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Abstract: Remote sensing images are often polluted by stripe noise, which leads to negative impact
on visual performance. Thus, it is necessary to remove stripe noise for the subsequent applications,
e.g., classification and target recognition. This paper commits to remove the stripe noise to enhance
the visual quality of images, while preserving image details of stripe-free regions. Instead of
solving the underlying image by variety of algorithms, we first estimate the stripe noise from
the degraded images, then compute the final destriping image by the difference of the known stripe
image and the estimated stripe noise. In this paper, we propose a non-convex `0 sparse model for
remote sensing image destriping by taking full consideration of the intrinsically directional and
structural priors of stripe noise, and the locally continuous property of the underlying image as well.
Moreover, the proposed non-convex model is solved by a proximal alternating direction method
of multipliers (PADMM) based algorithm. In addition, we also give the corresponding theoretical
analysis of the proposed algorithm. Extensive experimental results on simulated and real data
demonstrate that the proposed method outperforms recent competitive destriping methods, both
visually and quantitatively.

Keywords: non-convex `0 sparse model; PADMM based algorithm; mathematical program with
equilibrium constraints (MPEC); stripe noise removal

1. Introduction

Stripe noise (all denoted as “stripes” in this paper), which is generally caused by the inconsistency
of the detecting element scanning or the influence of the detector moving and temperature changes,
etc., is a universal phenomenon in remote sensing images. They may result in a bad influence not
only on visual quality but also on subsequent applications in remote sensing images. Therefore, it is
necessary to remove stripes and simultaneously maintain the healthy pixels from the degraded images.
In general, the stripes have strongly directional and structural information, e.g., pixels normally
damaged on row by row or column by column.

Recently, many approaches for destriping problems have been proposed, which may be roughly
divided into three categories, mainly including filtering-based methods, statistics-based methods
and optimization-based methods. Note that the proposed method belongs to the category of
optimization-based methods.

The filtering-based methods, which generally obtain the results with variety of filters, have been
widely utilized for remote sensing image destriping [1–4]. In Ref. [1], Chen et al. proposed
an approach for remote sensing image destriping tasks based on a finite-impulse-response filter (FIR)
in frequency domain. Although this method exhibits good results on the experimental CMODIS data,
it inevitably leads to ringing and ripple artifacts. In Ref. [3], the wavelet analysis and adaptive Fourier
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zero-frequency amplitude normalization was used for hyperspectral image destriping problems,
and this wavelet-based method had shown the promising ability for both stripes and random noise.

The statistics-based methods are mainly to analyze the distribution of stripes. These approaches
have strong directional characteristic which is considered as the stripe prior for the remote sensing
image destriping [5–11]. In Ref. [7], Weinreb et al. introduced a method based on matching empirical
distribution functions (EDFs) for GOES-7 data, while the limitations and unstable property were caused
by assuming the similarity and regularity among the stripes. To conquer the instability when the stripes
are irregular or nonlinear, Rakwatin et al. [9] introduced a method, using both histogram-matching
algorithm and local least squares fitting, to remove the stripes of Aqua MODIS band 6. In Ref. [10],
spectral moment matching (SpcMM) method, which can automatically remove variety of frequencies
stripes in a specific band, was proposed for Hyperion image destriping. In addition, Shen et al. [11]
employed a piece-wise destriping method, which uses correction coefficients of each portion by
considering neighboring normal row, for nonlinear and irregular stripes, but it cannot automatically
select a threshold value to divide the image into different parts.

Recently, the optimization-based methods have shown superiorities for remote sensing image
destriping problems [12–23]. The image destriping generally results in an ill-posed problem which fails
to obtain a meaningful, stable and unique solution by the direct and traditional methods. Therefore,
a common strategy for ill-posed problems is to construct a regularization model via investigating
the priors of underlying image. For the optimization-based methods, they focus on searching and
discovering the intrinsically prior knowledge to generate reasonable regularization models. In Ref. [24],
Zorzi et al. proposed a sparse and low-rank decomposition for models specified in the time domain,
and the authors in [25], proposed a sparse and low-rank decomposition of the inverse of the manifest
spectral density to get a simpler graphical model. In Ref. [17], the authors presented a unidirectional
total variational (UTV) model for MODIS (i.e., moderate-resolution imaging spectroradiometer) image
stripes removal by fully considering the directional information of stripes. The UTV model is motivated
by the classical TV model and the analysis of directional stripes. Chang et al. [21] proposed an
optimization model combining the UTV with sparse priors of stripes applying to denoising and
destriping simultaneously. In Ref. [22], the authors utilized the split Bregman iteration method with
an anisotropic spectral-spatial total variation regularization to remove multispectral image stripes.

In summary, although these optimization-based methods can yield effective results of removing
stripes, there still exists much room to improve. Most of them are implemented only from the
perspective of noise removal, but without considering the typical properties of stripes, e.g., directional
and structural properties. Even though they consider these properties, the formulated sparse destriping
models fail to accurately depict the typical properties of stripes [26,27]. Moreover, the designed
algorithms for non-convex models, e.g., `0 sparse model, generally do not have the convergence
analysis. These motivate us to develop a new model and design the corresponding effective algorithm,
that theoretically guarantees the convergence, to solve the remote sensing destriping problems.

In this paper, to remove the stripes of remote sensing images, we propose a non-convex sparse
model which mainly consists of three sparse priors, including an `0 sparse prior by fully considering
the directional property of stripes (y-axis), an `1 sparse prior by considering the discontinuity of
underlying image (x-axis), and the sparsity of stripes by considering the structural property of
stripes. The framework of the proposed method is shown in Figure 1. Moreover, we design
a proximal alternating direction method of multipliers (PADMM) based algorithm to solve the
proposed non-convex sparse model. Actually, PADMM method mainly incorporates a proximal
term into the well-known ADMM method which has been applied to many image processing
applications, e.g., image deblurring [28], image denoising [29], tensor completion [30], etc. Note that,
after adding this additional proximal term, the resulting algorithm is actually not an ADMM algorithm.
The Karush–Kuhn–Tucker (KKT) conditions is the first-order necessary for a solution in nonlinear
programming to be optimal. In particular, the convergence to the KKT point of the optimization
problem is theoretically proven in the work.
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Figure 1. Framework of the proposed destriping method.

The goal of this work is to propose a new model and design the corresponding effective algorithm
for remote sensing image destriping, aiming to obtain promising results. The contributions of this
work are summarized as follows

(1) Fully considering the latent priors of stripes, we formulate an `0 sparse model to depict the
intrinsically sparse characteristic of the stripes.

(2) We solve the non-convex model by a designed PADMM based algorithm which the corresponding
theoretical analysis is given by this paper (see Appendix A).

(3) The proposed method outperforms recent several competitive image destriping methods.

The outline of this paper is organized as follows. In Section 2, we will briefly introduce the related
work. The proposed model and detailed solving algorithm will be shown in Section 3. In Section 4,
we compare the proposed method with some competitive remote sensing image destriping methods,
and give the discussions about the proposed method. Finally, conclusions are drawn in Section 5.

2. Related Work

2.1. Destriping Problem Formulation

The striping effects in remote sensing images mainly make up of additive and multiplicative
components [15]. However, the multiplicative stripes can be described as additive case by the
logarithm [31]. Thus, many types of research focus more on the additive stripes model

b(x, y) = u(x, y) + s(x, y) (1)

where b(x, y), u(x, y) and s(x, y) denote the components of the observed image, the underlying image
and stripes at the location (x, y), respectively. For convenience, a matrix-vector form can be written
as follows

b = u + s, (2)

where b, u and s ∈ Rn represent the lexicographical order vectors of b(x, y), u(x, y) and s(x, y),
respectively. The purpose of our work is to estimate the stripes s, then the underlying image will be
recovered by the formula of u = b− s.

