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Abstract: Obtaining accurate and timely land cover information is an important topic in many
remote sensing applications. Using satellite image time series data should achieve high-accuracy
land cover classification. However, most satellite image time-series classification methods do not
fully exploit the available data for mining the effective features to identify different land cover types.
Therefore, a classification method that can take full advantage of the rich information provided by
time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel
method for time-series land cover classification using spectral, temporal, and spatial information
at an annual scale was introduced. Based on all the available data from time-series remote sensing
images, a refined nonlinear dimensionality reduction method was used to extract the spectral and
temporal features, and a modified graph segmentation method was used to extract the spatial features.
The proposed classification method was applied in three study areas with land cover complexity,
including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and
different study areas have different amounts of invalid data. A series of comparative experiments
were conducted on the annual time-series images using training data generated from Cropland Data
Layer. The results demonstrated higher overall and per-class classification accuracies and kappa
index values using the proposed spectral-temporal-spatial method compared to spectral-temporal
classification methods. We also discuss the implications of this study and possibilities for future
applications and developments of the method.

Keywords: land cover; Landsat; multi-temporal; nonlinear dimensionality reduction; segmentation;
spectral-temporal-spatial classification; validation

1. Introduction

Mapping land cover distribution and monitoring its dynamics have been identified as an
important goal in environmental studies [1–5]. Land cover maps provide fundamental information
for many applications, including global change analysis, crop yield estimation, and forest
management [6–8]. Land cover maps can be easily generated using remote sensing images, but
ensuring their accuracy is much more difficult [9]. To improve the accuracy of classification, most land
cover products use multi-temporal images as their inputs [10–14]. Currently, the primary method of
land cover classification using multi-temporal data involves obtaining metrics from time series (i.e., the
phenological characteristics of different vegetation), and the slope, elevation, maximum, minimum,
mean, standard deviation values and tasseled cap transformation of spectral-temporal features and
spectral indices [15–21]. Then the metrics are classified in a supervised approach. While these metrics
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have verified that the spectral-temporal features defining the various land cover classes are well
captured, the use of the multi-temporal images introduces other issues that must be solved.

To date, most classification methods require input images with few clouds. However, this standard
cannot be met by sensors with low temporal frequency, such as the Landsat series of satellites. Global
land images derived from the Enhanced Thematic Mapper Plus have about 35% cloud coverage on
average [22], indicating that cloud cover is common in optical remote sensing images. The presence of
cloud cover increases the difficulty of image analysis and limits the utility of optical remote sensing
images. Two solutions are commonly used for cloud removal in multi-temporal images. One method
is to replace the cloudy temporal data with data from images without clouds or snow taken in the same
season but different years. As a result, most land cover products are mapped at intervals of 5 or 10 years,
which significantly reduces “currency” [23–25]. The other method entails filling cloudy locations using
per-pixel temporal compositing procedures via adjacent temporal interpolation, a time-series curve
filter or inversion of n-day observations to estimate reflectance based on the bidirectional reflectance
distribution function [26–29]. These methods do not increase information content, but may introduce
gross errors, particularly when continuous temporal data are unavailable. It is worth noting that,
because of the low temporal frequency of the Landsat satellite, the data obtained are rarely completely
cloudless and most images contain cloud cover. When cloud coverage reaches a threshold such as 30%,
the temporal image is deemed unusable and the remaining 70% of the image will also be discarded [30].
In other words, for a given satellite time series, the temporal dimension of each pixel may be not the
same, despite using the same period. Therefore, only methods that work with unequal time series will
be able to fully exploit the available data.

Using multi-spectral time-series data also causes data redundancy problems, because there
is a high correlation between time-series images of unchanged regions [31–33]. This point has
been widely adopted in the research of change detection using remotely-sensed data [34–38].
Therefore, it is necessary to reduce the dimension of multi-spectral time series prior to land cover
classification, particularly for methods that use full-band satellite image time series as input [15,39,40].
Dimensionality reduction (DR) techniques project high-dimension data into a low-dimensional space
to maximize valuable information while minimizing noise [41,42]. Numerous DR approaches for
processing remote sensing hyperspectral images have been proposed [43–46], which can be broadly
divided into two types: linear and nonlinear methods. Due to multiple scattering effects off different
ground components, the reflectance in remote sensing images is not linearly proportional to surface
area. Multi-spectral and time-series data have intrinsic nonlinear characteristics [39]. However,
little research has been devoted to the application of nonlinear DR techniques to multi-spectral remote
sensing time series.

At present, most of multi-temporal land cover classification methods are based on
spectral-temporal information without consideration of dependencies between adjacent pixels. As we
all known, spatial information is very helpful for the improvement of classification accuracy [47–51].
Spectral-spatial classification of hyperspectral images shows improvements in classification accuracy
compared to only spectral-based methods [47–51]. Therefore, how to combine spatial information
in time series land cover classification is a problem worthy of studying. Image segmentation is the
main method employed to obtain spatial information [52,53]. There are a lot of algorithms for image
segmentation. However, this method cannot be directly applied to multi-spectral time-series images
because temporal information cannot be used in this context [54]. Therefore, it is urgent to have
a method to preform segmentation based on spectral-temporal information for multi-spectral time
series images.

