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Abstract: In recent years, the development of compressed sensing (CS) and array signal processing
provides us with a broader perspective of 3D imaging. The CS-based imaging algorithms have
a better performance than traditional methods. In addition, the sparse array can overcome the
limitation of aperture size and number of antennas. Since the signal to be reconstructed is sparse
for air targets, many CS-based imaging algorithms using a sparse array are proposed. However,
most of those algorithms assume that the scatterers are exactly located at the pre-discretized grids,
which will not hold in real scene. Aiming at finding an accurate solution to off-grid target imaging,
we propose an off-grid 3D imaging method based on improved sparse Bayesian learning (SBL).
Besides, the Bayesian Cramér-Rao Bound (BCRB) for off-grid bias estimator is provided. Different
from previous algorithms, the proposed algorithm adopts a three-stage hierarchical sparse prior to
introduce more degrees of freedom. Then variational expectation maximization method is applied to
solve the sparse recovery problem through iteration, during each iteration joint sparsity is used to
improve efficiency. Experimental results not only validate that the proposed method outperforms the
existing off-grid imaging methods in terms of accuracy and resolution, but have compared the root
mean square error with corresponding BCRB, proving effectiveness of the proposed method.

Keywords: three-dimensional imaging; off-grid model; sparse Bayesian learning; variational expectation
maximization; Bayesian Cramér-Rao bound

1. Introduction

In the last few years, three-dimensional (3D) radar imaging systems and algorithms have received
significant attention among researchers worldwide. Different from the 2D radar image, which is a
projection of the 3D model, 3D radar image can provide shape and energy distribution of dominated
scatterers of the target [1,2]. This information is of great significance to target identification and
diagnostic analysis. Multiple-input–multiple-output (MIMO) radar system has drawn much attention
and shows its potential in 3D imaging in the last decade [3]. For one thing, it can overcome the
problem of limited number of antennas and limited aperture size. For another, the coherent processing
interval (CPI) is reduced in MIMO radar by using space sampling instead of time sampling [4].
In traditional interferometric inverse synthetic aperture radar (InISAR), the imaging performance
is severely degraded for high maneuvering target because the rotation axis of the target relative to
the radar is time varying during the CPI [5,6]. Compared with the InISAR technique, the 3D image
can be reconstructed in one snapshot [7] with a wideband monostatic MIMO radar system, thus free
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from the target’s high mobility. In the last few years, compressed sensing (CS) has been widely used
in sparse signal recovery with fewer samples [8]. It has shown great advantage in radar imaging
due to its super-resolution ability. It is proven that CS-based imaging algorithms provide a better
resolution enhancement effect than the RELAX algorithm [9]. Besides, it can also exploit the sparsity
of signal and reconstruct the signal from limited samples with high probability. Thus, the combination
of MIMO radar and CS technique becomes a hot topic, and much existing research focus on CS
recovery techniques for MIMO radar imaging [4,10–12]. In Ding et al. [4], a CS-based 2D imaging
method based on sparse array is proposed. In Hu et al. [12], a narrowband 3D imaging method based
on Kronecker CS is discussed. As a matter of fact, the sparse recovery algorithms severely affect
the imaging performances. Hence, sparse recovery algorithm with high accuracy is of fundamental
importance in MIMO 3D imaging.

The CS-based imaging methods, such as orthogonal matching pursuit (OMP) or basis pursuit
(BP), can achieve a better imaging performance in the cases of low signal-to-noise-ratio (SNR) and
limited snapshots. However, most of the existing CS-based imaging methods require that the scatterers
of target to be exactly on the discretized sampling grid [13]. Otherwise, the off-grid problem will
introduce basis mismatch and leakage of energy over all grids, finally lead to the deterioration of
imaging performance. In practical MIMO radar imaging, the targets are distributed in the continuous
space, and the off-grid problem always exists. There are mainly two ways to solve the problem. One is
to compensate for the mismatch, the other is to use the gridless sparse recovery [14]. The latter is more
accurate but the guaranteed theoretical resolution of this kind of method is a few Rayleigh limits [15].
So in practical CS imaging, we still use the former method. A denser grid may mitigate the effect of
mismatch to some extent, but it will increase the mutual coherence of the sensing matrix [16]. This may
cause violation of the restricted isometry property (RIP) property, which is the guarantee for reliable
recovery. The computation cost will also increase sharply with a denser grid. Hence, CS recovery with
a perturbed sensing matrix has been a hot topic. In Chi et al. [17], the performance of CS recovery
is analyzed when the mismatch problem exists, nevertheless, it does not provide any algorithm for
off-grid CS recovery. Sparsity-cognizant total least-squares (S-TLS) is the first recovery method for
perturbed compressed sensing problem [18]. The S-TLS algorithm supposes that the off-grid bias
obeys the Gaussian distribution. However, without any prior information, the uniform distribution
is more suitable for the off-grid bias (the distance between the true scatterer and its nearest grid).
A perturbation approach is established for compressive radar imaging based on OMP [13], but it does
not use the statistical information and the performance is not satisfying. An off-grid direction of arrival
(DOA) estimator based on sparse Bayesian inference (OGSBI) is proposed in Yang et al. [19], which
adopts the uniform distribution. However, research on MIMO radar CS imaging are mainly restricted
to one dimensional(1D) resolution enhancement [12]. Study on problems with high dimensionality
has just begun. Hence, this study sets out to find an algorithm for high dimensionality MIMO imaging
for off-grid air target.

Starting from the purpose of finding a 3D imaging method with high accuracy for maneuvering
off-grid air target, we propose a novel algorithm based on improved sparse Bayesian learning to
overcome the aforementioned problems. Under this framework, we first derive the on-grid and
off-grid 3D imaging model using a sparse array. Then the three-stage hierarchical sparse prior is
adopted, which introduces more degrees of freedom. Finally, this algorithm can get the approximated
analytic expressions of the unknown parameters by using the variational expectation maximization
(EM) method. Besides, both the imaging result and estimations of unknown parameters such as
off-grid biases can be obtained at the same time. Simulation results prove the superiority of the
proposed algorithm over other existing off-grid sparse recovery algorithms such as S-TLS and OGSBI.
In addition, the BCRB and the Mean Square Error (MSE) of off-grid bias estimator are compared to
verify effectiveness of the proposed method.