2.2. UTV for Remote Sensing Image Destriping

The total variation (TV) model, which is first proposed by Rudin, Osher, and Fatemi
(ROF) [32], has shown powerful ability in many image applications, e.g., image unmixing [33], image
deblurring [34], image inpainting [35], etc. It has the following form
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E(u) =
1
2

∫
Ω
||u− b||2 + λTV(u), (3)

where λ is a positive regularization parameter, and TV(u) represents the regularization expressed as

TV(u) =
∫

Ω
|∇u| =

∫
Ω

√(
∂u
∂x

)2
+

(
∂u
∂y

)2
dxdy. (4)

In many approaches, s(x, y) is usually regarded as constant in a given line. Although this
assumption has shown stability in MOS-B, it fails in MODIS. Not only predominant nonlinear effects,
but also the data quality of random stripes have been obtained in many emissive bands. Thus, more
realistic assumptions are introduced to design an efficient destriping method.

Without loss the generality, we can assume that the stripes are along the vertical direction (y-axis).
In mathematical words, most pixels of the stripe noise s hold the following property [17]:∣∣∣∣∂s(x, y)

∂y

∣∣∣∣� ∣∣∣∣∂s(x, y)
∂x

∣∣∣∣ , (5)

where we denote y-axis is along stripes direction, and x-axis is across stripes direction. When (x, y)
is not the location of a pixel belonging to the stripes, both sides of Equation (5) are almost the same,
denoted as ∣∣∣∣∂s(x, y)

∂y

∣∣∣∣ ≈ ∣∣∣∣∂s(x, y)
∂x

∣∣∣∣ . (6)

By the relation in Equations (5) and (6), we get

∫
Ω

∣∣∣∣∂s(x, y)
∂y

∣∣∣∣ dxdy�
∫

Ω

∣∣∣∣∂s(x, y)
∂x

∣∣∣∣ dxdy, (7)

which means
TVy(s)� TVx(s) (8)

where TVx and TVy are horizontal and vertical variations, respectively. The authors in [17] encourage
the robustness of stripes removal by minimizing the unidirectional total variation (UTV) model
as follows

E(u) = TVy(u− b) + λTVx(u), (9)

which can be solved by Euler–Lagrange equation based algorithm.
In Ref. [17], the UTV model can effectively deal with remote sensing image destriping problems,

which has been demonstrated holding promising ability on Aqua and Terra MODIS data. Although
TV model preserves image edges well, it can not accurately depict the specific directional property
of stripes, and leads to undesired results. The UTV model that involves unidirectional constraint
can remove stripes in the meanwhile not destroy the underlying image details. Inspired by the
UTV model, we fully consider the intrinsically directional and structural priors of stripes and the
continuous property of the underlying image. Finally, we form a unidirectional and sparsity-based
optimization model.

3. The Proposed Method

Combining the stripes model in Equation (2), we will give the proposed optimal model with
unidirectional prior motivated by the extension of the UTV model. In what follows, the detailed
explanations of the proposed model and the corresponding solving algorithm will be exhibited.



Remote Sens. 2018, 10, 361 5 of 29

Section 3.1 is the proposed model, Section 3.2 is the existing work, and Section 3.3 is the designed
algorithm based on the existing work Section 3.2.

3.1. The Proposed Model

3.1.1. Local Smoothness Along Stripe Direction

The stripes of remote sensing images generally appear with column-by-column (y-axis)
or row-by-row (x-axis). Without loss of generality, we view all stripes as column-by-column
case to formulate the finally directional model (the row-by-row stripes can be easily rotated to
column-by-column stripes to fit in the proposed model). Considering the smoothness of the stripes,
the difference between adjacent pixels is quite small, or even close to zero, thus we generally use sparse
prior to this character along the stripe direction (y-axis). The first regularization for the difference
within the stripes is given as follows

R1 = ||∇ys||0, (10)

where ∇y is a partial differential operator along stripe direction. We denote that ∇yu represents the
vector form of ∇yU where U is a 2D image and the definition of ∇xu is similar to ∇yu. Comparing
with some popular sparse measures, e.g., `1-norm and `p-norm (0 < p < 1), the `0-norm that stands
for the number of non-zero elements of a vector is a promising measure to depict sparse property,
thus here we employ `0-norm to describe the sparsity of ∇ys. Although this term will lead to the
non-convexity of the proposed model, we utilize the designed PADMM based algorithm to guarantee
the solution converging to the KKT point.

3.1.2. Local Continuity of the Underlying Image

In general, the underlying image u along the x-axis is viewed as being continuous. When adding
column-by-column stripes s to the underlying image, the local continuity of u is broken, which means
that we should force ∇xu to be small to keep the continuity of u. By this assumption and the relation
u = b− s, we utilize the following `1-norm regularization to describe the local continuity of the
underlying image

R2 = ||∇x(b− s)||1, (11)

where ∇x represents the difference operator in the across-stripe direction. Note that this term is
actually the second term of the UTV model in Equation (9).

3.1.3. Global Sparsity of Stripes

In many destriping approaches [26,27,36,37], the stripes can be naturally viewed as being sparse
when the stripes are not dense. Here, we take the `1-norm to depict the sparsity of stripes:

R3 = ||s||1. (12)

Even though the stripes are dense, this sparse term in Equation (12) must be retained, since it
can effectively avoid the undesired effect and keep the robustness of the proposed method (see more
discussion in the Results Section).

Combining the above three regularization terms, we finally formulate the `0 sparse model for
remote sensing image destriping,

min
s
||∇ys||0 + µ||s||1 + λ||∇x(b− s)||1, (13)

where µ and λ are two positive parameters.
Note that the proposed model in Equation (13) is similar to the model in [26], since they both

employ the directional property of stripes. However, there still exists an important difference that the
model in [26] enforces `1 norm to ∇ys and `0 norm to s whereas our model enforces `1 norm to s and



Remote Sens. 2018, 10, 361 6 of 29

`0 norm to ∇ys. From the experiment results, our optimal model can get better performance based on
PADMM algorithm. For instance, Figure 2 shows the number of non-zero elements of s (Figure 2a)
and ∇ys (Figure 2b), where s is estimated from a real image example by the method [26], it is clear
that ∇ys is almost all around 0, whereas s is not. The `0 norm is a promising way to depict sparsity,
thus our model enforces `0 norm to ∇ys.

In what follows, we will exhibit how to solve the proposed non-convex sparse model by
introducing the PADMM based algorithm, as well as give the theoretical analysis of the convergence.

(a) (b)

Figure 2. The number of nonzero elements of s (a) and ∇ys (b), where s is estimated from a real image
example (see Figure 3) by the method [26]. The y-axis represents the number of nonzero elements of s
and ∇ys, respectively, and the x-axis stands for the image pixel value whose range is [0, 1].

3.2. The Solution

For the non-convex `0 regularization term, there exist many approaches to approximate it,
e.g., `1-norm [38], the logarithm function [39] or the penalty decomposition algorithm (PDA) [40].
In this work, we first present a work in Lemma 1, i.e., the mathematical program with equilibrium
constraints (MPEC) [36], to transfer the non-convex `0 regularization term to the other equivalent
one. Then, we can design a PADMM based algorithm to efficiently solve the equivalent model, in the
meanwhile theoretically guarantee the convergence.

