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Abstract: Major challenges for automatic ship detection in optical remote sensing (ORS) images include
cloud, wave, island, wake clutters, and even the high variability of targets. This paper presents a practical
ship detection scheme to resolve these existing issues. The scheme contains two main coarse-to-fine
stages: prescreening and discrimination. In the prescreening stage, we construct a novel visual saliency
detection method according to the difference of statistical characteristics between highly non-uniform
regions which allude to regions of interest (ROIs) and homogeneous backgrounds. It can serve as a guide
for locating candidate regions. In this way, not only can the targets be precisely detected, but false alarms
are also significantly reduced. In the discrimination stage, to get a better representation of the target,
both shape and texture features characterizing the ship target are extracted and concatenated as a feature
vector for subsequent classification. Moreover, the combined feature is invariant to the rotation. Finally,
a trainable Gaussian support vector machine (SVM) classifier is performed to validate real ships out
of ship candidates. We demonstrate the superior performance of the proposed hierarchical detection
method with detailed comparisons to existing efforts.
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1. Introduction

Sea target detection has been a standing topic in the field of remote sensing image processing
for several decades due to the wide range of applications, such as fishery management, vessel traffic
services, illegal oil spills, naval warfare, and maritime activities, etc. From the perspective of data sources,
ship detection can be roughly classified into three domains: synthetic aperture radar (SAR) images,
infrared (IR) images, and visible remote sensing (VRS) images. Because the synthetic aperture radar (SAR)
method has the capacity to image day and night regardless of weather conditions, all SAR-based methods
expend greatly, achieving impressive performance. However, the invisibility of small and wooden boats
in SAR images may result in detection failures. Besides, lack of color and texture features makes SAR
imagery unsuitable for recognizing the ship targets. IR images are employed to enhance the vision
effect in weak light conditions but they also have some drawbacks, such as poor signal-to-noise ratio,
insufficient structure information, and varied gray levels [1]. Compared with SAR and IR images, the VRS
images investigated in this paper are more intuitive and capture more details and complex structures of
an observed scene, which can be further used in target recognition. However, the above-mentioned facts
about VRS images complicate the background and pose three main challenges to ship detection:

• The high variability of targets caused by the viewpoint variation, imaging sensor parameters,
occlusion, ship wakes, color, speed, and material of ships, etc.
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• High false alarm rate due to islands, heavy clouds, ocean waves, and the various and uncertain
sea state conditions, like partial cloud cover, fog, wind, and swell.

• The third issue is the computation burden. Most detection methods have high computational
cost. Hence, reducing computational cost is considered to be a key issue for the large-scale remote
sensing images.

In consideration of these challenges mentioned above, we believe that a practical ship detection
method should meet two requirements: it should be robust to the interference of the high variability
of targets and background clutter such as waves, islands, clouds, and so forth. Of equal importance,
with the purpose of the engineering applications, it should have lower calculation complexity and
satisfy the requirements of real-time processing.

We have performed a thorough investigation into the existing approaches. Unfortunately, to our
best knowledge, most existing ship detection methods are only efficient under certain conditions and are
unable to satisfy all these goals simultaneously. For instance, some studies focused on discriminating
targets from their surroundings according to the difference of intensity contrast or statistical distribution
(e.g., [2,3]), but they are not suitable for the situation where the target intensity is similar to the background.
The method in [4] employed the Bayesian decision theory, which was only efficient for detecting some
small ship targets. With the development of machine learning, many researchers approached object
detection through feature extraction and two-class classification operations. For example, Zhu [2]
combined local multiple patterns with the shape and the texture features to enhance the discriminative
ability of the feature set, and then a semi-supervised classification was adopted to remove the false alarms.
However, the pre-detection algorithm only worked well on the images that had a quiet sea background.
Shi [5] employed a hyperspectral algorithm to extract candidate regions and a local feature descriptor
combined with AdaBoost classifier for discrimination. Nevertheless, they needed to generate four
classifiers to solve the variation of ship direction. Han [6] developed an algorithm by combining weakly
supervised learning (WSL) and high-level feature learning, which can reduce human labor for annotating
training data, but the multi-scale sliding window adopted to handle the different size of the targets is
time-consuming. In conventional machine learning-based methods, feature extraction is quite important
for high-performance object detection systems. However, the selection of distinguished features is still
a challenging problem. To alleviate this problem, deep learning, which can automatically learn features
from data, has been attempted for the recognition of the ship targets [7–9]. Zhou [7] designed a ship
detection method based on convolutional neural networks and a singular value decompensation algorithm.
Tang [8] exploited deep neural network for high-level feature representation and ship classification. Lin [9]
proposed a fully convolutional network to label every pixel of the input image into three classes: land,
sea and ships. However, such methods have complex training phases and the complex steps also make
the implementation difficult.