Notations used in this paper are as follows. Bold-case letters are reserved for vectors and matrices.
â is the expectation of a. diag(x) is a matrix with its main diagonal being x. � denotes the Hardmard
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product and <{x}means the real part of complex x. Kp(·) is the modified Bessel function of the 3rd
kind. (·)T , (·)H are the transpose and conjugate transpose operator, respectively. A is the conjugate
of A. E[·]p is the expectation operator which is taken with respect to the probability density function
p. x(i) is the update of x in the ith iteration. Ai, Aj, Ai,j are the ith column, the jth row and the (i, j)th
element of A, respectively.

The remaining parts of this paper proceed as follows: the off-grid target 3D imaging problem
based on sparse array is formulated in Section 2. In Section 3, an algorithm for 3D imaging based
on improved sparse Bayesian learning is proposed and the BCRB for off-grid bias is also derived.
In Section 4, experimental results and analyses of the imaging performance are presented. Finally,
conclusions are drawn in Section 5.

2. Problem Formulation of 3D Imaging

2.1. Ideal Imaging Model Based on Sparse Antenna Array

The geometry of the 3D imaging based on sparse antenna array is depicted in Figure 1. In this
paper, we consider a wideband MIMO radar system with M transmitters and N receivers. Considering
the need for a good orthogonal characteristic of transmitted signals, we adopt a group of M orthogonal
phase-code modulation (PCM) signals with the same carrier frequency and bandwidth in this system.
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Figure 1. The imaging geometry of the proposed method.

Transmitted signal from the mth transmitter can be expressed as follows:

sm(t) = rect(
t− Tr

Tr
)exp(jϕm(t))exp(j 2π fct) (m = 1, 2, . . . , M) (1)

In which Tr is the pulse width, fc is the carrier frequency and ϕm(t) is the phase-code function.
rect( t

T ) is defined as follows:

rect(
t
T
) =

{
0 |t| > T

2
1 |t| ≤ T

2
(2)

This group of transmitted signals are orthogonal to each other.

∫ Tr

0
sp(t)s∗q(t) =

{
0 if p 6= q
Constant if p = q

(3)

Assuming that the transmitters and receivers are in the XOY plane, (xm, ym) and (xn, yn) are
the coordinates of mth transmitter and nth receiver, respectively. Suppose that there are K dominant
scatterers in the imaging scene. The coordinate of the kth scatterer is (rk, θk, ϕk), and its RCS is σk.
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According to the sparse radar array configuration in Figure 1, the transmit and receive steering vector
can be described:

t(k) = [1 . . . exp(j
2π

λ
γt(m, k)) . . . exp(j

2π

λ
γt(M, k))] (4)

r(k) = [1 . . . exp(j
2π

λ
γr(n, k)) . . . exp(j

2π

λ
γr(N, k))] (5)

γt(m, k) = (xmsinθkcosϕk + ymsinθksinϕk) (6)

γr(n, k) = (xnsinθkcosϕk + ynsinθksinϕk) (7)

In which λ = c
fc

is the carrier wavelength, and c is the speed of light. Define the transmitting

vector as s(t) = [s1(t), s2(t), . . . , sM(t)]T , then the received signal can be expressed as:

g(t) =
K

∑
k=1

σkrT(k)t(k)s(t− 2rk
c
) (8)

After the matched filters are adopted, we can get the received signal from the mth transmitter and
the nth receiver

gmn(t) =
K

∑
k=1

σkrn(k)tm(k)ψm(t−
2rk
c
) (9)

In Equation (9), rn(k) is the nth element of r(k), and tm(k) is similar. ψm(t) is the autocorrelation
function of sm(t), which is the 1D range image. Since we adopt a wideband sparse antenna array,
the range resolution can be achieved through matched filtering. After above operations, we can get
MN one-dimensional range images from the N receivers. Because the range resolution provided by
the bandwidth is usually sufficient, we only use CS technique to enhance resolutions of the other two
dimensions. After range alignment, we transfer the 3D imaging problem into a corresponding lower
dimensional one. For the ith range cell, assuming that there are I out of K dominant scatterers falling
in this range cell, echo return of the ith range cell can be formulated as follows:

ymn =
I

∑
i=1

σirn(i)tm(i) (10)

For the application of air targets imaging, the true scatterers are always sparse compared with
the background. Thus, the sparsity of those targets are exploited and CS-based methods show its
advantages. According to traditional CS-based imaging method, we then discretize the imaging scene
into uniform grids. Assuming there are P grids for θ and Q grids for ϕ, i.e., Z(= PQ) grids in total.
Then the observed formula with noise can be described as:

ymn =
P

∑
p=1

Q

∑
q=1

σp,qexp{j 2π

λ
[(xm + xn)sinθpcosϕq + [ym + yn]sinθpsinϕq]}+ emn (11)

After data rearrangement and vectorization, i.e., σi = σp,q, i = (q− 1)× P + p, the signal model
for sparse recovery is as follows:

ymn =
Z

∑
i

σiexp{j 2π

λ
[(xm + xn)sinθicosϕi + [ym + yn]sinθisinϕi]}+ emn (12)

y = Φ0σ + e (13)

In Equation (13) y is a MN × 1 vector standing for the echo return after range alignment. Φ0 is
a MN × Z matrix with its (i, j)th element being exp{j 2π

λ [(xm + xn)sinθjcosϕj + [ym + yn]sinθjsinϕj]},
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in which i = (n− 1)× M + m. σ for different range cells can be extracted from Equation (13) via
sparse recovery, which finally construct the 3D image.