Lemma 1 (MPEC equation [36]). For any given w ∈ Rn, it holds that

||w||0 = min
0≤v≤1

〈1, 1− v〉, s.t. v� |w| = 0, (14)

where 〈 〉 represents the inner product of two vectors, and � denotes the elementwise product. The absolute of w
stands for the absolute value of each element of w. Then, v∗ = 1− sign(|w|) is the unique optimal solution of

the minimization problem in Equation (14), and sign(x) =


1 x>0

0 x=0

−1 x<0

.

Proof. See details in [36].

From Lemma 1, the `0-norm sparse optimization model in Equation (13) is equivalent to

min
0≤v≤1,s

〈1, 1− v〉+ µ||s||1 + λ||∇x(b− s)||1,

s.t. v� |∇ys| = 0,
(15)
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According to the analysis of [36], if s∗ is the globally optimal solution of Equation (13), then
(s∗, 1− sign(|∇ys∗|)) is the unique global minimizer of Equation (15).

Figure 3. The visual results of different simulated images. From top to bottom: underlying images,
degraded images, the destriping results of WFAF, SLD, UTV, GSLV, LRSID, and Ours. The degraded
images in the second row are, respectively, added the stripes (from left to right): (Per, 10, 0.2), (NonPer,
100, 0.4), (NonPer, 50, 0.2), (NonPer, 60, 0.4), (NonPer, 100, 0.4) and (NonPer, 50, 0.6). Readers are
recommended to zoom in all figures for better visibility.
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Note that Equation (15) is still a non-convex problem, and the non-convexity is only caused by
the constraint v� |∇ys| = 0. However, the problem in Equation (15) is similar to the main problem
in [36], which is efficiently solved by a PADMM based algorithm that theoretically guarantees the
convergence. Therefore, we employ the designed PADMM based algorithm to solve the resulted
problem in Equation (15), as well as give the theoretical analysis of the convergence.

In the following, we will use the PADMM based algorithm to solve the optimization problem in
Equation(15).

3.3. PADMM Based Algorithm

Considering the non-smooth `1 terms in the problem in Equation (15), we take the following
variable substitutions to get the new optimization problem,

min
0≤v≤1,s,h,z,w

〈1, 1− v〉+ µ||z||1 + λ||w||1,

s.t. v� |h| = 0,∇ys = h, s = z,∇x(b− s) = w,
(16)

with the auxiliary variables h, z, w ∈ Rn. The augmented Lagrangian function L of Equation (16) is
as follows

L(h, z, w, v, s, π1, π2, π3, π4, β1, β2, β3, β4)

= 〈1, 1− v〉+ µ||z||1 + λ||w||1 + 〈∇ys− h, π1〉

+
β1

2
||∇ys− h||22 + 〈s− z, π2〉+

β2

2
||s− z||22

+ 〈∇x(b− s)−w, π3〉+
β3

2
||∇x(b− s)−w||22

+ 〈v� |h|, π4〉+
β4

2
||v� |h|||22,

(17)

where π1, π2, π3, and π4 are Lagrange multipliers, and β1, β2, β3, and β4 are positive parameters.
The minimization problem in Equation (17) can be solved by the PADMM based algorithm.
Next, we discuss the solution of each subproblem.

(1) The h-subproblem can be written to the minimized problem as follows

min
h
〈∇ysk − h, πk

1〉+
β1

2
||∇ysk − h||22

+〈vk � |h|, πk
4〉+

β4

2
||vk � |h|||22.

(18)

Now, let hi is the i-th pixel of h and we discuss two situations when the element hi 6= 0, if hi > 0,

hi =
(β1(∇ys)i + (πk

1)i)− (πk
4)i � (vk)i

β1 + β4(vk)i � (vk)i
, (19)

if hi < 0,

hi = (−1)
−(β1(∇ysk)i + (πk

1)i)− (πk
4)i � (vk)i

β1 + β4(vk)i � (vk)i
. (20)

In summary, the h-subproblem has the closed-form solution as follows

hk+1 = sign(qk) ∗
|qk| −πk

4 � vk

β1 + β4vk � vk , (21)

where qk = β1∇ysk + πk
1 .
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(2) The z-subproblem is given as follows

min
z

µ||z||1 + 〈sk − z, πk
2〉+

β2

2
||sk − z||22, (22)

which has the closed-form solution by soft-thresholding strategy [41]

zk+1 = Shrink(sk +
πk

2
β2

,
µ

β2
), (23)

where Shrink(a, T) = sign(a) ∗max(|a− T|, 0).
(3) Similar to z-subproblem, w-subproblem is written as follows

min
w

λ‖w‖1 +
β3

2
||∇x(b− sk)−w +

πk
3

β3
||22. (24)

The problem in Equation (24) has the following closed-form solution by the soft-shrinkage formulation,

wk+1 = Shrink(pk,
λ

β3
), (25)

where pk = ∇x(b− sk) +
πk

3
β3

.
(4) The v-subproblem can be written as follows

min
0≤v≤1

〈v, ck〉+ β4

2
||v� |hk+1|||22, (26)

where ck = 1−πk
4 � |hk+1|. Combining with the constraint 0 ≤ v ≤ 1, it has the closed-form solution,

vk+1 = min(1, max(0,
−ck

β4|hk+1| � |hk+1|
)). (27)

(5) Here, PADMM based algorithm needs to introduce an extra convex proximal term 1
2 ||s− sk||2D,

which is defined as ||x||2D = xTDx, and D is a symmetric positive definite matrix. The s-subproblem
becomes a strong convex optimization problem as

min
s
〈∇ys− hk+1, πk

1〉+
β1

2
||∇ys− hk+1||22

+ 〈s− zk+1, πk
2〉+

β2

2
||s− zk+1||22

+ 〈∇x(b− s)−wk+1, πk
3〉

+
β3

2
||∇x(b− s)−wk+1||22 +

1
2
||s− sk||2D,

(28)

where

D =
1
κ

I− (β1∇T
y∇y + β2 + β3∇T

x∇x),

κ ∈
(

0,
1

β1||∇y||22 + β2 + β3||∇x||22

)
.

Then, Equation (28) will be equivalent to:

sk+1 = arg min
s

1
2
||s− gk||22, (29)

where gk = sk − κ[β1(∇ysk − hk+1) + β2(sk − zk+1)− β3∇T
x (∇xb−∇xsk −wk+1)].
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(6) Finally, we update the Lagrangian multipliers by

πk+1
1 = πk

1 + β1(∇ysk+1 − hk+1),

πk+1
2 = πk

2 + β2(sk+1 − zk+1),

πk+1
3 = πk

3 + β3(∇x(b− sk+1)−wk+1),

πk+1
4 = πk

4 + β4(vk+1 � |hk+1|).

(30)

Combining Steps (1)–(6), we formulate the final algorithm to iteratively solve the proposed `0

sparse model in Equation (13). In particular, the subproblems all have the closed-form solutions to
ensure the accuracy of the algorithm. Finally, the solving process has been summarized in Algorithm 1.

In Algorithm 1, λ, µ, β1, β2, β3, and β4 are some pre-defined parameters, while tol and Miter
represent the positive tolerance value and the maximum iterations, respectively. In this work, we set
tol = 1/255 and Miter = 103. In the following, we discuss the convergence of Algorithm 1.