In this paper, we investigated the potential for extracting spectral-temporal and spatial features
from satellite time-series data to reliably classify different land cover categories. Our focus is on an
automatic and stable classification approach without human intervention to improve the accuracy and
reduce the mapping period for land cover products. In addition, the temporal dimension is completely
integrated into modeling. Our overall research objectives were to solve the high dimensionality
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problem of multi-spectral time series using all the available data, and to determine how to extract and
combine the spatial characteristics of time-series land cover classifications. To achieve these objectives,
we developed a new automated time-series land cover classification method based on extracting
spectral-temporal and spatial features using all the available data. This methodology is applicable to
all of satellite time series but is illustrated using Landsat time series data in this study. Specifically,
the dynamic time warping (DTW) similarity measure was used on satellite image time series to mine
all the available data. Then, a modification of a nonlinear DR method developed for hyperspectral
data was used to extract spectral-temporal features from multi-spectral satellite time series, and an
image segmentation method was modified to extract spatial features from multi-spectral satellite time
series. Finally, a classification system based on spatial regularization is established to generate land
cover map using spectral-temporal and spatial features.

2. Study Area and Data

2.1. Study Area

Our study focused on agricultural states including Illinois, South Dakota, and Texas, which cover
the latitudinal range of the United States. Due to climatic differences among different regions, the main
land cover classes in these three areas differed. Major crop types from the South Dakota study area
in the northern United States include soybeans, corn, and alfalfa. Major crop types from the Illinois
study area in the central United States include soybeans, corn, and pasture and grassland. The main
crop types from the Texas study area in the southern United States include corn, cotton, pasture and
grassland, and winter wheat. Since the major crop types used in this study were planted once a year,
such as corn and soybeans, we assume that land cover classes will not change within 1 year in the
study areas.

2.2. Data

2.2.1. Satellite Data

Landsat 8 Operational Land Imager (OLI) data were obtained from the Unites States Geological
Survey web site (http://earthexplorer.usgs.gov/). The repeat cycle of Landsat 8 is 16 days, and thus
each WRS-2 path/row can be obtained up to 22 or 23 scenes per year [55–57]. In this study, all the
23 images acquired by Landsat 8 OLI L1T in 2014 of the study areas were used. We used the Landsat
OLI reflective bands with 30 m spatial resolution, which included bands 1 (coastal), 2 (blue), 3 (green),
4 (red), 5 (near-infrared), 6 (middle-infrared), and 7 (middle-infrared), along with two cloud masks.
Band 9 (cirrus) was not used because it is sensitive to water absorption [58]. Three study areas were
comprised of 100,000, 125,000 and 160,000 30 m pixels were cut from the Landsat 8 OLI Path 23/Row
32, Path 29/Row 30 and Path 30/Row 36 images, respectively. Figure 1a–c show the acquisition date
and cloud coverage of each scene. The corresponding reference data were extracted from the Cropland
Data Layer (CDL). Due to the computation of the Laplacian Eigenmaps (LE) DR algorithm increases
rapidly with spatial dimension, larger regions were not used in this study.

2.2.2. Reference Data

The CDL for 2014 provided by the United States Department of Agriculture (USDA) National
Agricultural Statistics Service (NASS) was obtained from the CDL web site (http://nassgeodata.
gmu.edu/CropScape/) [59]. The CDL is a raster-formatted, georeferenced, crop-specific, land
cover map. The CDL was widely used as a training and testing data source for supervised
land cover classification [12]. The CDL is generated annually by a decision tree-supervised
non-parametric classification method using moderate spatial resolution satellite imagery and
ground-truth observations collected by the USDA. In total, 110 land cover classes were defined
in the CDL product with a 30 m spatial resolution [60]. Figures 2–4 illustrate the reference data

http://earthexplorer.usgs.gov/
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http://nassgeodata.gmu.edu/CropScape/


Remote Sens. 2018, 10, 383 4 of 26

(2014 CDL data) for the three study areas with the standard color legends used by the USDA NASS.
The percentage of each class in each study area according to the CDL data is also listed in the titles
of figures.
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gray = developed or open space (5.67%); pale green = grass/pasture (2.10%); magenta = alfalfa (12.94%);
black = background (CDL classes corresponding to ≤2% of the study area).



Remote Sens. 2018, 10, 383 6 of 26
Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 26 

 

 
Figure 4. Texas (500 × 250 pixels). Yellow = corn (38.32%); brown=winter wheat (14.35%); gray = 
developed or open space (4.92%); pale green = grassland or pasture (23.48%); orange = sorghum (5.36%); 
red = cotton (11.16%); black = background (CDL classes corresponding to ≤2% of the study area). 

3. Data Processing and Methodology  

3.1. Image Preprocessing 

In this study, only Landsat L1T images were used. The raw DN values are converted into surface 
reflectance using atmospheric correction tool from the Landsat Ecosystem Disturbance Adaptive 
Processing System [61]. To effectively use the characteristics of the spectral variation, we arranged all 
the temporal data for each band together to build a time series. Each image had a corresponding 
cloud mask file defining the geographic areas that were affected by cloud cover. Values were 
removed from the time series if the cloud mask file indicated they were affected by clouds. As a result, 
the number of pixels varied among time series. We often encounter images with cloud cover in 
remote sensing time-series data. Fully exploiting the available observations requires a method that 
can be used with unequal time series. In addition, many phenomena of interest, such as vegetation 
phenology, exhibit periodic behavior that can be affected by weather variation. These adjustments 
result in the extension or compression of the temporal profiles. This phenomenon indicates that 
observed ground objects may exhibit irregular temporal behavior. Therefore, methods that are stable 
to temporal distortions are needed.  

