difference among the images caused by different image 
acquisition conditions and the effects of the regularly nonlinear spectral differences caused by 
seasonal variation of natural objects. We proposed a novel method, i.e., the kCCA, to select nonlinear 
radiation control points-NIFs and to derive the nonlinear transformation of image-pairs using the 
least squares regression method. 

The total number of the selected NIFs were larger than that of the linear radiometric 
normalization method (CCA). This indicates that the spectral variation of the corresponding points 
between each image-pair is mostly nonlinear. Moreover, since most NIFs were distributed in the 
vegetation area, it indicates that the spectral changes caused by vegetation growth over time are 
regular and predictable, and thus they can be detected by NIFs. Figure 9 showed us that the effect of 
cloud pixels was a problem that must be considered in the extraction of NIFs and that the removal of 
cloud pixels can improve the accuracy of radiometric normalization. The chi-squared percentile τ 
directly determined the number of NIFs. Table 4 showed that the total number of NIFs and the 
number of NIFs in the vegetation area increased as the τ decreased. However, the ratio of NIFs in 
vegetation area was relatively stable and the fitting curves for different thresholds τ were similar. 
Therefore, we should appropriately choose the value of τ so that we can get enough invariant points 
to fit the nonlinear relationship. If the value of τ is too small, the numbers of NIFs will be quite large, 
which leads to higher computation afford. 

By using of the least squares regression, we have derived relationships between image-pairs 
from NIFs. The scatter plot map of the NIFs density (Figure 5) showed us that the relationships were 
nonlinear. Table 3 and Figure 6 showed that the nonlinear relationship positively correlated with the 
time span between image-pairs. 

Table 5 and Table 6 showed that the kCCA-based nonlinear radiometric normalized images had 
the smallest RMSE and the largest correlation coefficient with the reference image. As the time span 
increased, the RMSE increased and the correlation coefficient decreased, and so was that of the 
normalized images based on the CCA method. Radiometric normalized images of the histogram 
matching method had the largest RMSE and the smallest correlation coefficient with the reference 
image. It means the kCCA-based normalization can preserve more similarity and better correlation 
between image-pairs than the CCA algorithm and histogram matching. Histogram similarity is an 
index that measures the color difference between an image-pair. The histograms of the radiometric 
normalized images using the histogram matching had the highest histogram similarity with the 
reference image, those of kCCA transformation had the second highest similarity, while the CCA-
based linear radiometric normalized results had the lowest similarity. However, the histogram 
matching uses global statistical information for normalization which eliminates all the spectral 
difference between an image-pair, including the difference must be preserved. Compared with the 
CCA-based linear normalization, the proposed method can better avoid the color error propagation. 

In general, the kCCA-based normalization can either preserve more similarity and correlation 
between each image-pair or effectively avoid the color error propagation. The proposed method not 
only builds the common scale or reference to make the radiometric consistency among GF-1 image 
sequences, but also highlights the interesting spectral changes while eliminates less interesting 
spectral changes. Our method enables the application of GF-1 data for change detection, land-use, 
land-cover change detection etc. 

5. Conclusions  

In this paper, we presented a novel method to perform nonlinear relative spectral alignment and 
radiometric normalization for high-resolution wide-spectrum multi-temporal satellite images. The 
method used the kernel canonical correlation analysis transformation (kCCA) to extract NIFs, a set 
of samples belonging to unchanged area in the kernel space, and to align the relative spectrum of two 
images using the NIFs-fitted nonlinear relationship. The proposed approach does not need full 
supervision. The presented approach may be used as a preprocessing technique for change detection 
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of multi-temporal images, especially when the vegetation spectral changes of multi-temporal images 
is a disturbance of change detection. Furthermore, we qualitatively and quantitatively compared the 
radiometric normalization results of the proposed method with CCA-based PIFs method and the 
histogram matching method derived from statistical distribution. The comparison indicated that the 
radiometric normalization result of the proposed method had the best linear correlation and least 
bias with the reference, whereas the radiometric normalization of the histogram matching had the 
best histogram similarity with the reference image. Finally, in this paper we dealt only with pixel-
wise approaches for both the relative spectral alignment and radiometric normalization using the 
polynomial kernel canonical correlation analysis transformation. In future, we will address the use 
of different kernel function space, mixed kernel function space and the spatial context to improve 
both the alignment and the radiometric normalization. This would open many applications of very 
high-resolution imagery, because high-resolution multi-temporal image-pairs have more complex 
non-linear relationship and the semantic classes cannot be modeled pixel-wise. 
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