Algorithm 1 The algorithm for model in Equation (13)
Input: The observed image b (with stripes), the parameters λ, µ, βi, i = 1, 2, 3, 4,
the constant κ ∈ (0, 1

β1||∇T
y ||2+β2+β3||∇T

x ||2
), the maximum number of iterations Miter,

and the calculation accuracy tol.
Output: The stripes s
Initialize:
(1) k← 0, v0 ← 1, s0 ← b, rho← 1
While rho> tol and k < Miter
(2) k← k + 1
(3) Solve hk by Equation (21)
(4) Solve zk by Equation (23)
(5) Solve wk by Equation (25)
(6) Solve vk by Equation (27)
(7) Solve sk by Equation (29)
(8) Update the multipliers πi, i = 1, 2, 3, 4, by Equation (30)
(9) Calculate

rho = ||∇ysk+1 − hk+1||2 + ||sk+1 − zk+1||2 + ||∇x(b− sk+1)−wk+1||2 + ||vk+1 � |hk+1|||2.
Endwhile

4. Experiment Results

In this section, we compare the proposed method with several competitive destriping methods,
including the wavelet Fourier adaptive filter (WFAF) [3], the statistical linear destriping (SLD)
[31], the unidirectional total variation model (UTV) [17], the global sparsity and local variational
(GSLV) [26], and the Low-Rank Single-Image Decomposition (LRSID) [27], on both simulated and
real remote sensing data. The codes of these methods, except the GSLV method, are available on
the website (http://www.escience.cn/people/changyi/codes.html). Moreovre, we provide the code
of the proposed method to compare the results on the website (http://www.escience.cn/people/
dengliangjian/codes.html). As suggested in [27], we utilize the same periodic/nonperiodic stripes
function adding stripes intensity [0, 255] to the underlying images. By the similar measure as in [27],
the degraded images were normalized to [0, 1]. All experiments are conducted in MATLAB (R2016a)
on a desktop with 16Gb RAM and Inter(R) Core(TM) CPU i5-4590: @3.30 GHz.

To evaluate the effects of different destriping methods, we will compare several qualitative and
quantitative assessments. On the qualitative aspect, we show the visual results, the mean cross-track
profile and the power spectrum of different methods. We also employ some acknowledged indexes,
i.e., peak signal-to-noise ratio (PSNR) [42], structural similarity index (SSIM) [42], the inverse coefficient
of variation (ICV) [15], mean relative deviation (MRD) [15], and the relative error (ReErr), to evaluate
the performance of different approaches. These indexes are as follows,

http://www.escience.cn/people/changyi/codes.html
http://www.escience.cn/people/dengliangjian/codes.html
http://www.escience.cn/people/dengliangjian/codes.html
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PSNR = 10 log10
2552 × n
||û− u||2 ,

where û and u are the estimated underlying image and the original underlying image. n represents
the total number of pixels of one image.

SSIM =
(2µxµy + C1)(2σxy + C2)

µ2
x + µ2

y + C2
,

where µx and µy represent the average value of x and y images. σx and σy stand for the variance of x
and y images, and σxy is the covariance of these two images. C1 and C2 are constant here.

ReErr =
||sadded − sestimated||2

||sadded||2
,

where the sadded and sestimated represent the added stripes and estimated stripes by different methods,
respectively.

ICV =
Ra

Rsd
,

where Ra is the average value of the pixels with a window in a homogenous image region, and Rb
is the standard deviation of the pixels of the patch in this window. ICV calculates the homogeneous
striped regions in estimated underlying image.

MRD =
1
n

Σn
i=1
|ûi − ui|

ui
× 100%,

where ûi is the estimated underlying image, and ui is the original underlying image. MRD index
shows the performance to retain the noise-free regions. Among these indices, ICV and MRD are
non-reference indexes, and the others are full-reference indexes. Since stripes of the real images are
dense, it is difficult to select several samples with the size of 10 × 10 window. In this paper, we select
five different samples within a 6×6 window, and the mean ICV (MICV) and the mean MRD (MMRD)
are shown in Table 4 for the six real experiments. Then, we will discuss how to select parameters.
We note that we test the comparing methods according to the default or suggested parameters in their
papers and codes.

4.1. Simulated Experiments

In simulated experiments, the stripes with periodic (Per) and nonperiodic (NonPer) noise are
mainly determined by “Intensity” and r. Here, the “Intensity” means the added absolute value
of the stripe scope, and the r represents the stripes ratio level within the remote sensing images.
For convenience to compare, different stripes added to remote sensing images will be denoted as
a vector with three elements, e.g., (Per, 10, 0.2) which represents the periodic stripes, the “Intensity” 10
and stripes ratio 0.2.

We take six experimental images, which the first and second are available on the website
(“DigitalGlobe” with http://www.digitalglobe.com/product-samples), the sixth is available on the
website (https://earthexplorer.usgs.gov/), and the second, fourth and fifth examples are available
on the website (MODIS data with https://ladsweb.nascom.nasa.gov/), to test the performance of
different methods. In the simulated experiments, the experimental images include: Washington
DC Mall band 30, MODIS band 20, MODIS band 32, two small parts of the downloaded
“Map Scale Ortho” image (“Map Scale Ortho” can be freely downloaded from the DigitalGlobe

http://www.digitalglobe.com/product-samples
https://earthexplorer.usgs.gov/
https://ladsweb.nascom.nasa.gov/
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http://www.digitalglobe.com/resources/product-samples/30cm-imagery. We only use the two
small parts of the downloaded “Map Scale Ortho” image acquired by the Satellite WorldView-3,
since the “Map Scale Ortho” image is too large). To compare these methods clearly, we zoom in
destriping details on the bottom left or bottom right of the image.

4.1.1. Periodic Stripes

For the periodic stripes case, we only take one example, i.e., the first column of Figure 3 with
added stripes (Per, 10, 0.2), to compare the performance. Most of all existing methods performs
quite effective to remove the stripes due to the simple structures of periodic stripes. The first column
of Figure 3 also demonstrates the consistent conclusion that all comparing approaches remove the
periodic stripes and well preserve the image details of stripe-free regions.

4.1.2. Nonperiodic Stripes

For the nonperiodic stripes case, we test five remote sensing images from the second column to
the end column in Figure 3 with added stripes (NonPer, 100, 0.6), (NonPer, 50, 0.2), (NonPer, 60, 0.4),
(NonPer, 100, 0.4) and (NonPer, 50, 0.6), respectively. Then, we display the destriping results of WFAF,
SLD, UTV, GSLV, LRSID and the proposed method for different simulated remote sensing images
starting from the third row to the end row. See the visual results of the second column, the WFAF
method has an obvious black line and changes the intensity contrast of the underlying image. Although
the other comparing methods can remove stripes, some regions change the intensity contrast of the
underlying image on the left and the right parts, and the proposed method shows a good performance.
Then, from the third to sixth examples, we can clearly observe the residual stripes and blurring effects
resulted by the others comparing methods. Moreover, our method not only removes stripes completely
but also preserves image details well. In Figure 4, we display the smaller patches of Figure 3 for visual
quality comparisons, and our results have a better performance than the others.

Figure 5 shows the estimated stripes based on Figure 3. In Figure 5, we can see that the other
methods may generate blurring effect and change intensity contrast. Meanwhile, the estimated stripes
of the proposed method neither eliminate image structures nor bring in blurring effects for both
periodic and nonperiodic stripes cases.

In Table 1, we show the ReErr results between the added stripes and estimated ones of Figure 5
from the quantitative aspect. Moreover, the PSNR values for different images have been shown in
Table 1, and it is easy to know that our results outperform the other methods.

Table 1. The ReErr results between sadded and sestimated, and the PSNR between the ground-truth and
the computed image by the different methods.