The DTW similarity measure [62,63] makes it possible to use all of the available data to analyze 
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Figure 4. Texas (500 × 250 pixels). Yellow = corn (38.32%); brown=winter wheat (14.35%);
gray = developed or open space (4.92%); pale green = grassland or pasture (23.48%); orange = sorghum
(5.36%); red = cotton (11.16%); black = background (CDL classes corresponding to ≤2% of the
study area).

3. Data Processing and Methodology

3.1. Image Preprocessing

In this study, only Landsat L1T images were used. The raw DN values are converted into surface
reflectance using atmospheric correction tool from the Landsat Ecosystem Disturbance Adaptive
Processing System [61]. To effectively use the characteristics of the spectral variation, we arranged
all the temporal data for each band together to build a time series. Each image had a corresponding
cloud mask file defining the geographic areas that were affected by cloud cover. Values were removed
from the time series if the cloud mask file indicated they were affected by clouds. As a result, the
number of pixels varied among time series. We often encounter images with cloud cover in remote
sensing time-series data. Fully exploiting the available observations requires a method that can be
used with unequal time series. In addition, many phenomena of interest, such as vegetation phenology,
exhibit periodic behavior that can be affected by weather variation. These adjustments result in
the extension or compression of the temporal profiles. This phenomenon indicates that observed
ground objects may exhibit irregular temporal behavior. Therefore, methods that are stable to temporal
distortions are needed.

The DTW similarity measure [62,63] makes it possible to use all of the available data to analyze
the temporal features of remote sensing time series. DTW uses the optimal alignment of radiometric
profiles to describe the similarity between two temporal profiles with shifted or distorted evolution and
irregular sampling. When there are invalid data in a remote sensing time series, the ideal solution is to
remove only the invalid data, while preserving all the valid data. This solution requires a similarity
measure that can compare time series with unequal lengths (representing different temporal sampling
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intervals). In contrast to classic similarity measures used to compare time series, DTW is not restricted
to the comparison of time series with equal lengths. DTW can realign time series to assess nonlinear
distortions on the temporal axis [64]. Therefore, DTW cannot only compare time series with unequal
lengths, but can find the optimal warping path for the two time series [65].

The methodology of DTW is as follows. Assume a time series T of length n, and a time series S of
length m.

T = t1, t2, . . . , ti, . . . , tn

S = s1, s2, . . . , sj, . . . , sm

The time series T and S can be ordered to form an n-by-m path matrix where every element of
matrix (i, j), corresponds to a queue between the points ti and sj. The warping path is subject to the
following constraints [63]:

Endpoint constraint: the warping path must start from the first point (t1, s1) of the path matrix
and end at the last point (tn, sm) of the path matrix.

Continuity constraint: the steps in the path matrix are confined to neighboring points, ti− ti−1 ≤ 1
and sj − sj−1 ≤ 1.

Monotonicity: the path must advance monotonically with respect to time, ti−1 ≤ ti and sj−1 ≤ sj.
DTW is used to calculate the cumulative distance γ(i, j) to each point based on the following

dynamic programming formulation:

γ(i, j) = d(i, j) + min[γ(i− 1, j− 1),γ(i− 1, j),γ(i, j− 1)]

where d(i, j) denotes the distance measure between ti and sj, for example, the square of the difference
or the magnitude of the difference.

d(i, j) =
(
ti − sj

)2

d(i, j) =
∣∣ti − sj

∣∣
In the search space determined by two time series, the cumulative distance of the warping path

found by DTW is minimum among all possible paths. Figure 5 shows the path matrix and optimal
warping path (indicated by red squares) between time series T and S using DTW.
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3.2. Time Series Dimensionality Reduction

In this study, the LE DR algorithm is refined. The reasons for choosing the LE DR algorithm are
as follows. First, LE is a nonlinear manifold learning method, which has been proven to perform better
than linear DR methods when applied to hyperspectral data [43,66–69]. Second, LE is a local manifold
learning (LML) method. The advantage of LML method is that the local attributes of the original data
can be preserved by constructing a neighborhood graph when projected from high-dimensionality to
low-dimensionality space. Using a neighborhood graph implicitly emphasizes the natural clusters in
the data, in contrast to global methods, for example, ISOMAP [70]. Third, LE is a graph-based method,
which only requires similarity between data points to complete DR, thereby making it easy to combine
different distance metrics compared to other localization-preserving methods [71–75].