Since the ships in a VRS image of the sea are salient objects, they are usually sparsely distributed
and can easily be identified by the human visual attention system. Thus, the saliency models are
introduced to identify attention-grabbing regions which may contain salient objects. The saliency
model can be mainly divided into two types: spatial domain saliency, and transform domain
saliency. For the former, one of the earliest spatial domain saliency models was proposed by Itti [10].
The algorithm constructed the final saliency map based on intensity, color and orientation features.
Harel [11] defined a computational saliency model based on Markov chains and treated the equilibrium
distribution over map locations as saliency values. With respect to the latter values, some studies
tried to obtain the saliency map in the transform domain, which played an important role in the
ship detection. For instance, Bi [12] extracted the target candidate regions by using a bottom-up and
multiscale visual attention mechanism. In a similar fashion, Guo [13] employed the SR model (Spectral
Residual) [14] to obtain initial target curve; Qi [15] applied the PFT model (Phase Spectrum of Fourier
Transform) followed by a homogeneous filter to extract the candidate regions; and Xu [16] constructed
a combined saliency model with self-adaptive weights to prescreen the ship candidates. These saliency
models calculated in the frequency domain mentioned above have better performance (especially
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in a highly cluttered backgrounds) as compared with the spatial domain saliency methods [10,11].
However, they also have some drawbacks, such as the low resolution of saliency map, low target
integrity, and blurring of the target boundary. The frequency-tuned saliency detection method [17],
which can obtain full-resolution saliency maps and well-defined boundaries of objects, was applied by
Wang [18] to extract the target regions. Despite the fact that these models have a low missed detection
rate, they still suffer from the interference mentioned earlier and cause a high number of the false
alarms. Therefore, it is still vital to go deeply into the study of fast and efficient ship detection methods
which can pop out the targets and suppress the distractors under complex uncertain situations.

In order to solve the problem in the ship detection, the first requirement is an efficient pre-detection
model accelerating the prescreening process and decreasing the false alarms. Furthermore, a robust
feature set is also required to discriminate the ships from non-ship targets. To meet the two requirements
mentioned above, a practical ship detection scheme is presented in this paper. The workflow of our
detection algorithm is given in Figure 1.
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Figure 1. Diagram of the proposed hierarchical target detection scheme. The prescreening stage
consists of saliency detection and binary segmentation. The discrimination stage includes feature
extraction (radial gradient descriptor [19] and sigma set descriptor [20]) and classification by using
Gaussian support vector machine (SVM) [21]. ORS: optical remote sensing.

The scheme contains two main coarse-to-fine stages: prescreening and discrimination. According to
the difference of the region characteristics between regions of interest (ROIs) and natural background,
a novel and practical ship candidate detection scheme based on region variance is proposed in the
prescreening stage. Firstly, our model decomposes an input image into non-overlapping regions of
square blocks and estimates their variances of simple features. Secondly, the information entropy is
introduced to adaptively tune the relative weight of the saliency maps estimated by variances of the
different feature. Finally, the inter-scale fusion is performed to increase the contrast between the salient
and non-salient patches. In this way, not only can the targets be precisely detected, but the false alarms
are also significantly reduced. After obtaining the saliency map, binary segmentation is operated to
extract the candidate regions. In the discrimination stage, taking advantage of the symmetrical shape
of the ships, the radial gradient histogram [19] is applied for guaranteeing the rotation invariance.
Additionally, the region covariance descriptor [20], which is robust to large rotations and illumination
changes, is utilized to describe the texture feature of the targets. Both shape and texture features
are extracted and concatenated as a feature vector for subsequent classification, and then a trainable
Gaussian support vector machine (SVM) classifier is performed to further remove the false alarms
and maintain the real ship targets. Compared with the previous works [2,15], our detection model
can achieve better performance in terms of both detection accuracy and running time. As a result, it is
potentially of great benefit in the complex task of ship detection.

The rest of this paper is organized as follows. Section 2 introduces the framework of the visual
saliency detection. Section 3 describes the discrimination stage, including the combined rotation-invariant
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descriptor as well as the Gaussian SVM. Experimental results are provided in Section 4. We then briefly
conclude on the method, performances, and future work in Section 5.