Images (a) (b) (c) (d) (e) (f)

ReErr

WFAF 0.1588 0.2828 0.2519 0.2468 0.2386 0.2574
SLD 0.0874 0.1670 0.1723 0.1664 0.1330 0.1346
UTV 0.0831 0.1542 0.2371 0.1818 0.1314 0.1375
GSLV 0.0867 0.1030 0.2385 0.1926 0.0912 0.1654
LRSID 0.0917 0.1884 0.2731 0.2125 0.1450 0.1897
Ours 0.0193 0.0693 0.0365 0.0892 0.0304 0.0813

PSNR

WFAF 37.1239 21.3097 33.1166 28.6960 24.5539 28.1562
SLD 42.3121 25.8878 36.4164 32.1200 29.6283 33.7867
UTV 42.7463 26.5787 33.6413 31.3504 29.7370 33.6047
GSLV 42.3798 30.0798 33.5899 30.8506 32.9031 31.9996
LRSID 40.8345 24.7115 32.8728 30.4638 28.9817 31.6380
Ours 55.4503 33.5287 49.8954 38.1697 42.4454 38.1677

 http://www.digitalglobe.com/resources/product-samples/30cm-imagery
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Figure 4. The zoom results of different simulated images in Figure 3. From top to bottom: zoom of the
underlying images, the degraded images, the destriping results of WFAF, SLD, UTV, GSLV, LRSID, and
Ours. Note that the levels of stripes are same as Figure 3.
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Figure 5. The stripes s of different simulated images in Figure 3. From top to bottom: the added stripes
on the underlying image, the extracted stripe components of WFAF, SLD, UTV, GSLV, LRSID, and Ours.
Note that the levels of stripes are same as Figure 3.

4.1.3. Averagely Quantitative Performance on 32 Test Images

To quantitatively test robustness and effectiveness of the proposed method, Tables 2 and 3 report
the averagely quantitative comparisons of 32 remote sensing images, which are randomly selected from
three websites (“DigitalGlobe” with http://www.digitalglobe.com/product-samples; some subimages
of “hyperspectral image of Washington DC Mall” with https://engineering.purdue.edu/~biehl/
MultiSpec/; “MODIS” data with https://ladsweb.nascom.nasa.gov/). In the tables, the best PSNR
and SSIM results have been highlighted in bold. Especially, we compare these methods on 32 remote
sensing images with fixed parameters for each method.

http://www.digitalglobe.com/product-samples
https://engineering.purdue.edu/~biehl/MultiSpec/
https://engineering.purdue.edu/~biehl/MultiSpec/
https://ladsweb.nascom.nasa.gov/
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Table 2. The mean value of PSNR and SSIM of 32 images with periodic noise.

Intensity Intensity = 10 Intensity = 50 Intensity = 100

Ratio r = 0.2 r = 0.6 r = 0.2 r = 0.6 r = 0.2 r = 0.6

PSNR

WFAF 41.400 ± 3.601 41.702 ± 3.870 37.160 ± 1.975 37.553 ± 1.975 32.196 ± 1.457 32.501 ± 1.732
SLD 42.037 ± 2.927 41.048 ± 2.909 41.710 ± 2.930 41.957 ± 2.928 40.614 ± 2.549 41.644 ± 2.836
UTV 42.030 ± 3.229 41.032 ± 2.886 40.920 ± 2.773 43.086 ± 2.298 41.470 ± 3.385 41.058 ± 3.299
GSLV 42.552 ± 2.955 42.630 ± 2.886 42.202 ± 3.058 43.533 ± 2.856 43.431 ± 3.091 43.801 ± 2.705
LRSID 43.948 ± 2.104 42.775 ± 2.010 42.308 ± 2.169 44.548 ± 1.976 43.779 ± 2.500 44.035 ± 2.014
Ours 52.918 ± 4.074 49.497 ± 3.956 52.853 ± 4.910 49.212 ± 4.390 52.854 ± 4.902 49.182 ± 4.368

SSIM

WFAF 0.9934 ± 0.0058 0.9936 ± 0.0062 0.9887 ± 0.0084 0.9905 ± 0.0078 0.9818 ± 0.0103 0.9847 ± 0.0085
SLD 0.9966 ± 0.0029 0.9966 ± 0.0029 0.9965 ± 0.0031 0.9965 ± 0.0032 0.9962 ± 0.0033 0.9964 ± 0.0037
UTV 0.9959 ± 0.0027 0.9959 ± 0.0027 0.9911 ± 0.0025 0.9928 ± 0.0023 0.9954 ± 0.0024 0.9937 ± 0.0076
GSLV 0.9991 ± 0.0077 0.9968 ± 0.0076 0.9916 ± 0.0079 0.9903 ± 0.0082 0.9966 ± 0.0085 0.9969 ± 0.0053
LRSID 0.9990 ± 0.0107 0.9945 ± 0.0056 0.9932 ± 0.0044 0.9947 ± 0.0032 0.9936 ± 0.0047 0.9957 ± 0.0031
Ours 0.9994 ± 0.0007 0.9987 ± 0.0011 0.9994 ± 0.0013 0.9986 ± 0.0016 0.9994 ± 0.0062 0.9986 ± 0.0019

Table 3. The mean value of PSNR and SSIM of 32 images with nonperiodic noise.

Intensity Intensity = 10 Intensity = 50 Intensity = 100

Ratio r = 0.2 r = 0.6 r = 0.2 r = 0.6 r = 0.2 r = 0.6

PSNR

WFAF 40.971 ± 2.523 39.372 ± 2.249 30.536 ± 1.508 37.609 ± 2.263 24.849 ± 1.573 22.594 ± 1.541
SLD 41.476 ± 2.592 40.935 ± 2.201 35.964 ± 1.510 42.007 ± 3.020 30.963 ± 1.414 28.403 ± 1.729
UTV 41.153 ± 2.880 38.615 ± 2.041 35.648 ± 1.527 42.505 ± 3.010 31.055 ± 4.687 31.599 ± 2.578
GSLV 42.282 ± 2.359 39.018 ± 1.654 41.985 ± 1.239 39.838 ± 2.903 36.184 ± 1.399 35.408 ± 2.472
LRSID 42.672 ± 1.418 39.034 ± 1.302 42.814 ± 1.349 40.497 ± 2.024 37.779 ± 1.212 33.559 ± 1.132
Ours 48.801 ± 3.985 44.700 ± 3.784 49.057 ± 4.791 49.057 ± 4.492 44.365 ± 5.106 39.452 ± 4.494

SSIM

WFAF 0.9925 ± 0.0056 0.9903 ± 0.0069 0.9744 ± 0.0104 0.9905 ± 0.0081 0.9364 ± 0.0207 0.9029 ± 0.0565
SLD 0.9965 ± 0.0031 0.9952 ± 0.0031 0.9950 ± 0.0041 0.9964 ± 0.0032 0.9907 ± 0.0060 0.9823 ± 0.0142
UTV 0.9958 ± 0.0029 0.9934 ± 0.0052 0.9937 ± 0.0042 0.9914 ± 0.0056 0.9886 ± 0.0193 0.9851 ± 0.0122
GSLV 0.9982 ± 0.0016 0.9917 ± 0.0042 0.9962 ± 0.0101 0.9967 ± 0.0088 0.9956 ± 0.0091 0.9933 ± 0.0152
LRSID 0.9983 ± 0.0032 0.9934 ± 0.0113 0.9891 ± 0.0070 0.9962 ± 0.0042 0.9975 ± 0.0091 0.9924 ± 0.0402
Ours 0.9991 ± 0.0006 0.9956 ± 0.0035 0.9990 ± 0.0010 0.9986 ± 0.0016 0.9979 ± 0.0012 0.9942 ± 0.0042

Table 2 shows the PSNR and SSIM results on periodic stripes with different stripe levels. Although
variance of PSNR is not the smallest, the SSIM of the proposed method holds the best performance,
and SSIM is an important index to indicate stability on structural similarity of one method. Therefore,
the proposed method can improve the PSNR and SSIM results to remove stripes.