In this study, an improved version of LE called LE-DTW was proposed. In the LE-DTW DR
method, DTW is used instead of Euclidean distance to find the k nearest neighbors for each sample
in the original feature space. If specific dimensions in the feature space for some pixels are invalid
(e.g., covered by cloud or snow), these values will be removed during the construction of sequences
(Section 3.1) before DR. Therefore, all the available data are used in the process of building an adjacency
graph using DTW. For example, given a dataset X = [x1, x2, . . . , xn] and xi ∈ Rt (i = 1, 2, . . . , n),
where n denotes the number of data points and t denotes the dimensionality of the data, the adjacency
graph W can be constructed with an edge between nodes i and j if xi and xj are the nearest neighbors
of each other. If nodes i and j are connected, then

Wij = e−
||xi−xj ||

2

q

where the parameter q is a predetermined constant; otherwise, set Wij = 0. Let D represent a diagonal
matrix and set Dii = ∑j Wij. Now the matrix L = D − W is the so-called Laplacian matrix, it is
symmetrical and positive semi-definite. Next, solve the generalized eigenvector problem

L f = λD f

Let f0, f1, . . . , fm be S + 1 eigenvectors corresponding to eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λS. Because
the smallest eigenvalue λ0 = 0, we discard f0 and use the next S eigenvectors for embedding in
S-dimensional Euclidian space using the map

xi → ( f1(i), f2(i), . . . , fS(i))

There are two parameters that need to be manually set in the LE DR method. One is the number
of nearest neighbors selected for each pixel, abbreviated k. Another is the number of bands retained
after DR. In this study, the parameter k is automatically determined in the LE-DTW DR method using a
“graph growing” strategy [76]. This strategy increases the probability that any pixel and its neighbors
belong to the same ground object and selects a different number of nearest neighbors for each pixel.
The 10 DR bands corresponding to the 10 smallest non-zero eigenvalues were selected for classification.
The number of DR bands is greater than the maximum number of classes in the image (six classes in the
Texas study area) to ensure that adequate information was retained in the DR bands [39]. A reasonable
minimum number of bands after DR cannot be determined using the existing approaches. Because
these existing approaches cannot handle unequal time series [77,78]. For simplicity, all the DR methods
employed in this study reduced the data to 10 dimensions.

3.3. Time Series Spatial Feature Extraction

To perform image segmentation is the main approach to obtain spatial information for
classification. Segmentation is a comprehensive partitioning of the input image into objects,
each of which consists of a set of pixels that are homogeneous with respect to some criterion [79].
These objects form a segmentation map that provides spatial structures and features for object-oriented
classification [80] or post-classification optimization [47]. In many segmentation methods, the image
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elements are mapped onto a graph. Then, the problem of segmenting an image becomes the problem
of partitioning a graph. No discretization is the advantage of graph segmentation because it has
completely combinatorial operator, and therefore it does not accumulate discretization errors [81].

The minimum spanning tree (MST) is a classic method in graph theory [82]. The graph vertices are
connected to satisfy the minimum cumulative edge weights, and partitioning of the graph is performed
by removing the edges to obtain non-overlapping sub-graphs. The criterion of segmentation methods
based on MST is to remove the edges with the greatest weights. The edge weights are determined
by a similarity measure between pixels [83]. Two commonly used methods of computing the MST
are Kruskal’s algorithm [84] and Prim’s algorithm [85]. In this study, we presented a method called
MST-DTW for automatic segmentation of multi-spectral time-series imagery. This method sets the
edges and their weights based on the DTW measure using all the valid data in the time series to
build a graph. It is worth noting that each edge on a graph can only connect the center node and its
eight nearest neighbors in a 3 × 3 window. We chose Prim’s algorithm, which constructs the MST
by iteratively adding the frontier edge with the smallest weight. Given a multi-spectral time series,
we constructed the input data using the segmentation method described in Section 3.1. Assuming Q ×
R total pixels in the input data, the eight-connection graph G8 is defined as follows. Assume that the
set of all vertices in G8 is

P =
{

pi,j
∣∣ i = 1, . . . , Q; j = 1, . . . , R

}
where the pi,j are the image pixels. Then the set of all edges in G8 is denoted by

S =
{

si,j;k,l

∣∣∣ |k− i| ≤ 1, |l − j| ≤ 1, [i, j] 6= [k, l]
}

where si,j;k,l are the edges that connect node pi,j and one of its eight adjacent nodes pk,l . For each edge
si,j;k,l , we set a weight wi,j;k,l that is the result of DTW measurement between two node vectors

wi,j;k,l =
∣∣∣∣∣∣pi,j − pk,l

∣∣∣∣∣∣DTW

Then the weighted graph is
G8 = (P, S, W)

where W is the set of w values corresponding to the weight of each edge s ∈ S.
Then, according to the undirected graph G8, we constructed an MST using the tree spanning

given by
T =

(
P, S′, W

)
, S′ ⊆ S such that ∑

s∈S′
w(s) is a minimum.

For a multi-spectral time series, the MST represents a connection of adjacent pixels that is globally
optimized according to regions of spectral-temporal similarity based on DTW. The weights of edges
indicate the degree of similarity between nodes. The edges with high weights can be removed to split
the MST into a set of sub-trees that represent the different segments of the image. The removed edges
in this study were identified using the spectral averaging method proposed by Lersch [86]. Figure 6
illustrates the principle of segmentation based on MST.
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3.4. Spectral-Temporal-Spatial (STS) Classification Method

Our proposed method extracts and combines the spectral-temporal and spatial characteristics of
remote sensing images using all the available data. The workflow of the proposed time-series land
cover classification method is shown in Figure 7. The proposed classification method consists of the
following four steps. (1) Time-series data are constructed based on the spectral-temporal arrangement.
Then the similarity measure matrix is calculated by computing the DTW distance between pixels
using all the available data (Section 3.1). (2) The spectral-temporal feature vectors extracted by the
LE-DTW DR method (using the DTW similarity matrix to construct an adjacency graph) are classified
to create a pixel-based classification map (Section 3.2). (3) A segmentation map is obtained by the
MST-DTW method (an MST is created from a weighted graph based on the DTW similarity matrix;
Section 3.3). (4) Spatial regularization is the strategy employed to combine the spectral-temporal and
spatial features. In this step, majority voting [47,87] based on the segmentation map is utilized to
post-process the pixel-based classification map. Finally, a land cover map is obtained based on the
spectral-temporal-spatial (STS) classification method.
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4. Experiments