2. Ship Candidate Extraction Based on Saliency

In the prescreening stage, the saliency value of each region is determined by quantifying its
variance. The attended regions are detected to highlight potential objects by performing the fast
and efficient saliency detection. Secondly, the ship candidates are extracted from the segmented
binary image.

2.1. The Proposed Saliency Model

The ship targets in a VRS image of the sea are more salient than the background because the pixels
of the targets are variable while those of the background have great similarities. Then, if we extract
different low-level features from the images, the feature set of the ships will be very distinct from
those of the sea backgrounds. It can be also concluded that a patch which contains a part of the target
has more complex information compared with the one which only contains the similar background.
To describe the distinction mentioned above, statistical characteristics have been investigated and
proved to be powerful descriptions in remote sensing image processing. For instance, the variance
weighted information entropy (WIE) was applied to detect target both in infrared and SAR images
and achieved impressive performance [22,23]. In this paper, the value of region variances from optical
remote sensing images in their uniform areas, the area including false alarms, and the partial area of
ship target is primarily tested.

To illustrate the general idea, consider that patch A, patch B and patch C shown in Figure 2a,b
present their corresponding gray level distributions. It can be observed that the gray level distributions
of patch A (red line) and patch B (green line) are very different from that of patch C (blue line). Due to
the wide range gray level distribution of patch C, the region variance values of highly non-uniform
areas (patch C) which allude to ROIs are usually greater than those of the homogeneous backgrounds
(patches A and B). In other words, region variance, as a basic regional statistical characteristic,
can measure the complexity of a given patch to some extent. The similar conclusion could also
be found in another model [24]. Therefore, it is reasonable to connect the saliency of a region with
its variance. We constructed a novel saliency model based on this fact. As shown in Figure 2c, if our
model is performed, the ship targets pop out from the background. We also compare our results with
the seminal model of Itti in Figure 2d. The Itti model computes intensity, color, and orientation maps
for a given input image base on a center-surround operation. The resulting feature maps are combined
into the saliency map using a winner-takes-all network and an inhibition of the return mechanism.
As shown in the second raw of Figure 2, compared with the Itti model, the proposed model is more
effective in suppressing the background interference.

Next, we explain the proposed saliency model in detail. Figure 3 shows its schematic diagram.
There are four main steps. First, we extract pixel amplitude and amplitude derivative features. Secondly,
the rarity values for each scale are estimated based on the region variance of the different feature
map. Afterwards, selection algorithm and intra-scale fusion are applied based on the information
entropy. Finally, we obtain the final saliency map by performing the multi-layer cellular automata [25].
A detailed description of the proposed saliency model is provided hereinafter.
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Given an H ×W image I, it is observed that the targets of interest usually have great intensity
fluctuations and obvious edges [26,27], and we extract the pixel intensity and intensity derivatives to
define the four-dimensional feature vector fk for the kth pixel in I.

fk =

[
Ik

∣∣∣∣∂Ik
∂x

∣∣∣∣∣∣∣∣∂Ik
∂y

∣∣∣∣∣∣∣∣ ∂Ik
∂x∂y

∣∣∣∣]T
(1)

where Ik is the intensity of the kth pixel, and the image derivatives are calculated through the filter
[−1 0 1]T . To obtain a maximum features decorrelation, we transform the feature map into four
linearly uncorrelated maps by performing PCA decomposition (Principal Component Analysis) [28].
The resulting four feature maps after PCA transformation are denoted as f mapj and shown in the
second column of Figure 3. The resulting feature vector of the kth pixel is redefined as

[
f 1
k f 2

k f 3
k f 4

k
]T

where k = 1, 2, . . . , H ×W. Non-overlapping patches with the size of n × n pixels are drawn from
each feature map. A patch of each feature map is denoted as pj

i , and the region variance of pj
i can be

expressed as

varj
i =

1
n2 − 1 ∑

k∈pj
i

(
f j
k − f j

i

)2
(2)

where f j
i denotes the mean value of the feature points in pj

i . Then, the rarity value of patch is defined as

rj
i = 1− exp(

−Varj
i

Z
) (3)

where Z is a normalization factor equal to maxi∈ f mapj

(
varj

i

)
. We obtain a set of four maps called rarity

maps as shown in Figure 3. To integrate data information together, a selection algorithm is applied to
the rarity maps. The first step is to compute for each rarity map an efficiency coefficient (ECj), which is
estimated by the information entropy. We can obtain the entropy value by considering the rarity map
as a probability map. Image entropy can reflect the degree of difference in the gray values of pixels.
According to the definition of entropy, the stronger the discriminative ability of the rarity map is,
the smaller the entropy is. Then, the ECj is defined as