For the nonperiodic stripes, we show the mean value results in Table 3. The WFAF method
shows the instability, and the PSNR and SSIM of LRSID method are consistent with the results in [27].
From the two tables, our method always shows a good performance.

In Figure 6, we take two examples of Table 2 to show the PSNR and SSIM performance of all
comparing methods on each image. The y-axis stands for the value of PSNR or SSIM and the x-axis
represents the i-th image of 32 examples. Figure 6I,II show the PSNR and SSIM performance of stripes
(Per, 100, 0.6). Moreover, Figure 6III,IV show that of stripes (NonPer, 50, 0.2). Although the PSNR
results fluctuate with respect to different images, our method holds the best PSNR results on most of
all images. Moreover, the SSIM results show the best performance with the smallest variance, which
is consistent with the results of Tables 2 and 3. From Figure 6, our method is superior to the other
comparing methods.
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Figure 6. The PSNR and SSIM performance on 32 images for the stripes (Per, 100, 0.6) and (NonPer, 50,
0.2). The x-axis represents each image and the quantitative results are shown in the y-axis. (I) and (II)
are the PSNR and SSIM results for the stripes (Per, 100, 0.6), respectively. (III) and (IV), respectively,
represent the PSNR and SSIM performance of the stripes (NonPer, 50, 0.2).

4.2. Real Experiments

We also display the destriping results of six methods for six real remote sensing images, which
are also available on the website (https://ladsweb.nascom.nasa.gov/) (see Figure 7). In the real
experiments, we show the six real images: MODIS band 34, original band 28, Original Aqua MODIS
band 30, MODIS band 136, Original MODIS Terra band 27, and Terra Africa MODIS band 33. Similar
to Figure 3, the six real images with different stripes are shown in the first row, and the destriping
results of all comparing methods are presented from the second row to the end row.

In Figure 8, we show the extracted stripe components of compared methods for the six real images
in Figure 7. It seems that the proposed method removes too much background information in the real
image experiments. Moreover, the non-reference indexes of MICV and MMRD have been shown in
Table 4, and the best results have been highlighted. The proposed method shows a good performance
in most of the cases. Although the results of the first two images are not the best, the results have
only little difference among these compared methods. The indexes of MICV and MMRD depend on
the selected patches and the window size. Different selected patches and window size may result
in the performance of the two indexes. Here, we utilize them to partially evaluate the quantitative
performance of the real image destriping.

https://ladsweb.nascom.nasa.gov/
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Figure 7. The visual results of different real images. From top to bottom: the real images, the destriping
results of WFAF, SLD, UTV, GSLV, LRSID, and Ours. Readers are recommended to zoom in all figures
for better visibility.

In Figure 7, for the first, fifth and last real images, the proposed method not only removes the
stripes completely, but also preserves image details on stripe-free regions well. Note that the methods
GSLV and LRSID fail to obtain desired results for the first image as the mentioned in their papers.
For the fourth column, there are also several stripe residuals with WFAF and SLD, and the wide black
shadow areas appear by the UTV, GSLV and LRSID methods. Moreover, the destriping results of the
WFAF and SLD leave obvious stripes for the second image, and still exist the wispy stripes for the third
example. According to several real experiments, the results demonstrate the universal effectiveness
and stability of the proposed method.
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Figure 8. The stripes s of different real images in Figure 7. From top to bottom: the extracted stripe
components of WFAF, SLD, UTV, GSLV, LRSID, and Ours.

Table 4. The MICV and MMRD index results of the six real images.

Images Index WFAF SLD UTV GSLV LRSID Ours

(a) MICV 4.7759 4.9274 6.8851 5.3955 7.4612 5.4162
MMRD (%) 0.0078 0.0446 0.1646 0.1199 0.1590 0.0945

(b) MICV 5.5871 5.5740 8.9350 6.4436 7.5592 7.4144
MMRD (%) 0.0405 0.0377 0.1142 0.0695 0.0900 0.0662

(c) MICV 3.9619 3.9940 4.3038 4.2884 4.0437 4.9604
MMRD (%) 0.0286 0.0271 0.0276 0.0258 0.0385 0.0243

(d) MICV 1.7057 1.6720 3.2297 2.2237 3.5039 2.6574
MMRD (%) 0.3600 0.3785 0.1707 0.0876 0.2250 0.0262

(e) MICV 0.8673 0.8533 0.8849 0.8786 0.8955 0.9017
MMRD (%) 0.0328 0.0311 0.0432 0.0312 0.0265 0.0264

(f) MICV 13.5619 13.2952 16.1001 16.5111 13.6906 16.7897
MMRD (%) 0.0196 0.0210 0.0214 0.0190 0.0250 0.0176
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4.3. More Analysis

4.3.1. Qualitative Analysis

For the further comparisons of different destriping methods for simulated and real remote sensing
images, we show the following two assessments. One is the mean cross-track profile that the x-axis
stands for the column number of an image and the y-axis represents the mean value of each column
(see Figures 9 and 10). The other is the power spectrum that the x-axis is the normalized frequencies of
an image, and the y-axis shows the spectral magnitude with a logarithmic scale (see Figures 11 and 12).
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Figure 9. Spatial mean cross-track profiles for simulated image of the first simulated example of
Figure 3: (a) underlying image; (b) degraded image; and destriping results by: (c) WFAF; (d) SLD;
(e) UTV; (f) GSLV; (g) LRSID; and (h) Ours.

In simulated experiments, the mean cross-track profile of the first image of Figure 3 is shown
in Figure 9. Note that Figure 9a shows the mean cross-track profile of the underlying image, and
Figure 9b is the result of the degraded image. Moreover, Figure 9c–f shows the mean cross-track profile
results of the six destriping methods, respectively. From the overall perspective, Figure 9d,e shows the
obvious change of the intensity contrast. Seeing the details, Figure 9c–g has some mild fluctuations
which are different from the underlying image in Figure 9a. The performance of the proposed method
is almost same as that of the original one.

In addition, the power spectrum results of the second image of Figure 3 is shown in Figure 11.
We denote the power spectrum results as Figure 11a–h which represent the power spectrum results
of the underlying image, the degraded image and the destriping results of six methods, respectively.
Figure 11c–g has more fluctuations which indicate these methods may have the stripe residuals or



Remote Sens. 2018, 10, 361 20 of 29

bring a little new noise in their destriping processes. Our method, i.e., Figure 11h, it not only removes
all stripes, but also preserves almost the essential details such as edges.
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Figure 10. Spatial mean cross-track profiles for the first real example of Figure 7: (a) real image; and
destriping results by: (b) WFAF; (c) SLD; (d) UTV; (e) GSLV; (f) LRSID; and (g) Ours.