A series of quantitative classification experiments were undertaken in each study area to verify the
performance of the proposed method. Five classification methods were used for comparison, as shown
in Table 1. The reasons for choosing these five methods are as follows. First, LE-DTW and STS are
the methods proposed in this paper. The comparison of these two methods is to illustrate whether
spatial information is useful for improving the accuracy of time-series land cover classification. Second,
principal component analysis (PCA) is a typical linear DR method [44], and is compared to LE-DTW to
explore the internal structure of satellite time-series data. Third, LE-SAM-R is a refined LE algorithm
using the spectral angle mapper (SAM) with satellite time-series data after temporal interpolation [39].
We compared it with LE-DTW to illustrate which metric is more effective for satellite time-series data
mining. Fourth, temporal interpolation (TI) only needs to interpolate the original time series data
without DR, and then the interpolated data is directly input to the classifier to obtain the classification
results. It is compared with LE-DTW to show whether there is a large amount of data redundancy in
satellite images time series.

Because all of TI, PCA and LE-SAM-R require cloud-free land surface observations, we use
temporal interpolation with the raw data using data from earlier and later dates. Specifically, if the
band values for a pixel were covered by clouds on a certain date, these values were replaced by a
temporally adjacent data point or the average of two temporally adjacent measurements if both the
prior and following points are available.

Two popular supervised classifier random forests (RFs) [88] and support vector machine
(SVM) [89,90] were used to generate pixel-based classification maps in experiments. The RF classifier
is composed of multiple tree classifiers. In addition, each tree classifier casts an equal vote to choose
the most popular classification of the input vector [91,92]. A total of 500 trees were built using RFs in
this paper. In addition, the SVM classifier with a radial basis function (RBF) kernel was performed by
using LIBSVM [93].
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Table 1. Comparison of five classification methods.

Abbreviation Classification Method

TI Temporal interpolation + RF/SVM
PCA Temporal interpolation + PCA + RF/SVM

LE-SAM-R Temporal interpolation + LE-SAM + RF/SVM
LE-DTW LE-DTW + RF/SVM

STS LE-DTW + RF/SVM + MST-DTW

The same parameter settings were adopted for all three sets of experiments. Training data and
testing data for classification in the three study areas were extracted from the 2014 CDL. In each study
area, only the classes which covering over 2% on the CDL data were considered. In addition, 1% of
the CDL pixels were randomly selected as training samples and the rest of pixels were used as testing
data. A total of 1600, 1000, and 1250 training pixels were used for the Illinois, South Dakota, and Texas
study areas, respectively. The traditional classification accuracy statistics obtained from confusion
matrices, including the overall and single-class accuracies and kappa index were used to evaluate the
performance of classification [3,94]. Sensitivity to training data with different proportions was also
undertaken (take RF classifier as an example) by selecting at random from 0.1% to 10% of the CDL
pixels in three study areas. To ensure the reliability of the results, all the experiments were repeated
10 times.

4.1. Performance of RF and SVM in Five Classification Methods

The classification results and the classification “stability” for the five classification methods
combined with RF classifier and SVM classifier is illustrated in this section. The mean overall accuracies
and kappa index values of five classification methods combined with two classifiers using 1% CDL
training data are shown in Table 2. Comparing the two classifiers from the table, we can see that both
RF and SVM classifier had similar overall accuracy and kappa index for each classification method in all
three study areas. The maximum difference of overall accuracy using RF classifier and SVM classifier
for TI, PCA, LE-SAM-R, LE-DTW and STS method in three study areas were 1.93%, 1.53%, 2.66%, 3.22%
and 0.63%, respectively, and the corresponding difference of kappa index were 0.0217, 0.0857, 0.0395,
0.0456 and 0.0107. It is worth noting that, in the STS classification method, the difference of overall
classification accuracy of two classifiers in three study areas were 0.51%, 0.52% and 0.63%, respectively,
and the corresponding difference of kappa index were 0.0096, 0.0079, and 0.0107. Obviously, the
performance of the two classifiers are most similar in the STS classification method, meaning that that
method is more stable than the other four classification methods.

Table 2. The overall accuracies and kappa index of five classification methods.