2.2. Off-Grid Imaging Model Using Taylor Expansion

The imaging model in Equation (12) is under the assumption that all the dominant scatterers are
exactly located on the pre-discretized grid. In practical radar imaging this assumption does not hold
since the scatterers of real target are distributed in a continuous space. This means that the off-grid
problem always exists. There are two off-grid models to solve the problem, one is based on the Taylor
series expansion and the other based on linear interpolation. The performances of these two models are
compared in Das [20]. The result is that the former has a better accuracy, so we choose the Taylor series
expansion to formulate the off-grid imaging model. Considering the mismatch between scatterer’s
true position and the grids, the true position of a scatterer can be expressed as:{

θi0 = θi + δθi

ϕi0 = ϕi + δϕi

(14)

In which θi0 and ϕi0 are the true coordinates. θi and ϕi stand for the nearest grid point
while δθi and δϕi stand for the off-grid bias. Let Ψ = {(θ1, ϕ1), (θ2, ϕ2), . . . , (θZ, ϕZ)} be the
uniform discretization of the 2D scene after vectorization and let the matrix Φ0 in Equation (13)
expressed as Φ0 = [a(θ1, ϕ1), a(θ2, ϕ2), . . . , a(θZ, ϕZ)]. The true position set of the scatterers is
{(θ10, ϕ10), . . . , (θk0, ϕk0), . . . , (θK0, ϕK0)}. Supposing for a certain k ∈ {1, 2, . . . , K}, its corresponding
coordinate (θk0, ϕk0) /∈ Ψ. The nearest grid point is (θk, ϕk), k ∈ {1, 2, . . . , Z}. We adopt the first order
Taylor series expansion approximation of a(θk0, ϕk0) with respect to (δθk , δϕk ) as:

a(θk0, ϕk0) ≈ a(θk, ϕk) + b(θk, ϕk)(θk0 − θk) + c(θk, ϕk)(ϕk0 − ϕk) (15)

In which b(θk, ϕk) and c(θk, ϕk) are the partial derivatives of a(θk, ϕk) with respect to θk and ϕk.
Denote Φθ = [b(θ1, ϕ1), b(θ2, ϕ2), . . . , b(θZ, ϕZ)], Φϕ = [c(θ1, ϕ1), c(θ2, ϕ2), . . . , c(θZ, ϕZ)], δθ =

[δθ1 , δθ2 , . . . , δθZ ] and δϕ = [δϕ1 , δϕ2 , . . . , δϕZ ]. The off-grid bias vector δθ satisfies

δθk =

{
θk0 − θk if σk 6= 0
0 otherwise

(16)

where k = 1, 2, . . . , Z. It is the same for δϕ. Hence, the off-grid imaging model corresponding to
Equation (13) can be expressed as:

y = (Φ0 + Φθ∆θ + Φϕ∆ϕ)σ + e (17)

with ∆θ = diag(δθ) and ∆ϕ = diag(δϕ). With this off-grid imaging model, our goal is to find the
optimal σ, δθ , δϕ simultaneously, after which the accurate 3D image can be reconstructed.

3. The Proposed Off-Grid Imaging Algorithm

According to Equation (17), the off-grid 3D imaging problem is presented. The off-grid bias
can be seen as a kind of multiplicative noise, thus the traditional sparse recovery algorithms, such
as OMP and BP, fail to solve this problem. In Yang et al. [19], OGSBI is proposed and proves its
potential to the off-grid DOA estimation problem. Inspired by the idea in Bishop [21], we propose
an algorithm based on sparse Bayesian learning using a three-stage sparse prior to solve the off-grid
imaging problem. In this section, we first describe the SBL-based off-grid imaging algorithm. Then the
Bayesian Cramér-Rao bounds for off-grid bias estimator are presented.
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3.1. Algorithm Description

3.1.1. The Three-Stage Sparse Prior Model

The overall graphical model of the three-stage sparse prior is shown in Figure 2.
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Figure 2. The three-stage sparse prior model.

Starting from a Bayesian perspective, all the knowns in Equation (17) are assigned with probability
distributions. Then we can estimate σ, δθ , δϕ based on the maximum a posteriori (MAP) criterion.
Note that the probability density function of a complex Gaussian distributed vector x ∼ CN (µ, Σ)

with its mean µ and covariance matrix Σ is:

CN (x|µ, Σ) =
1

πZ|Σ|exp(−(x− µ)HΣ−1(x− µ)) (18)

First, we start from the sparse prior model for the radar cross section (RCS) vector σ. Here we
adopt a three-stage sparse prior for σ. Supposing that the RCS vector σ has a complex Gaussian
distribution, σ ∼ CN (0, Σ), which corresponds to the well known Swerling-1 model. In addition,
the covariance matrix Σ = diag(α), in which α = [α1, α2, . . . , αZ]

T . The reason why we choose this
probability distribution function is that a sparse prior is needed under the Bayesian framework. Since
σ is sparse, that is to say, most of the elements in σ are equal or close to zero, we choose the Gaussian
zero-mean model as the sparse prior. Along with the three-stage sparse prior model in the following,
σ is strongly peaked at the origin. As a result, this Gaussian zero-mean prior favors that most elements
of σ being zero. It is shown in Bishop [21] that both Gaussian distribution and Gamma distribution
belong to the exponential distribution family and they are a pair of conjugate priors. This property
leads to the posterior function having the same functional form as the prior and to a simplified Bayesian
analysis. So we assume a Gamma distribution for α:

p(α|β) =
Z

∏
i=1

Γ(αi|1, βi) (19)

with Γ(x|a, b) = [Γ(a)]−1baxa−1e−bx and Γ(·) being the Gamma function. The first stage of the sparse
prior model is that β also follows a Gamma distribution with a, b > 0:

p(β|a, b) =
Z

∏
i=1

Γ(βi|a, b) (20)

As is shown in Figure 2, this three-stage prior is a sparse prior of σ. Compared with the method
in Yang et al. [19], this model introduces Z more hyperparameters into the sparse recovery model to
offer more degrees of freedom.
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Secondly, assuming that the noise is white complex Gaussian, we have:

p(e|η) = CN (e|0, ηI) (21)

where η being the noise variance. Similarly, a conjugate prior is assigned that p(η|c, d) = Γ(η|c, d). It is
worth mentioning here why the sensing noise e is assumed zero-mean. In Equation (15), a first order
Taylor series expansion approximation is adopted and higher order items are neglected. So sensing
noise in Equation (17) only contains the measurement noise which is assumed white Gaussian
distributed with zero mean.