In real experiments, we also show the mean cross-track profile and the power spectrum in
Figures 10 and 12, respectively. Figure 10 shows the mean cross-track profile results of the first
column of Figure 7. Note that Figure 10a is the mean cross-track profile result of the first real remote
sensing image, and Figure 10b–g shows the profile results of the six destriping methods, respectively.
In general, the profiles of the destriping method should smoothen huge fluctuates and maintain
primary structure information. However, the profiles of WFAF and LRSID have obvious fluctuations
where the stripes still exist, and that of SLD is over-smooth which loses a lot of underlying image
details. In Figure 10d,e, although stripes are mostly removed, the destriping profiles have some mild
blur and too much smoothness because of the unidirectional property of UTV and the global sparsity
of GSLV, respectively. In addition, the profile of the proposed method, i.e., Figure 10g, can realize the
desired result both on removing stripes and keeping underlying image details.

In Figure 12, the power spectrum results of the fourth example of Figure 7 are plotted. Figure 12a–h
represent the power spectrum results of the fourth real remote sensing image and six destriping
methods, respectively. We observe that the real remote sensing image in Figure 12a has many
fluctuations where stand for stripes. According to the power spectrum results of the six methods in
Figure 12b–f, although the stripes are almost removed well, there are still some slight blurring regions,
while the proposed method shows the desired performance in Figure 12b.
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Figure 11. Power spectrum for simulated image of the second example of Figure 7: (a) underlying
image; (b) degraded image; and destriping results by: (c) WFAF; (d) SLD; (e) UTV; (f) GSLV; (g) LRSID;
and (h) Ours.

4.3.2. The Influence of Different Regularization Terms in the Proposed Model

Fully considering the destriping problem in Equation (2) and the optimization model in
Equation (13), we assume that R2 is a necessary term, since R2 is the only term to describe the
property of the underlying image u. To confirm whether both R1 and R2 are necessary priors as well
as have important contribution to destriping performance, in Figure 13, we give the mean value of
PSNR and SSIM for 32 images as before. Here, R12 represents R1 + R2, R23 stands for R2 + R3 and
R123 represents R1 + R2 + R3 (i.e., the proposed model). Please find the definitions of R1, R2, R3 from
Equations (10)–(12), respectively.
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Figure 12. Power spectral for the forth real example of Figure 7: (a) real image; and destriping results
by: (b) WFAF; (c) SLD; (d) UTV; (e) GSLV; (f) LRSID; and (g) Ours.

Figure 13I,II show the mean value of PSNR and the mean value of SSIM on 32 images same as
before for periodic stripes. The periodic stripe levels in Figure 13a–f are (Per, 10, 0.2), (Per, 10, 0.6),
(Per, 50, 0.2), (Per, 50, 0.6), (Per, 100, 0.2) and (Per, 100, 0.6), respectively. Moreover, Figure 13III,IV
display the mean value of PSNR and the mean value of SSIM on 32 images for nonperiodic stripes. The
nonperiodic stripe levels in Figure 13a–f stand for (NonPer, 10, 0.2), (NonPer, 10, 0.6), (NonPer, 50, 0.2),
(NonPer, 50, 0.6), (NonPer, 100, 0.2) and (NonPer, 100, 0.6), respectively.

From the results in Figure 13, we can conclude three points. (1) The PSNR results of the proposed
model (i.e., R123) have the best performance compared to those of the other two models (i.e., R12 and
R13), and the SSIM results have the similar performance as compared with the PSNR results. (2) R23

shows more stability than R12 as the green bars do not significantly change with different stripes.
(3) R3 actually plays a more important role than R1 with respect to PSNR (see Figure 13I,III. On the
contrary, R1 plays a more important role than R3 with respect to SSIM (see Figure 13II,IV). Figure 13
demonstrates the effectiveness of the proposed model and the importance of the three terms.
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Figure 13. The influence of different terms in the proposed model. R12 represents R1 +R2, R23 stands for
R2 + R3 and R123 represents R1 + R2 + R3 (i.e., the proposed model). (I) The mean PSNR performance
on 32 images for periodic stripes with different stripe levels; (II) The mean SSIM performance on 32
images for periodic stripes with different stripe levels; The stripe levels (a–f) stand for (Per, 10, 0.2),
(Per, 10, 0.6), (Per, 50, 0.2), (Per, 50, 0.6), (Per, 100, 0.2) and (Per, 100, 0.6), respectively. (III) The mean
PSNR performance on 32 images for nonperiodic stripes with different stripe levels; (IV) The mean
SSIM performance on 32 images for nonperiodic stripes with different stripe levels. The stripe levels
(a–f) stand for (NonPer, 10, 0.2), (NonPer, 10, 0.6), (NonPer, 50, 0.2), (NonPer, 50, 0.6), (NonPer, 100, 0.2)
and (NonPer, 100, 0.6), respectively.

5. Discussion

5.1. Parameter Value Selection

In this paper, the proposed method mainly involves six parameters λ, µ, β1, β2, β3, and β4.
The stripes of different types can be removed by setting different parameters. For example, if the
stripes are dense, the µ should be small and the λ should be large.

We tune the parameters by given strategy as follows. For instance, Figure 14, shows contour
maps of PSNR values of different parameters setting for one example. In Figure 14I, we tune the
regularization parameters λ, µ, and fix β1, β2, β3 and β4. The yellow region is the best choice for the
highest PSNR, and the orange is the next. Thus, we empirically set the regularization parameters
within the range [0.1,10] for λ and [0.1, 1] for µ from this kind of contour maps for different examples.
Similarly, from the Figure 14II, we empirically set the regularization parameters within the range [1, 10]
for β2 and β3 since most of all PSNR results are similar. Then, λ1 is empirically set with [1, 102], and β4

is set with [1, 103]. Note that, we tune these parameters by 10 times interval in each parameter range.
For instance, when tune β4, we choose β4 = 1, 10, 100, 1000. Note that, the parameters cannot be
automatically or adaptively chosen for different images. In this paper, we can have a good performance
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in the most of the situations. For most of the simulated experiments, we set the parameters with λ = 1,
µ = 0.1, β1 = 100, β2 = β3 = 10, β4 = 1000. For the real experiments, most of the examples show the
superior results with λ = 10, µ = 1 and β1 = β2 = β3 = β4 = 1. Note that, if fine tuning parameters
based on this strategy for each image would get better results. However, we unify parameters to
simplify the process of the parameter setting.
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Figure 14. Parameters value selection

5.2. Limitation

In Table 5, we have shown the computed cost of two experiments. Actually, since the proposed
method iteratively solves the `0 norm as sub-problems by the designed algorithm, the proposed
method indeed increases the computational burden compared with others methods. In particular,
some statistic-based methods have a very fast speed. For example, SLD method only takes 0.046 s
(for the image size 300 × 300). Actually, it is not easy to achieve the trade-off between the fast speed
and the high accuracy. The more time cost may be viewed as a limitation of the proposed method.

Table 5. The computational cost of the methods.

Image Size WFAF SLD UTV GSLV LRSID Ours

300 × 300 0.2274 0.0466 0.2745 1.1442 4.2581 6.6541
400 × 400 0.2603 0.0650 0.5711 1.7004 8.5212 15.2448

6. Conclusions

In this paper, we proposed a directionally non-convex `0 sparse model for remote sensing image
destriping. We consider the directional and sparse characteristics of the stripe and the underlying
image from local and global aspects. The non-convex `0 norm can be effectively solved iteratively
rather than hard threshold. This model was efficiently solved by the designed PADMM algorithm
based on the MPEC reformulation. Furthermore, we also theoretically gave the corresponding proof
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of the convergence to the KKT point by this work. Experimental results on simulated and real data
demonstrated the effectiveness of the proposed method, both quantitatively and visually. In particular,
the proposed method obtained promising quantitative results, e.g., PSNR and SSIM, than some recent
competitive methods on the average performance of 32 collected images. The power spectrum and
spatial mean cross-track profiles were also employed to illustrate the superiority of the given method.
Besides, for the real images, we also employed some non-reference indexes such as MICV and MMRD
to compare the performance of different compared methods, which also demonstrated the effectiveness
of our method.