Classification Method
Illinois South Dakota Texas

OA Kappa OA Kappa OA Kappa

TI
SVM 75.92% 0.5801 83.47% 0.7532 64.97% 0.5173
RF 77.11% 0.5997 85.40% 0.7749 66.15% 0.5285

PCA
SVM 74.10% 0.5388 78.86% 0.6751 67.16% 0.5495
RF 73.50% 0.5683 80.39% 0.7608 65.99% 0.5610

LE-SAM-R
SVM 78.64% 0.6234 84.50% 0.7641 70.67% 0.5987
RF 80.74% 0.6629 86.64% 0.7982 73.33% 0.6379

LE-DTW
SVM 80.92% 0.6649 86.72% 0.7986 73.37% 0.6383
RF 80.75% 0.6655 87.17% 0.8074 76.59% 0.6829

STS
SVM 82.92% 0.7009 90.66% 0.8589 78.35% 0.7072
RF 82.41% 0.6913 91.18% 0.8668 77.72% 0.6965
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4.2. Satellite Image Time Series Data Redundancy

The mean overall accuracies and kappa index values of the TI and LE-DTW classification results
using 1% CDL training data are shown in Table 2. The overall classification accuracy of the LE-DTW
method is at least 2.72%, 1.77% and 8.40% higher than that of TI in Illinois, South Dakota, and
Texas study areas, respectively. In addition, the kappa index of the LE-DTW method are raised
more than 0.0658, 0.0325 and 0.1210 compared to the TI method in three study areas. Classification
maps constructed using the TI and LE-DTW methods combined with RF classifier in three study
areas are shown in Figure 8a,d, Figure 9a,d and Figure 10a,d. Tables 3 and 4 summarize the mean
producer’s and user’s accuracies for classification based on the TI and LE-DTW methods combined
with RF classifier for each major crop category, respectively. The producer’s accuracy indicates the
probability that a pixel is classified correctly, which equal the ratio of all the pixels classified correctly
in a class to the sum of true reference pixels for that class [95]. The user’s accuracy indicates the
probability that a pixel is classified to a specific class, which equal the ratio of all the pixels classified
correctly in a class to the sum of all of the pixels allocated to that class [95]. The producer’s and user’s
accuracies of TI method for most of the categories in the three study areas were significantly lower
than those of the LE-DTW, especially in the CDL classes covering less than 10% of each study area.
For example, the producer’s and user’s accuracies of the Illinois grass/pasture class (4.6% of the study
area), the South Dakota developed/open space class (5.67% of the study area), and the Texas sorghum
class (5.36% of the study area) in the TI method were 25.71%, 9.08% and 31.44% less than those of the
LE-DTW method, respectively.

For satellite image time series, the classification accuracy of the data after DR is higher than
that of the data without DR. Possible reasons are as follows. First, the time series data contains
data redundancy, which cause the Hughes phenomenon [42]. Second, the temporal interpolation for
time series data brings new error, especially the continuous temporal data are unavailable. Third,
LE-DTW method provides dimensionality-reduced data that have desirable classification properties.
Therefore, prior to land cover classification, it is appropriate to apply the DR techniques to satellite
image time series.

4.3. Satellite Image Time Series Nonlinear Characteristics

The mean overall accuracies and kappa index values of the PCA and LE-DTW classification results
using 1% CDL training data are shown in Table 2. The overall classification accuracy of the LE-DTW
method combined with RF classifier or SVM classifier is more than 6% greater than that of PCA in all
study areas, and its kappa index is also higher than that of PCA by more than 0.04. Classification maps
constructed using the PCA methods combined with RF classifier in three study areas are shown in
Figures 8b, 9b and 10b. Table 5 summarize the mean producer’s and user’s accuracies of classification
based on the PCA methods combined with RF classifier for each major crop category. For the PCA
DR method, the producer’s and user’s accuracies exceeded 76%, 86%, and 50% for all CDL classes
covering more than 10% of each study area in Illinois, South Dakota, and Texas, respectively. However,
the producer’s and user’s accuracies of the Illinois developed/open space class (5.29% of the study
area), the South Dakota grass/pasture class (2.10% of the study area) and the Texas developed/open
space class (4.92% of the study area) ranged from only 11% to 45%. For developed/open space class
and grass/pasture class, the main reason for the low accuracy include two aspects. One is the small
covering area resulting in the small size of the training sample, which means that it is difficult to
establish reasonable classification rules when training classifiers. Another is that these natural land
and vegetation classes have less pronounced phenology characteristics than the cropland classes.

For the LE-DTW method, the producer’s and user’s accuracies for all the categories in the three
study areas were significantly higher than those of the PCA. This was to be expected, because satellite
image time series have intrinsic nonlinear characteristics. Thus, LE-DTW, as a nonlinear DR method, is
better suited than the linear DR method for solving the high dimensionality problem of satellite image
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time series. In addition, multi-spectral time-series data require cloud removal before PCA DR. Error
generated by this pre-processing may be another reason that PCA has lower accuracy than LE-DTW.

4.4. Satellite Image Time Series Metric

The mean overall accuracies and kappa index values of the LE-SAM-R classification results
generated using 1% CDL training data are shown in Table 2. The overall classification accuracies
and kappa index values of the LE-SAM-R method were lower than those of LE-DTW in all the three
study areas. The largest relative improvement using the LE-DTW method was in the Texas study area.
LE-DTW combined with RF classifier had a 3.26% greater overall accuracy and a 0.0450 increase in
kappa index than LE-SAM-R combined with RF classifier. The classification maps for the LE-SAM-R
method combined with RF classifier in the three study areas are shown in Figures 8c, 9c and 10c.
Table 6 summarizes the mean producer and user accuracies of the classification based on the LE-SAM-R
method combined with RF classifier for each major crop category. The producer and user accuracies
exceeded 81%, 88%, and 70% for all CDL classes covering more than 10% of the study area in Illinois,
South Dakota, and Texas, respectively. However, the producer’s accuracies of LE-SAM-R for most
categories were also lower than those of the LE-DTW method.