Finally, for the off-grid bias δθ and δφ, the uniform distribution is more suitable than the Gaussian
distribution since we do not have any information about them. Supposing that the pre-discretized grid
intervals are ρθ and ρϕ, we get:

δθ ∼ U
(
[−ρθ

2
,

ρθ

2
]Z
)

δϕ ∼ U
(
[−

ρϕ

2
,

ρϕ

2
]Z
)

(22)

3.1.2. Variational Inference EM Based Sparse Recovery Algorithm

Under the framework of sparse Bayesian learning, we always seek to find the optimal estimations
from the MAP criterion. The posterior distribution can be expressed by the following equations:

p(σ, δθ , δϕ, α, β, η|y) = p(y, σ, δθ , δϕ, α, β, η)/p(y) (23)

p(y, σ, δθ , δϕ, α, β, η) = p(y|σ, δθ , δϕ, η)p(σ|α)p(α|β)p(β)p(δθ)p(δϕ)p(η) (24)

p(y|σ, δθ , δϕ, η) = CN (y|(Φ0 + Φθ∆θ + Φϕ∆ϕ)σ, ηI) (25)

However, according to Equation (24) the marginalized likelihood function

p(y) =
∮

p(y|σ, δθ , δϕ, η)p(σ|α)p(α|β)p(β)p(δθ)p(δϕ)p(η)dσdδθdδϕdαdβdη (26)

which cannot be calculated analytically, thus the normalized constant in Equation (23) cannot be
computed. In Blei et al. [22], the author gives a solution to this kind of problem using variational
inference EM algorithm. Hence, we adopt the variational EM algorithm in this sparse recovery problem.
According to the jargon in the EM algorithm, we treat σ, α, β, η as the hidden variables while δθ , δϕ

being the parameters. Since the variational inference EM algorithm is a two-stage iterative optimization
algorithm, assuming that σ(i), α(i), β(i), η(i), δ

(i)
θ , δ

(i)
ϕ are obtained in the ith iteration, we now seek for

their updates in the (i + 1)th iteration.

(1) The E-step

Since the posterior distribution p(σ, δθ , δϕ, α, β, η|y) cannot be calculated analytically, we use
the variational inference technique in Tzikas et al. [23] to find an approximation for the posterior
distribution:

p(σ, δθ , δϕ, α, β, η|y) ≈ q(σ, δθ , δϕ, α, β, η|y) := q(σ)q(δθ)q(δϕ)q(α)q(β)q(η) (27)

which minimizes the Kullback-Leibler divergence. This approximation comes from the variational
methods used in Bayesian inference. Among these applications, a particular form that has been used
with great success is the factorized one which is used in this paper. In a broad sense, this approximation
is always valid, but the performance is effected by the form of the prior distributions. In our method,
we use the conjugate priors in order to get an analytical expression, and the performance of the
approximation in Equation (27) is satisfactory. Based on the above equation, we can get the estimation
of the hidden variables. The detailed procedures are as follows.
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For σ, we have:

lnq(σ) = E[lnp(y|σ, δθ , δϕ, η) + lnp(σ|α)]q(δθ)q(δϕ)q(α)q(η) + C

∝ −σH [η̂ΦHΦ + diag(1/α̂)]σ − 2η̂yHΦσ
(28)

where Φ = Φ0 + Φθdiag(δ̂θ) + Φϕdiag(δ̂ϕ). According to the above equation, q(σ) is a complex
Gaussian distribution, i.e., σ ∼ CN (µ, Σ) with

µ = η̂ΣΦHy

Σ = [η̂ΦHΦ + diag(1/α̂)]−1 (29)

Since we have already obtained both hidden variables and parameters in the ith iteration,
the expectations in Equation (29) are all replaced by the ith updates, i.e.,

µ(i+1)(σ(i+1)) = η(i)Σ(i+1)ΦHy

Σ(i+1) = [η(i)ΦHΦ + diag(1/α(i))]−1

Φ = Φ0 + Φθdiag(δ(i)
θ ) + Φϕdiag(δ(i)

ϕ )

(30)

In the following part, the expectations of these unknowns are replaced by their corresponding
latest updates.

For α, we have:

lnq(α) = E[lnp(σ|α) + lnp(α|β)]q(σ)q(β) + C

lnq(αj) ∝ −σ̂2
j α−1

j − lnαj − β̂ jαj
(31)

Thus, the elements in α are independent and their distribution is a generalized inverse Gaussian
distribution [24]. Here we use the expectation of αj to get the (i + 1)th update for α(i+1). For the jth
element in α:

α
(i+1)
j = (

ξ
(i+1)
j

β
(i)
j

)1/2
κ1(2

√
β
(i)
j ξ

(i+1)
j )

κ0(2
√

β
(i)
j ξ

(i+1)
j )

(32)

In which ξ
(i+1)
j = (σ2

j )
(i+1) = |σ(i+1)

j |2 + Σ(i+1)
j,j .