In the future, we will try to speed up the proposed method using C language or parallel computing,
and release the corresponding source code. In addition, we will extend the proposed model to the
oblique stripes removal by fully considering the latent properties of oblique stripes. Furthermore,
the proposed method was only applied to single-band image stripe removal. We may extend our
framework to multispectral or hyperspectral image stripe removal by some intrinsic properties,
e.g., low-rank and non-local priors.
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Appendix A. Convergence of the Proposed Method

In fact, the global convergence of the ADMM algorithm has been proved under some
conditions [43], and that of the generalized ADMM is also verified in [44]. Wen et al. [45] show
that the sequence formed by ADMM can converge to a KKT point. Moreover, some researches give
the convergence property of proximal ADMM (PADMM), see [36,46]. Considering our non-convex
optimization model, convergence to a stationary point (local minimum) is the best convergence
property. Similarly, in this paper, we design a PADMM based algorithm to solve the remote sensing
image destriping problem, as well as prove the convergence of the proposed algorithm which
can converge to the KKT point. Here, we denote that the limitation of the vector is defined as
pointwise convergence. For instance, for xk = (xk

1, · · · , xk
n)

T
, limk→∞ xk+1 − xk = 0 represents that

limk→∞ xk+1
i − xk

i = 0, i = 1, · · · , n.

Theorem A1 (Convergence of Algorithm 1). Let P , (h, z, w, v, s), Q , (π1, π2, π3, π4). {Pk, Qk}∞
k=1

is a sequence of the solution of Algorithm 1 after k-th iteration. Assume that limk→∞
(Qk+1 −Qk) = 0 and limk→∞ sk+1 − sk = 0, then the accumulation point of the subsequence {Pk, Qk} is the
KKT point which satisfies the KKT conditions.

Proof. For convenience, we define

∆ , {z | 0 ≤ z ≤ 1}.

Recall our optimization model

min
v∈∆, s

〈1, 1− v〉+ µ||z||1 + λ||w||1

s.t. v� |h| = 0, ∇ys = h, s = z, ∇x(b− s) = w.
(A1)

The Lagrange function L is
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L(h, z, w, v, s, π1, π2, π3, π4) = 〈1, 1− v〉+ µ||z||1 + λ||w||1 + 〈∇ys− h, π1〉
+ 〈s− z, π2〉+ 〈∇x(b− s)−w, π3〉+ 〈v� |h|, π4〉,

(A2)

where π1, π2, π3 and π4 are Lagrange multipliers. Now, we give the first-order optimal conditions of
the proposed problem for L(h∗, z∗, w∗, v∗, s∗, π∗1 , π∗2 , π∗3 , π∗4 ).

0 = ∇T
y π∗1 + π∗2 −∇T

x π∗3 ,

0 ≤ 〈π∗4 � |h∗| − 1, v− v∗〉, ∀v ∈ 4
0 ∈ −π∗1 + π∗4 � v∗ � ∂||h∗||1
0 ∈ −π∗2 + µ∂||z||1
0 ∈ −π∗3 + λ∂||w||1
0 = ∇ys∗ − h∗

0 = s∗ − z∗

0 = ∇x(b− s∗)−w∗

0 = v∗ � |h∗|

(A3)

The Robinson’s constraint qualification can guarantee the existence of the optimization solution.
Next, we will confirm the convergence property of the designed PADMM based algorithm with
a convergence sequence under the similar assumption condition in [45]. The augmented Lagrangian
function L(h, z, w, v, s, π1, π2, π3, π4, β1, β2, β3, β4), which is in Equation (17), is denoted as Lβ.
Note that, the Lagrangian function L is used to get the KKT conditions. Then we prove that the
solution of the augmented Lagrangian function L, which is solved by Algorithm 1, can satisfy the
KKT conditions.

(i) According to the limit of Qk and the update formula of the multipliers Qk+1, we can get

lim
k→∞

∇ysk+1 − hk+1 = 0, (A4)

lim
k→∞

sk+1 − zk+1 = 0, (A5)

lim
k→∞

∇x(b− sk+1)−wk+1 = 0, (A6)

lim
k→∞

vk+1 � |hk+1| = 0. (A7)

(ii) According to the limit of πk
1 , πk

4 , and the hk+1 subproblem of Lβ in Equation (18) , we can get

lim
k→∞

hk+1 ∈ arg min
h
〈∇ysk+1 − h, πk+1

1 〉+ β1
2
||∇ysk+1 − h||2 + 〈vk+1 � |h|, πk+1

4 〉+ β4
2
||vk+1 � |h|||2,

By the first optimality condition of h, we have

lim
k→∞

−πk+1
1 + πk+1

4 � vk+1 � ∂||hk+1||1 3 0. (A8)

(iii) According to the limit of πk
2 , and the zk+1 subproblem of Lβ in Equation (22), we can get

lim
k→∞

zk+1 ∈ arg min
z

µ||z||1 + 〈sk+1 − z, πk+1
2 〉+ β2

2
||sk+1 − z||2,
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By the first optimality condition of z, we have

lim
k→∞

−πk+1
2 + µ∂||zk+1||1 3 0. (A9)

(iv) According to the limit of πk
3 , and the wk+1 subproblem of Lβ in Equation (24), we can get

lim
k→∞

wk+1 ∈ arg min
w

λ‖w‖1 +
β3

2
||∇x(b− sk+1)−w +

πk+1
3
β3
||2,

By the first optimality condition of w, we have

lim
k→∞

−πk+1
3 + λ∂||wk+1||1 3 0. (A10)

(v) According to the limit of πk
4 , hk and the vk+1 subproblem of Lβ in Equation (26), we can get

lim
k→∞

vk+1 ∈ arg min
0≤v≤1

〈v, πk+1
4 � |hk+1| − 1〉+ β4

2
||v� |hk+1|||2,

By the first optimality condition of v, we have

lim
k→∞

〈πk+1
4 � |hk+1| − 1, v− vk+1〉 ≥ 0, ∀v ∈ 4. (A11)

(vi) According to the limit of sk+1 and the update formula of sk+1 subproblem of Lβ in Equation (28),
we have the first optimality condition of s is

∇T
y πk+1

1 + β1∇T
y (∇ysk+1 − hk+1) + πk+1

2 + β2(sk+1 − zk+1)−∇T
x πk+1

3

− β3∇T
x (∇T

x (b− sk+1)−wk+1) + D(sk+1 − sk) = 0.

Combining it with Equations (A4)–(A7), we have

lim
k→∞

∇T
x πk+1

1 + πk+1
2 −∇T

y πk+1
3 + D(sk+1 − sk) = 0. (A12)

Since the formula limk→∞ sk+1 − sk = 0 and the matrix.
D is a positive definite, so we have limk→∞ D(sk+1 − sk) = 0. Thus, we have

lim
k→∞
∇T

x πk+1
1 + πk+1

2 −∇T
y πk+1

3 = 0. (A13)

Combining Equations (A4)–(A13), we conclude that the {Pk, Qk} is the sequence generated by
Algorithm 1, and, as k→ ∞, there exists a subsequence {Pk, Qk}, whose accumulation point satisfies
the KKT conditions in Equation (A3).
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