ECj =
1

Hj
=

1

−
n
∑

i=1
pi log(pi)

(4)

where Pi represents the probability of gray level i in the image, and Hj denotes the information entropy
of the rarity map j. When ECj is greater, the rarity map is more efficient. We sort the rarity maps based
on each map efficiency coefficient ECj. r1 is the most efficient map, and r4 is the least efficient one.
Finally, we eliminate r4, the fusion is then the sum of the rest maps weighted by ECj:

s =
3

∑
j=1

ECj × rj (5)

Note that the patch size n× n specifies the resolution of the saliency map and affects the performance
of the algorithm. There are different outputs at different scales. The saliency map with small scales
(small patch size n × n) may tend to favor the boundaries rather than the entire body of a big ship target.
In other words, it only focuses on the edges of targets and may introduce inner holes to the detection
results. On the contrary, the small target boundary in the saliency map with large scales would be blurry.
Furthermore, if the distance between the ship targets is too small, the ship candidates will be detected
as a whole, the number of the ships cannot be distinguished. The situation becomes complex when
different sizes of targets occur in the VRS images. To overcome this issue, we obtain multi-scale saliency
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maps by changing the patch size n × n and perform the inter-scale fusion to produce a better saliency
map. In this step, the multi-layer cellular automata [25] is introduced to integrate multi-scale saliency
maps and improve the contrast between salient and non-salient patches. Pixels which have the same
coordinates in different saliency maps are neighbors in the multi-layer cellular automata. It can enhance
saliency consistency among similar regions by exploiting the intrinsic relationship in the neighborhood.
Consider the scales N = {n1, n2, · · · , nM}. The saliency map at each scale is resized to the scale of the
original image and denoted as {S1,S2, · · · , SM}, and then the multi-layer cellular automata is expressed
as:

ln(St+1
m ) = ln(St

m) +
M

∑
i = 1
i 6= m

sign(St
i − γi · l) · ln(

λ

1− λ
) (6)

where St
m =

[
St

m1, · · · , St
mP
]T denotes the saliency value of all pixels on the m-th map at time t, and P is

the total number of pixels. The length of the vector l = [1, 1, · · · , 1]T is P. γi denotes the threshold of
the i-th saliency map generated by Otsu [29]. We empirically set ln( λ

1−λ ) = 0.5 based on the analysis
of [25]. After T time steps, the final saliency map ST is defined as

ST =
1
M

M

∑
m=1

ST
m (7)

In inter-scale fusion step, the number of time steps T is determined by the convergence time.
We set T = 10. We still need to further investigate the appropriate set of scale parameters. The input
images with increased sizes of the targets, from top to bottom, are shown in the first column of Figure 4.
For small ship targets, edges are blurred with a large scale in accordance with the aforementioned
discussion. When the patch size is 4 × 4, the middle areas of bigger ships have low salient values
and only the edges are preserved. When the patch size goes up to 8 × 8 or 16 × 16, the performance
gets better. To sum up, scale parameters that are too large or too small could cause poor performance.
After several experiments, the scale parameter is fixed as N = {4, 8, 16} for better performance, and thus
the number of scales is M = 3. Then single-scale saliency model can be easily extended to operate
on multiple scales. Via performing the multi-scale saliency and selecting the appropriate set of scale
parameters, our model is insensitive to the variation in target size. As shown in Figures 3 and 4,
the output saliency map is now unique and the ship targets can be detected accurately even in a highly
cluttered background.

2.2. Target Candidates Extraction

The final saliency map needs to be segmented to extract the candidate regions. In this step, we use
the optimal threshold generated by the Otsu algorithm [29] to acquire the binary map. The optimal
threshold is determined by the integration of the histogram and is selected automatically. The pixels
with larger saliency values than the obtained threshold are defined as targets, while the rest of the
pixels in the image are treated as backgrounds. Then, we define the smallest rectangle containing the
connected region as ship candidates. There are two types of test images with complex backgrounds
as shown in Figure 5. One set of images is covered by the clouds, and the other is disturbed by the
islands. The first column presents the test VRS images, the second column presents their corresponding
saliency maps, and the binary maps and prescreening stage results are shown in the third and the
fourth column, respectively. As shown in Figure 5d, after saliency detection, segmentation, masking
and extraction processing, the ship candidates are cut from the input image according to the location
of each detected region in the binary image and marked with red boxes.
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3. Ship Discrimination