These results suggest that the DTW distance is better suited for similarity measurement of
multi-spectral time-series data than the SAM distance. The DTW metric ensures that all the data
from cloudless regions in each temporal image are used. This is of great importance to those sensors
that have low-frequency observations. It is worth noting that the LE-DTW method does not need
to reconstruct the value of the data in the cloud-covered regions, whereas the LE-SAM-R method
requires this reconstruction process. In other words, the LE-DTW method uses all the available data
directly. Therefore, the LE-DTW method is a dimensionality reduction method which is more suitable
for satellite image time series data.

4.5. Satellite Image Time Series Spatial Features

The mean overall accuracies and kappa index values of the STS classification results generated
using 1% CDL training data are shown in Table 2. The STS method provides unambiguously higher
overall classification accuracies than LE-DTW in most cases. It is worth noting that, compared to the
LE-DTW method (combining RF classifier), the overall classification accuracies improved by 1.66%,
4.01%, and 1.13% in Illinois, South Dakota, and Texas study areas, respectively, using the STS method
(combining RF classifier), while the corresponding kappa index values were enhanced by 0.0258,
0.0594 and 0.0136. Similarly, the performance of STS method combined with SVM classifier is better
than that of LE-DTW method combined with SVM classifier. Classification maps generated using
the STS method combined with RF classifier in the three study areas are shown in Figures 8e, 9e and
10e. Table 7 summarizes the mean producer and user accuracies of classification based on the STS
method combined with RF classifier for each major crop category. Compared to the producer and user
accuracies in Table 6, the corresponding accuracies stated in Table 7 were higher for the great majority
of classes. Furthermore, for CDL classes covering less than 10% of each study area, the producer and
user accuracies of the STS method were also greatly improved. For example, the producer’s accuracies
of the Illinois developed/open space class (5.29% of the study area), the South Dakota developed/open
space class (5.67% of the study area), and the Texas sorghum class (5.36% of the study area) in the STS
method were 8.73%, 19.06% and 2.4% greater than those of the LE-DTW method, respectively.

These results show that the MST-DTW method can effectively extract spatial features from
satellite image time series using all available data. The STS method combined with spatial information
extracted by MST-DTW significantly improves the land cover classification accuracies of multi-spectral
time-series data. STS can mine a variety of features from limited data for classification; therefore, it is
particularly effective for remote sensing image time series with low temporal resolution.
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Table 3. Mean producer and user accuracies of classification based on TI + RF method.

Soybeans Corn Developed/Open Space Grass/Pasture

Illinois Producer’s accuracy 81.18% 79.31% 6.74% 16.11%
User’s accuracy 83.81% 85.20% 1.89% 13.01%

Soybeans Corn Developed/Open Space Grass/Pasture Alfalfa

South Dakota Producer’s accuracy 87.98% 84.48% 37.53% 44.63% 87.55%
User’s accuracy 88.05% 87.40% 9.36% 8.43% 88.01%

Winter Wheat Corn Developed/Open Space Grass/Pasture Sorghum Cotton

Texas Producer’s accuracy 58.26% 76.47% 27.98% 61.74% 30.52% 49.46%
User’s accuracy 68.27% 89.91% 2.75% 59.20% 20.98% 28.98%

Table 4. Mean producer and user accuracies of classification based on LE-DTW+RF method.

Soybeans Corn Developed/Open Space Grass/Pasture

Illinois Producer’s accuracy 81.79% 84.12% 48.15% 54.29%
User’s accuracy 87.53% 85.58% 15.31% 38.72%

Soybeans Corn Developed/Open Space Grass/Pasture Alfalfa

South Dakota Producer’s accuracy 91.88% 88.42% 46.61% 40.22% 91.52%
User’s accuracy 90.73% 92.23% 37.03% 35.95% 92.61%

Winter Wheat Corn Developed/Open Space Grass/Pasture Sorghum Cotton

Texas Producer’s accuracy 75.81% 85.07% 44.20% 70.80% 62.48% 73.76%
User’s accuracy 76.35% 90.49% 27.68% 73.13% 52.42% 70.14%

Table 5. Mean producer and user accuracies of classification based on PCA + RF method.

Soybeans Corn Developed/Open Space Grass/Pasture

Illinois Producer’s accuracy 76.43% 77.62% 32.00% 46.85%
User’s accuracy 82.03% 82.75% 11.87% 18.59%

Soybeans Corn Developed/Open Space Grass/Pasture Alfalfa

South Dakota Producer’s accuracy 86.02% 87.16% 47.24% 44.13% 86.44%
User’s accuracy 89.79% 90.06% 26.65% 20.52% 88.75%

Winter Wheat Corn Developed/Open Space Grass/Pasture Sorghum Cotton

Texas Producer’s accuracy 69.30% 80.96% 24.53% 58.97% 41.56% 54.77%
User’s accuracy 68.16% 84.34% 11.26% 64.01% 32.25% 50.65%
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Table 6. Mean producer and user accuracies of classification based on LE-SAM-R+RF method.