For β, we have:

lnq(β) = E[lnp(α|β) + lnp(β)]q(α) + C

lnq(β j) ∝ alnβ j − (b + α̂j)β j
(33)

Similarly, elements in β are independent and p(β j) = Γ(β j|a + 1, b + αj). The (i + 1)th update of
β are as follows:

β
(i+1)
j =

a + 1

b + α
(i+1)
j

(34)

For η, we have:

lnq(η) = E[lnp(y|σ, δθ , δϕ, η) + lnp(η)]q(α)q(δθ)q(δϕ) + C

∝ (Z + c− 1)lnη −
(
‖y−Φµ‖2

F + tr(ΦHΦΣ) + d
)

η
(35)
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where µ and Σ are defined in Equation (29). Similar to β, q(η) is also a Gamma distribution. Combining
the expression for Σ in Equation (29) and the expectation for a Gamma distribution, we can get:

η(i+1) =
Z + c

‖y−Φµ(i+1)‖2
F + d + 1

η(i)
∑Z

n=1(1− 1
α
(i+1)
n

Σ(i+1)
n,n )

(36)

(2) The M-step

For δθ , its estimate maximize E[lnp(y|σ, δθ , δϕ, η) + lnp(δθ)], which equivalent to minimizing

E
{
‖y−

[
Φ0 + Φθdiag(δθ) + Φϕdiag(δϕ)

]
σ‖2

2

}
= δT

θ A1δθ + 2aT
1 δθ + C

(37)

in which

A1 = <
{

ΦH
1 Φ1 � (Σ(i+1) + µ(i+1)(µ(i+1))H)

}
a1 = <

{
diag(ΦH

θ Φ1Σ(i+1))− diag(µ(i+1))ΦH
θ (y−Φ1µ(i+1))

}
Φ1 = Φ0 + Φϕdiag(δ(i)

ϕ )

(38)

Hence, the update of δθ in the (i + 1)th iteration can be calculated by minimizing the expression
in Equation (37).

For δϕ, it is the same as δθ , so we directly give the result:

δ
(i+1)
ϕ = arg min

δϕ

{
δT

ϕ A2δϕ + 2aT
2 δϕ

}
(39)

where A2, a2 and Φ2 are similar to those for δθ . Notice that in the maximization step, both δθ and
δϕ are jointly sparse with σ, leading to the dimensionality reduction and significant decrease of the
computation load. Based on the above analysis, the variational EM-based off-grid imaging algorithm
can be described in Table 1. It is worth mentioning that this algorithm does not need the sparsity K as
prior information. This property makes it different from traditional super-resolution methods such as
MUSIC or ESPRIT. Since the true sparsity of the imaging scene is often not available, this algorithm
has vast application prospect.

Table 1. Main steps of the proposed imaging method.

Processing Steps of the Off-Grid Imaging Method.
Input: y, Φ0, Φθ , Φϕ

Initialization:
σ
(0)
i = ΦH

i y/ΦH
i Φi, η0 = ||y−Φσ(0)||2/MN, δθ = ρθ/2, δφ = ρϕ/2, a = b = c = d = 10−5

Iteration: let i denotes the iteration counter
(1) update σ(i+1) by Equation (30)
(2) update α(i+1) by Equation (32)
(3) update β(i+1) by Equation (34)
(4) update η(i+1) by Equation (36)
(5) update δ

(i+1)
θ and δ

(i+1)
ϕ by Equations (37) and (39)

Termination condition:
The iteration ends when ||σ(i+1) − σ(i)||2/||σ(i)||2 < 10−5.
Output:
The imaging result σ(i+1), the off-gird bias estimation δ

(i+1)
θ and δ

(i+1)
ϕ
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The overall 3D imaging method is shown in Figure 3. First, the channel separation and range
compression are conducted. In practical applications, the range resolution provided by the wide
bandwidth is sufficient. After we get the echo signal, the range compression technique is used to
get the one dimensional range profile first. For range cells where scatterers exist, the algorithm will
further solve the two dimensional imaging problem in the elevation and azimuth direction. Thus,
the 3D imaging problem is reduced to a series of off-grid imaging problems in the elevation and
azimuth direction. By using the proposed method, these problems can be solved and the 3D image is
finally reconstructed. The proposed 3D imaging algorithm adopts the uniform prior, which is more
suitable than the Gaussian distribution in S-TLS. This algorithm seeks to find the optimal estimation
according to the MAP criterion and it can be seen as an extension to the imaging problem with higher
dimensionality. Moreover, more degrees of freedom are introduced into the model via a three-stage
sparse prior, which will improve the imaging performance.

Figure 3. Workflow of the proposed 3D imaging algorithm. (a) Range compression and channel
separation; (b) 2D off-grid imaging in elevation and azimuth direction; (c) Formation of the 3D image.

3.2. Bayesian Cramér-Rao Bounds For Off-Grid Biases

It is well known that the Cramér-Rao Lower Bound(CRLB) is an effective indicator for the MSE
performance of unbiased estimators. In Prasad and Murthy [25], the author provides an analogous
bound called Bayesian Cramér-Rao Bound to provide a lower bounds for estimation problems in
sparse Bayesian learning. Different from the traditional CRLB, the prior distribution of the unknowns
are considered. The MSEs of δθ and δϕ are compared with their corresponding BCRBs. This estimation
algorithm is seen as effective if their MSEs approach the BCRB with the increase of signal-to-noise
ratio (SNR).

In this off-grid imaging algorithm, σ, δθ and δϕ are the unknowns to be estimated. We denote
a new vector Θ = [σ; δθ ; δϕ] containing the all the unknowns to be estimated and the MSE matrix is
defined as EΘ , Ey,Θ[(Θ− Θ̂(y))(Θ− Θ̂(y))T ]. The first step to calculate the Cramér-Rao Lower
Bound is to derive the Fisher Information Matrix(FIM) IΘ. Usually it is convenient to express IΘ in
terms of submatrices, in which the (i, j)th block is as follows [25]:

IΘ
ij , −Ey,Θ

[
∇Θi∇

T
Θi

logp(y, Θ; η, α)
]

(40)
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Thus, the Fisher information matrix can be written as:

IΘ =

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 (41)

Only consider the items that are relevant to σ, δθ , δϕ, we have:

− logp(y, Θ; η, α) =
1
η
‖y− (Φ0 + Φθ∆θ + Φϕ∆ϕ)σ‖2

2 + σHΣ−1σ (42)

Substituting Equation (42) into Equation (40), we can get the following results. For I11, noting
that only quadratic items of σ are useful and the expectations of δθ , δϕ are 0, we can get the equation:

I11 = −Ey,Θ

[
∇σ∇T

σ logp(y, Θ; η, α)
]

= Ey,Θ

[ 2
η
(ΦH

0 Φ0 + ∆θΦH
θ Φθ∆θ + ∆ϕΦH

ϕ Φϕ∆ϕ + ηΣ−1)
]

=
2
η
[ΦH

0 Φ0 +
ρ2

θ

12
(I �ΦH

θ Φθ) +
ρ2

ϕ

12
(I �ΦH

ϕ Φϕ) + ηΣ−1]

(43)

As for I12, I13, I21, I31, since σ, δθ , δϕ are independent, it is easy to find that they are all zero
matrices. For I22 and I33, the derivations are similar. Here we take I22 as an example. Similar to that of
σ, only quadratic items of δθ contribute to the final result.

I22 = Ey,Θ

[
∇δθ
∇T

δθ

1
η

σH(∆θΦH
θ Φθ∆θ)σ

]
=

1
η
∇δθ
∇T

δθ
Ey,Θ

[
tr(σH(∆θΦH

θ Φθ∆θ)σ)
] (44)

By exchanging the expectation and the trace operator, the above equation reduces to
1
η∇δθ

∇T
δθ

tr(Σ∆θΦH
θ Φθ∆θ). Notice that tr(Σdiag(δθ)Φ

H
θ Φθdiag(δθ)) = δT

θ (Σ� (ΦH
θ Φθ)

T)δθ . Besides,

by observing that Σ � (ΦH
θ Φθ)

T is positive semi-definite and that δθ is real-valued, we can get
δT

θ (Σ� (ΦH
θ Φθ)

T)δθ = δT
θ <(Σ� (ΦH

θ Φθ)
T)δθ . This leads to the result that I22 = 2

η<(Σ�ΦH
θ Φθ).

The derivation process of I33 is the same.
Similarly, we only present the derivation process of I23 since that of I32 is the same. For I23:

I23 =
1
η

Ey,Θ

[
∇δθ
∇T

δϕ
σH(∆θΦH

θ Φϕ∆ϕ + ∆ϕΦH
ϕ Φθ∆θ)σ

]
=

1
η
(ΦH

θ Φϕ + ΦH
ϕ Φθ)� Σ

=
2
η

Σ�<(ΦH
θ Φϕ)

(45)
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The submatrices of the FIM are listed here:

I11 =
2
η
[ΦH

0 Φ0 +
ρ2

θ

12
(I �ΦH

θ Φθ) +
ρ2

ϕ

12
(I �ΦH

ϕ Φϕ) + ηΣ−1]

I12, I13, I21, I31 = 0

I22 =
2
η
<(Σ�ΦH

θ Φθ)

I23 = I32 =
2
η

Σ�<(ΦH
θ Φϕ)

I33 =
2
η
<(Σ�ΦH

ϕ Φϕ)

(46)

Then a lower bound on the MSE matrix EΘ is presented by the inversion of the FIM IΘ:

EΘ − (IΘ)−1 � 0 (47)

where � 0 is interpreted as meaning that the matrix is positive semidefinite. Noting that I22, I23, I32

and I33 are diagonal matrices, (IΘ)−1 can be expressed as follows:

JΘ = (IΘ)−1 =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 (48)

where J11 = I−1
11 and J12, J13, J21, J31 = 0 according to Equation (46). Since I22, I23, I32 and I33 are all

diagonal matrices, we find that J22, J33 and J23 are also diagonal matrices and their elements can be
easily calculated by solving a set of linear equations. For a positive semidefinite matrix, its diagonal
elements are nonnegative. Thus, the BCRBs of the off-grid bias δθ and δϕ are obtained. For the ith
element of δθ and δϕ, the expressions are:

E(|δ̂θi − δθi |
2) ≥

<[(ΦH
ϕ Φϕ)i,i]

2
{
<[(ΦH

ϕ Φϕ)i,i]<[(ΦH
θ Φθ)i,i]−<2[(ΦH

θ Φϕ)i,i]
}

SNR

E(|δ̂ϕi − δϕi |
2) ≥

<[(ΦH
θ Φθ)i,i]

2
{
<[(ΦH

ϕ Φϕ)i,i]<[(ΦH
θ Φθ)i,i]−<2[(ΦH

θ Φϕ)i,i]
}

SNR

(49)

where the SNR is defined as αi
η .

4. Experimental Results

In this section, we present some simulation results to analyze performance of the proposed
algorithm. In Section 4.1, a few sparse recovery algorithms are applied to the 3D imaging problem
and the results are compared. The 3D imaging performance, i.e., the normalized mean square
error(NMSE) of target image recovery and off-grid bias estimation are presented. Besides, the imaging
results of a complex model is provided to further validate the feasibility of proposed method. Then
super-resolution ability is analyzed with respect to SNR in Section 4.2. Finally the off-grid bias
estimations are compared with corresponding BCRBs in Section 4.3. The simulation parameters in the
sparse array 3D imaging system are listed in Table 2.
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Table 2. Simulation Conditions.

Parameter Symbol Value

Bandwidth B 500 MHz
Carrier frequency fc 10 GHz

Baseline in the X-direction Lx 6 m
Baseline in the Y-direction Ly 6 m

Target range R 2500 m
Pulse width Tr 10 µs

Number of transmitters M 4
Number of receivers N 225

4.1. Validation of The Proposed Algorithm

A simulated target with 24 scatterers is considered in this part. Since the range resolution is
guaranteed through range compression, for simplicity, the scatterers of the target are located at three
different range cells. The original 3D model is shown in Figure 4a, and both on-grid and off-grid
scatterers are included. The sparse antenna array is distributed on a circular area with its diameter
being 6 m and center being the origin. Four transceivers are located at the intersections of the boundary
and the axes. The other receivers are first uniformly distributed on this area, then random disturbances
are added to their positions in order to alleviate the ambiguity problem which emerges in sparse array.
The center of target is located at (2500 m, π

4 , π
4 ).