These attended regions acquired by visual saliency model could correspond to either ship objects
in the image or false alarms. The discrimination process is performed to further remove pseudo-targets
and confirm whether they are real ship targets. Therefore, a two-step solution is adopted to identify real
ships, namely feature extraction and machine learning techniques. Feature extraction is conductive to
the subsequent classification. An effective and robust descriptor characterizing the ship target is the key
of the final discrimination. Considering the fact that arbitrary direction of the ship candidates brings
difficulty to target detection, investigating a robust descriptor that allows the ship to be well recognized
without the influence of direction is critically needed. In our approach, the rotation-invariant features
describing the shape and the texture information of the targets are extracted and concatenated as
a feature vector for subsequent classification. Finally, a trainable Gaussian support vector machine
(SVM) classifier is performed to further remove the false alarms and maintain the real ship targets.
The discrimination stage is described briefly as followed.

3.1. Rotation-Invariant Global Gradient Descriptor

Taking advantage of the symmetrical shape of the ships, the histogram of oriented gradients
(HOG) descriptor [30] is introduced to distinguish between the ships and non-ship targets [15,16].
Note that the HOG descriptor usually samples cells on grids to describe objects, thus it is clearly not
rotation-invariant and not applicable to directly describe targets because the direction of the ship in
chips is arbitrary. To make up for the deficiency, Qi [14] performed the PCA transform to obtain the
direction of the main axis and rotated the ship candidates to the vertical direction before extracting
HOG feature from the ship candidates. In a similar manner, Xu [15] performed the segmentation
algorithm and radon transform to estimate the ship target heading. Considering that the estimation
of the principal axis direction is time-consuming and not always accurate enough, we introduce the
radial gradient transform (RGT) [19] which can eliminate the computation of estimating an orientation
to guarantee the rotation invariance. Moreover, the RGT descriptor, which was initially developed for
real-time tracking, is faster compared with the other rotation-invariant descriptor [31,32].

The specific process of the RGT transform is shown in Figure 6. Two orthogonal basis vectors,
r and t, denote the radial and tangential direction at a point p, and point c is the center of the chips.
By projecting onto r and t, the gradient g is reformulated as

(
gTr
)
r +

(
gTt
)
t. The rotation matrix for

some angle θ is denoted as Rθ . If we rotate the patch about its center by the angle θ, a new local
coordinate system and gradient will be expressed as:

Rθ p = p′, Rθr = r′, Rθt = t′, Rθ g = g′ (8)

and the radial gradient after the rotation can be expressed as
(

g′Tr′, g′Tt′
)
. It is easy to verify that the

coordinates of the gradient in the local frame are invariant to the rotation by:(
g′Tr′, g′Tt′

)
=
(
(Rθ g)T Rθr, (Rθ g)T Rθt

)
=
(

gT Rθ
T Rθr, gT Rθ

T Rθt
)

= (gTr, gTt)

(9)

Then, the radial gradient direction can be calculated by the formula:

θRGT = arctan
gTt
gTr

(10)

and the magnitude is given by

gRGT =

√
(gTr)2

+ (gTt)2 (11)
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chip is rotated by θ, the projections of the gradient in (r, t) remain the same.

After obtaining the magnitudes and corresponding radial gradient orientations of the ship
candidates, the gradient orientations are divided into eight specific bins in 0–360◦. The angle in each bin
is 45◦, and we will get an eight-dimensional histogram from the gradient image by performing radial
gradient transform. As shown in Figure 7, the gradient histogram of targets is basically unchanged
even if the ship is rotated with the various angles. For a real ship target, bins 4 and 5 of the histogram
have higher statistical quantized values in comparison to the other bins. Theoretically, the target chips
share a similar distribution of gradient histograms, which is also illustrated in Figure 7. The obtained
global gradient descriptor is robust to the variety of the sizes and rotations, and reliably grasps the
shape information of targets. Finally, the magnitudes in bins 1–8 are denoted as a feature vector
f = [ f1, f2 · · · , f8].
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Figure 7. Radial gradient histogram statistics of the ship candidates. The x-coordinate denotes the eight
orientation bins and the y-coordinate denotes the radial gradient statistic information in the gradient
histogram. Ships with different orientations, sizes and textures share similar histogram distribution
which is different from that of false alarms.
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3.2. Region Covariance Descriptor

Second, a region covariance descriptor is applied to describe the texture features of ship candidates.
The covariance matrix [33], which was initially proposed for texture classification and object detection,
is introduced to characterize the ship targets. The region covariance descriptor is reviewed hereinafter.
For a given image patch P, the W × H × d dimensional feature image extracted from P is denoted as F:

F(x, y) = φ(P, x, y) (12)

where φ denotes the function of the features, such as color, intensity, orientation, filter responses,
spatial attributes, etc. Then, the image patch P is represented with the d × d covariance matrix Cp of
the feature points.