Soybeans Corn Developed/Open Space Grass/Pasture

Illinois Producer’s accuracy 82.53% 81.53% 40.25% 57.58%
User’s accuracy 85.65% 87.41% 17.89% 42.57%

Soybeans Corn Developed/Open Space Grass/Pasture Alfalfa

South Dakota Producer’s accuracy 88.01% 88.87% 56.30% 47.83% 91.11%
User’s accuracy 90.65% 92.90% 43.06% 36.29% 84.24%

Winter Wheat Corn Developed/Open Space Grass/Pasture Sorghum Cotton

Texas Producer’s accuracy 72.20% 84.44% 31.10% 64.62% 52.11% 67.15%
User’s accuracy 76.32% 90.42% 9.42% 65.31% 44.76% 69.58%

Table 7. Mean producer and user accuracies of classification based on STS (using RF classifier) method.

Soybeans Corn Developed/Open Space Grass/Pasture

Illinois Producer’s accuracy 82.61% 84.99% 56.88% 59.03%
User’s accuracy 89.65% 87.92% 21.19% 38.23%

Soybeans Corn Developed/Open Space Grass/Pasture Alfalfa

South Dakota Producer’s accuracy 92.72% 92.36% 65.70% 56.15% 94.95%
User’s accuracy 95.46% 96.03% 46.86% 36.76% 93.25%

Winter Wheat Corn Developed/Open Space Grass/Pasture Sorghum Cotton

Texas Producer’s accuracy 75.82% 84.06% 46.31% 74.06% 64.88% 75.97%
User’s accuracy 78.84% 93.84% 25.86% 71.13% 52.87% 69.63%
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Figure 9. South Dakota classification results. Green = soybeans; yellow = corn; gray = developed/open
space; pale green = grass/pasture; magenta = alfalfa; black = background (CDL classes covering ≤2%
of the study area). (a) TI. (b) PCA. (c) LE-SAM-R. (d) LE-DTW. (e) STS.
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Figure 10. Texas classification results. Yellow = corn; brown = winter wheat; gray = developed/open
space; pale green = grass/pasture; orange = sorghum; red = cotton; black = background (CDL classes
covering ≤2% of the study area). (a) TI. (b) PCA. (c) LE-SAM-R. (d) LE-DTW. (e) STS.
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4.6. Classification Sensitivity to the Amount of Training Data

Classification accuracy always directly depends on the amount of the training data [96]. Careful
selection of training samples may help reduce the size of the training data without reducing supervised
classification accuracy [97]. When using fewer training samples, a given classification accuracy should
be capacitated by a more optimal classification method than a less one [39].

Figure 11 illustrates the overall classification accuracies provided by the LE-DTW (green) and
STS (blue) using different percentages of training data. At each training percentage, a total of
10 independent classifications were performed. As can be seen from Figure 11, the overall classification
accuracies of STS approach are consistently higher than the LE-DTW approach. Moreover, when using
fewer training samples, the classification performances of STS method are more stable than that of
LE-DTW method. Both the overall classification accuracies of STS approach and LE-DTW become
stable when approximately 1% of the training samples are used. For each set of 10 classifications,
the standard deviations of the overall classification accuracies are not illustrated. This is because the
standard deviation for each set experiments were less than 1% except for the results using the 0.1%
training data which were less than 2.1% in the three study areas. These results show that the STS
method using spectral-temporal-spatial features is more optimal than the LE-DTW method using
spectral-temporal features only.
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of the LE-DTW (green) and STS (blue) calculated by 10 independent classifications are shown.

5. Conclusions

Obtaining accurate and timely land cover maps is a difficult problem in remote sensing. Such maps
require the mining of as much useful information as possible to improve land cover classification
accuracy based on limited data. In this study, a novel method is developed for land cover classification
using spectral-temporal-spatial data at an annual scale, assuming there is no land cover change within
1 year. This approach utilizes all the available multi-spectral time-series data to construct a graph based
on the DTW similarity measure, and then utilizes graph theory-based dimensionality reduction and
segmentation methods to extract spectral-temporal features and spatial features for identification and
optimization of land cover classes. In addition, the proposed method is an automated classification
method, and requires few training samples to perform well. These advantages are significant because
land cover classification is labor-intensive and difficult to automate [98,99]. Therefore, the classification
method introduced in this paper should prove useful for improving the accuracy and reducing
the mapping period for land cover classification. The proposed method was applied to Landsat
multi-spectral reflectance time-series data, which has a resample period of 16 days. A series of
supervised classification experiments using USDA CDL land cover maps as reference data were
undertaken in three study areas with land cover complexity and different amounts of invalid data in
the United States.
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Although the STS classification method provided the anticipated classification results in this
study, the computation required for the LE-DTW method in the STS system increases geometrically
with the spatial dimensions of the image. In fact, this problem occurs in most manifold learning DR
algorithms [100–104]. This is an issue, especially when manifold learning DR algorithms are applied to
land cover classification at continental to global scale [13,105]. Due to the complexity of the MST-DTW
algorithm, it is mainly implemented by building a DTW similarity measure matrix in the same manner
as LE-DTW, and therefore MST-DTW does not significantly increase the computational intensity of the
STS system. Reducing its computational requirements is a direction for future research. This could
be accomplished, for example, by employing the landmark points strategy [106] developed for the
ISOMAP (isometric mapping) global nonlinear DR method [67,107,108], GPU (Graphics Processing
Unit) enhanced computing [109], and the STS method to classify and then merge image subsets.
In addition, we are now conducting experiments using long-term multi-spectral time-series data with
invalid values for land cover change detection with spectral-temporal-spatial features extracted from
the STS system.
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