3D imaging results using different sparse recovery algorithms with SNR equals 20 dB are
presented in Figure 4, with blue circle and red circle representing the true scatterer and the reconstructed
scatterer, respectively. The size of the circle is decided by the scatterer’s RCS. As discussed before, the
classic sparse recovery algorithms including OMP and BP fail to reconstruct the 3D imaging because of
the mismatch. Compared with the classic algorithms, S-TLS takes the off-grid bias into consideration
and gets a better imaging performance. However, there exist some false scatterers and the off-grid bias
estimator does not perform well. This can be explained by the Gaussian prior used for the off-grid
biases while their true distribution being uniform. Different from S-TLS, OGSBI adopts a uniform
prior and its imaging performance is better. Yet there still exists mismatch between the scatterers’ true
position and reconstructed position. In contrast, the imaging performance of the proposed algorithm
is the best among all methods because of the application of the three-stage sparse prior.

The NMSEs using these different algorithms are summarized in Table 3. NMSE is defined as
follows and I is the number of Monte Carlo trails:

NMSE(σ) =
1
I ∑

||σ̂ − σ||2
||σ||2 NMSE(δθ,ϕ) =

1
I ∑

||δ̂θ,ϕ − δθ,ϕ||2

||δθ,ϕ||2
(50)

Table 3. NMSEs of 3D image and off-grid bias estimation.

Algorithm OMP BP S-TLS OGSBI Proposed Method

NMSE of σ 1.3371 1.1129 0.6921 0.5397 0.3016
NMSE of δθ * * 0.6048 0.2452 0.1333
NMSE of δϕ * * 0.6321 0.2283 0.1266



Remote Sens. 2018, 10, 369 14 of 21

 True Scatterers

(a)
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(b)
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(c)
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 True Scatterers

(f)

Figure 4. The original target model and reconstructed ones by different algorithms: (a) The original
target model and the corresponding nearest grids; (b) Reconstructed target scatterers by OMP;
(c) Reconstructed target scatterers by BP; (d) Reconstructed target scatterers by S-TLS; (e) Reconstructed
target scatterers by OGSBI; (f) Reconstructed target scatterers by proposed method.

In Table 3, the asterisks mean that these algorithms cannot estimate the off-grid biases. From
this table, it is clear that the proposed method obtains the best performance among all the algorithms.
However, we also find that the NMSEs of 3D image is larger than those of off-grid bias estimation,
which implies that current algorithms fail to estimate the RCS as accurate as position. It is also shown
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that the differences between θ and ϕ are small. So in the following part we only present the NMSE of
δθ for brevity.

NMSEs of sparse recovery with different SNRs and grid intervals are presented. Figure 5a,b
shows the NMSEs under different SNR levels. The grid interval is set to half the Rayleigh resolution.
The target model is the same and the SNR increases from 0dB to 45 dB with an interval of 5 dB. Number
of the Monte-Carlo trails is set to 100. Since the imaging procedure can be seen as a joint estimation
problem, the correlation between θ and ϕ in Equation (17) makes the performances more sensitive to
noise. As we can see, the NMSEs stay at a high level for all algorithms when the SNR is low. However,
the image recovery error of both OMP and BP are always high even if the SNR increases. The reason
is that these two algorithms fail when the mismatch problem emerges. The performance of S-TLS is
better than the former two algorithms. However, it is not satisfying because of the mismatch between
Gaussian distribution and the true model. OGSBI can achieve a relatively good performance. The
proposed algorithm can get the best performance among all the algorithms when the SNR is larger
than 20 dB because the three-stage hierarchical model introduces more degrees of freedom and is a
better approximation of the l0-norm optimization.

In our study, we find that the imaging performances vary with different grid sizes. So we analyze
the performances versus different grid intervals in Figure 5c,d. The simulation parameters are all the
same but the grid interval varies. χ = ρ

RRayleigh
is the ratio of grid interval to the Rayleigh limit. It is

shown in Figure 5 that the NMSEs of all algorithms decrease first and then increase. The reason for
this phenomenon is that denser grids can alleviate the mismatch problem to some extent, however,
much too dense grids will lead to a false recovery result due to violation of RIP. It is interesting that
the NMSEs of OMP and BP get the minimum when χ equals 0.5 while for the rest 0.4. This is caused
by the fact that these algorithms incorporate the mismatch factor into sparse recovery model. So the
off-grid biases can be estimated and compensated, leading to a better performance when small grid
interval is used. However, the NMSEs increase with χ increasing because the approximation error
caused by the first order Taylor expansion also increases.
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Figure 5. Cont.
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Figure 5. NMSEs versus different SNRs and grid invervals: (a) NMSEs of 3D reconstruction versus
different SNRs; (b) NMSEs of off-grid bias estimations versus different SNRs; (c) NMSEs of 3D
reconstruction versus different grid intervals; (d) NMSEs of off-grid bias estimations versus different
grid intervals.

To further validate the practicality of proposed method for complex target 3D reconstruction,
the imaging results based on a complex plane model is presented. This plane model is based on the
RCS reconstruction result of a real aircraft at the airport. We use the model to generate echo signal
and then use the proposed method to reconstruct the 3D plane model. In the future, we would further
validate the proposed method using real-world radar data. In this simulation, the target center is
located at (2400, π

4 , π
4 ) and the system configuration is the same as before. The reconstructed 3D image

of the plane is presented in Figure 6. Figure 6a is an overall view of the 3D image while Figure 6b–d
are the three views of the reconstructed target model. The size of the target can be calculated using
these figures. Furthermore, features of the plane, such as the nose, engines, vertical and horizontal
stabilizer, can be recognized from the reconstructed 3D image as is shown in Figure 6a,c. These results
show its potential for target identification.
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Figure 6. Reconstructed 3D image of the plane by proposed method. (a) Overall view of reconstructed
result; (b–d) 2D projection of the reconstructed 3D image.