Cp =
1

n− 1

n

∑
i=1

( fi − u)( fi − u)T (13)

where { fi}i=1...n denote the d-dimensional feature points and u is the mean of all points inside P.
We use simple features, namely intensity, color, and the norm of the first and second-order

derivatives of the intensity to define the d-dimensional (d = 7) pixel-level feature vector f (x, y):

f (x, y) =
[

L(x, y), a(x, y), b(x, y),
∂P(x, y)

∂x
,

∂P(x, y)
∂y

,
∂2P(x, y)

∂2x
,

∂2P(x, y)
∂2y

]
(14)

with L, a, and b denoting the color of the pixel in Lab color space. The derivatives are calculated through
the filters [−1 0 1]T and [−1 2 − 1]T, and (x, y) denotes the location information. Hence, the covariance
matrix Cp is computed as a 7 × 7 matrix. It has several advantages:

• It provides nonlinear integration of different features through modeling its correlations.
• Due to the low-dimensional representations of the patches, it captures local structures better than

linear filters.
• It is insensitive to the large rotations and the illumination changes.

To use Cp as the ship descriptor, the matrix Cp needs to be mapped to a vector. Note that
covariance matrices do not lie on the Euclidean space. It is infeasible to change d × d matrix into
vector intuitively. To remedy this issue, Hong [20] proposed the sigma point descriptor which can
transform covariance matrices on Euclidean vector space by using the Cholesky decomposition.
After performing the Cholesky decomposition of Cp, Cp = LLT , we can obtain L, which is a lower
triangular matrix. Then the nonzero elements in matrix L can be changed into a

(
d2 + d

)
/2 vector

denoted as f2 = [L1, L2, . . . L28]. Finally, both f1 and f2 are concatenated as a feature vector for
classification. For the sake of simplicity, we redefine the combined features as f = [ f1, f2, . . . , f36].

3.3. Gaussian SVM

The main aim of the classification is to discriminate the real ship targets from the ship candidates
based on the obtained features f . The support vector machine (SVM) [21] can non-linearly map the
input vector into a very high-dimension feature space. More importantly, the solution of SVM is
globally optimal. Due to its high performance in many pattern recognition applications, the SVM is
adopted in the discriminative stage. Given a training set of m observations:

D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, yi ∈ {−1,+1}, xi ∈ Rd. (15)

with xi denoting the feature vector corresponding to the ith observation labeled, and yi the input
label belonging to −1 and 1, which denote non-ship and ship targets. For non-linear classification
problems, to construct a separating hyperplane built in the feature space, the d-dimensional feature
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vector x is first transformed into a D-dimensional feature vector by function φ: x ∈ Rd 7→ φ(x) ∈ RD .
Then, the sign of the function

f (x) = w · φ(x) + b (16)

is taken, where w and b are to-be-learned parameters, and the optimization problem becomes

min
w,b

1
2
‖w‖2 (17)

subject to
yi

(
wTφ(xi) + b

)
≥ 1, i = 1, 2, . . . , m (18)

Then, the Lagrangian is computed to solve this convex quadratic programming problem and the
corresponding dual problem is expressed as

max
α

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjφ(xi)
Tφ(xj) (19)

s.t.
m

∑
i=1

αiyi = 0αi ≥ 0, i = 1, 2, . . . , m. (20)

where αi denotes the Lagrange multiplier. Instead of the explicit computations on φ(xi)
Tφ
(
xj
)
,

the kernel trick is applied and the SVM model for function estimation yields

f (x) =
m

∑
i=1

αiyiκ(x, xi) + b (21)

where κ(·, ·) is the kernel function. The kernel mapping technique plays an important role in classification
performance. One can combine the prior knowledge of the problem at hand through constructing special
kernel functions [21]. In our experiment, SVMs with linear, quadratic, cubic, and Gaussian kernels are
tested. Finally, the Gaussian SVM is adopted to classifier the ships and non-ship targets. The Gaussian
kernel function can be expressed as:

κ
(

xi, xj
)
= exp(−

‖xi − xj‖2

2σ2 ) (22)

More details can be found in Section 4.3.

4. Experimental Results and Discussion

We conduct our experiments using a PC equipped with a 3 GHz CPU and 4-GB memory. Firstly,
we compare the proposed saliency model both qualitatively and quantitatively with four state-of-art
methods in different complex backgrounds (e.g., luminance fluctuation, cloud cover, fog, sea clutter,
islands interference). We employ the receiver operating characteristic (ROC) area under the curve
(AUC) metric to evaluate the candidate location prediction quantitatively. Secondly, the classification
accuracy is adopted to measure the performance of SVMs with different kernel functions, we also
compare our combined rotation-invariant feature with S-HOG feature (ship histogram of oriented
gradient), single feature f1 and f2. Finally, the overall detection performance is compared to further
demonstrate the effectiveness and robustness of the proposed scheme.

4.1. Data Set

All VRS images were collected from Google Earth and were captured under different weather
conditions and various viewpoints, the dataset contains 338 ship targets for a total of 162 images of
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size 512 × 512 pixels, the corresponding binary maps were manually labeled. The resolution of these
images is about 1 m. Sample images of the dataset are listed in the left column of Figure 8.
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4.2. Comparison to the State-of-the-Art Saliency Model

Figure 8 presents the results of our saliency approach and other typical models including the
Itti [9], GBVS (Graph-Based Visual saliency) [10], SR (Spectral-Residual) [13] and COV (Covariance
saliency) [23] methods with respect to some sample images from our dataset. These images can be
divided into several types based on the different complex backgrounds, such as thin and thick cloud
cover, the interference of islands, fog, sea clutter, etc. The complicated backgrounds make every target
detection task unique and challenging. Though it is difficult for all these methods to exactly extract
the saliency regions in remote sensing images, our saliency model tends to be less distracted by the
cluttered backgrounds in comparison to other methods.

As shown in Figure 8, our proposed saliency model achieves the best results of all saliency models
visually both in terms of the accuracy and the integrity of object detection, and has the following advantages:

• Our model can distinguish different ship targets even when they are very close to each other.
• It can identify both large and small ships and highlight the entire ship target regions.
• It can suppress the interference from the complex backgrounds such as cloud, fog and sea clutter.

It is noted that the background suppression abilities of the Itti and GBVS model are weak,
especially in the case of the cloud cover. Although the detection results are finer for the SR model,
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this model is sensitive to the input image pixels. The COV model is effective for suppressing complex
backgrounds, but it is time-consuming and produces more false alarms compared to our model.
Overall the proposed saliency model is superior to other typical models and can obtain more accurate
shapes and highlight the whole target regions.

In addition to visual comparisons of saliency maps, we employ the ROC-AUC metric to
quantitatively evaluate the performance of the proposed method. Using this metric, the pixels with
larger saliency values than a threshold are treated as targets, while the rest of the pixels in the image
are treated as backgrounds. Binary maps are used as ground truth. An ROC graph can be drawn by
varying the threshold in which the true positive rate (TPR) and the false positive rate (FPR) are plotted
on the Y axis and X axis, respectively. The TPR and FPR are expressed as

TPR =
tp

tp + f n
(23)

FPR =
f p

f p + tn
(24)

where tp is the number of true positives, f p is the number of false positives, tn is the number of true
negatives, and f n is the number of false negatives.

The performance in terms of ROC-AUC metric is measured and the results are shown in Figure 9a,b
respectively. The ROC curve in the upper-left corner of the graph is best. It can be observed that the
proposed saliency model has the highest ROC-AUC performance and outperforms all the other methods
in consideration.
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We also evaluate the performance of the proposed saliency model in terms of speed with reference
to the other methods mentioned above. Table 1 compares the average time taken by each method.
Note that SR, COV, and the proposed method are programmed in Matlab, while the codes with
regard to Itti and GBVS are quasi Matlab codes which call C++ functions for saving the running time.
Nevertheless, a relative overview of the run-time performance of the considered methods is given.
It can be observed that COV model has the defect of long running time in despite of good performance.
Due to mixed-language programming, the costs of performing Itti and GBVS are relatively low.
SR model has the shortest running time because of small calculation efforts. The time complexity of
our method is lower than that of other spatial saliency models.

Table 1. The computational run-time(s) of various saliency models under consideration.