4.2. Super-Resolution Performance Versus SNR

When it comes to imaging algorithm, one key problem is its resolution. Since the range resolution
is obtained through pulse compression, we consider the resolutions of the other two dimensions.
In this part, the grid interval is set to the best in Section 4.1 and only two scatterers are considered.
One experiment is defined as successful if the two scatterers are separated. Then the success rate is
calculated through 100 Monte Carlo simulations.

Since the resolutions in elevation and azimuth directions are similar, only the success rate for
θ are presented for brevity. In Figure 7, ω = d

RRayleigh
is the normalized distance between the two

scatterers. Simulations are conducted with different SNRs and scatterer distances. This plot gives
us some perspectives about the problem. First, the super-resolution ability of proposed method is
better than that of OGSBI. The reason is that the off-grid bias estimation is more accurate, making
the separation of two closely spaced off-grid scatterers possible. Second, with the increasing of SNR,
super-resolution ability of the proposed algorithm is increasing. Here we define the resolution as the
distance between two scatterers when the success rate is more than 50%. The proposed algorithm can
realize super-resolution with its resolutions of elevation being a quarter of the Rayleigh limit when the
SNR is 20 dB. Considering the shape of scatter plot, we adopt the Boltzmann fit. The red line and black
line are fitted curves for proposed method and OGSBI. The model of Boltzmann fit is:

y = A2 +
A1 − A2

1 + exp( x−x0
dx )

(51)
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Figure 7. Success rate of separation using different algorithms and under different SNRs.

The fitting parameters for the two algorithms under different SNRs are listed in Table 4. According
to Equation (51), both A1 and A2 are the normalization factors and A2 can be regarded as the max
value of the curve. dx is a constant which influences the sharpness of the curve. It is insensitive to the
SNR level according to Table 3. The success rate is around 0.5 when x equals to x0, which can be seen
as the reciprocal of the super-resolution factor. From Table 3 we can see it is inversely proportion to
the SNR.

Table 4. Fitting Parameters.

A1 A2 x0 dx

OGSBI, SNR = 10 dB 0.0064 0.9932 0.5682 0.0490
OGSBI, SNR = 20 dB −0.0064 0.9949 0.2857 0.0412

Proposed method, SNR = 10 dB 0.0014 0.9948 0.4726 0.0418
Proposed method, SNR = 20 dB −0.0080 0.9975 0.2553 0.0435

4.3. BCRB for Off-Grid Biases

In this subsection, the Bayesian Cramér-Rao Bound for off-grid bias is presented, then the root
mean square error(RMSE) of the proposed algorithm is compared with it. The expression of RMSE is:

RMSE(δθ) =

√√√√1
I

I

∑
i=1

(δ̂θ − δθ)2 (52)

where I is the number of Monte Carlo trails. The BCRB for either δθ or δϕ is a function of two variables,
i.e., θ and ϕ. Since θ ∈ [0, π

2 ] and ϕ ∈ [0, π], the overall BCRB for them is shown in Figure 8 with SNR
= 20 dB. From these two figures we can find that the two BCRBs are insensitive to ϕ. However, for θ,
the corresponding BCRB increases with θ increasing. When θ = π

2 , the BCRB is approaching infinity,
which means that the imaging performance is bad when θ tends to π

2 . As for BCRB of δϕ, it approaches
infinity when θ tends to zero. The reason is that the information of ϕ is lost since sinθ → 0 according
to Equation (12).
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Figure 8. Bayesian Cramér-Rao Bound (BCRB) for off-grid bias estimation: (a) BCRB for θ. (b) BCRB
for ϕ.

To verify the theory in Section 3.2, the RMSE of proposed algorithm and square root of the BCRB
are compared in this part. Only one point scatterer located at (2500 m, π

4 , π
4 ) is considered. The SNR

increases from 0 dB to 40 dB with a stepsize of 5dB. The BCRB is calculated according to Equation (49).
The RMSE is calculated using 100 Monte Carlo trails. The results are presented in Figure 9. The green
stars in the plots mean that the sparse recovery failed because of the noise. With the increase of SNR,
the estimation accuracy increases and the RMSE of proposed algorithm is approaching the BCRB. Thus,
the proposed off-grid bias estimator is proven to be effective.
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Figure 9. Comparison between square root of BCRB and the RMSE of off-grid bias estimation:
(a) Off-grid bias for θ; (b) Off-grid bias for ϕ.

5. Conclusions

In order to solve the problems of off-grid target 3D imaging, a novel sparse Bayesian
learning-based algorithm using sparse antenna array is proposed in this paper. The main impact of
the off-grid problem is that it will lead to energy leakage, which will finally spoil the reconstruction
results. In consideration of the characteristics of the off-grid target, a sparse Bayesian learning-based
imaging algorithm is proposed to estimate not only the RCS but also the off-grid biases simultaneously.
A three-stage hierarchical sparse prior is introduced and the BCRB for off-grid bias is presented,
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providing a lower bound for methods based on the MAP criterion. Quantitative analyses are provided
to compare the 3D imaging performances of the proposed method with other state of art methods.
The results show that the imaging performance of proposed method is better than other popular
methods, i.e., a higher reconstruction precision and a better resolution. The effectiveness of the
algorithm is verified by comparing the RMSE with its corresponding BCRB. These results all directly
or indirectly validate the feasibility of proposed method. The proposed method can reconstruct the
3D model accurately and different components of the target can be recognized by the result. These
findings contribute in several ways to our understanding of off-grid air target 3D reconstruction and
identification, and also provide a reference for further applications of aircraft 3D imaging based on
sparse antenna array.
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