Method Proposed GBVS COV Itti SR

Time(s) 0.6 1.1 19 0.9 0.08
Code M M&C++ M M&C++ M
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4.3. Discrimination Results

There are 543 ship candidates obtained by performing the candidate extraction mechanism.
The size of the ship candidate is typically in a range from 11 × 18 to 100 × 92. They are manually
classified into 325 ship chips and 218 non-ship chips. They are used to verify the performance of the
hierarchical feature extraction as well as the classification approach. Some examples of the extracted
ship candidates are shown in Figure 10. Group A and B show the samples of targets and the false
alarms, respectively. We randomly select two-thirds of the ship chips and the non-ship chips as the
training set. The test set consists of the left chips.
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To validate the effectiveness of our combined feature, S-HOG feature (ship histogram of oriented
gradient), radial gradient feature, sigma set feature, and the combined feature are separately combined
with the classification learner to perform the discrimination. SVM can solve the small sample, nonlinear
classification problem and has good generalization performance, which is suitable for the extracted
data. Selection of kernel function is a pivotal factor which decides classification accuracy. Based on
the above factors, the four different feature sets mentioned above are compared using the SVMs with
various kernel functions, namely the linear, quadratic, cubic, and Gaussian functions. The classification
accuracy of each method is calculated as:

Accuracy =
Number of correctly classified samples

Number of tested samples
× 100% (25)

The parameter for the SVM-based classifier is determined by adopting 5-fold cross-validation.
The classification accuracy of each feature is shown in Figure 11.
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As can be seen in the comparison shown in Figure 11, for any given kernel function, the ship’s
classification accuracy based on the combined feature sets is higher than the accuracy based on the
single feature set. Note that S-HOG feature has the worst accuracy result; this may be related to
low accuracy when estimating the principal axis direction. In addition, for the combined feature
f, the accuracy of the SVM with Gaussian kernel is 96.1% which is the highest level of accuracy
compared to the others. Therefore, the combined feature set and Gaussian SVM are adopted in the
following experiments.

4.4. Comparison of Overall Detection Performances

Finally, we compare our overall detection method with two typical methods. The evaluation
criteria are defined as

Accuracy =
Number of correctly detected ships

Number of real ships
× 100% (26)

False ratio =
Number of detected false alarms
Number of detected candidates

× 100% (27)

The detection results are listed in Table 2.

Table 2. Target detection results in terms of the accuracy and the false ratio.

Method Accuracy False Ratio

method [2] 85% 10%
method [15] 90% 9%

ours 94% 4%

As can be seen from Table 2, our detection model can obtain higher accuracy and lower false ratio
than the other two methods. Note that the method [2] has the worst performance. This is because
method [2] generates the candidate regions by image segmentation and uses the simple shape feature to
distinguish between the ships and non-ship targets. While our model and method [15] extract the ship
candidates by using the visual attention mechanism, this can obtain few false alarms and low missing
rate. Besides, the improved HOG feature can describe target shape information efficiently. In addition,
compared to method [15], we extract not only shape features but also texture features. This is beneficial
to further removing false alarms, which have similar shapes to the targets. Through the analysis above,
it can be concluded that our model is effective for eliminating the false alarms and preserving the real
targets and outperforms the other ship detection model considered.

With regard to the time consumption of the overall detection algorithm, compared to slide window
algorithm, our saliency detection model can greatly decrease the detection time. The time consumption
of saliency model detection is 0.6 s, and the average time consumption of discrimination stage is 0.2 s,
which basically meets the needs of the near-real-time tasks.

5. Conclusions

In this paper, we have proposed a hierarchical model to tackle the problem of ship detection in
a complex and changing background environment based on optical remote sensing data. The scheme
consists of prescreening and discrimination stages. First, a fast and efficient multi-scale saliency model
based on region statistical characteristics is performed to locate candidate regions. Through performing
saliency detection, our model effectively reduces missed detection and false detection. Second, from a given
ship candidate, we extract the combined rotation-invariant feature which offers a more powerful descriptor
to capture the shape and texture information of the object. Finally, a trainable Gaussian SVM is employed as
the discriminator. Our overall detection model achieves the best performance of 94% in terms of accuracy
and 4% in terms of false ratio, outperforming the other typical ship detection model. Experiments on the
optical remote sensing data have demonstrated the effectiveness and robustness of the proposed model.
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Our future work will focus on two aspects. First, we will build a large dataset including thousands
of optical remote sensing images to make sure that the input data of classifier is sufficient. It thus can
improve the object detection performance further. Second, more effective features may be further explored
and feature selection will be considered. Moreover, the better discriminator will be investigated.
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