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Abstract: The size of phytoplankton not only influences its physiology, metabolic rates and marine
food web, but also serves as an indicator of phytoplankton functional roles in ecological and
biogeochemical processes. Therefore, some algorithms have been developed to infer the synoptic
distribution of phytoplankton cell size, denoted as phytoplankton size classes (PSCs), in surface
ocean waters, by the means of remotely sensed variables. This study, using the NASA bio-Optical
Marine Algorithm Data set (NOMAD) high performance liquid chromatography (HPLC) database,
and satellite match-ups, aimed to compare the effectiveness of modeling techniques, including partial
least square (PLS), artificial neural networks (ANN), support vector machine (SVM) and random
forests (RF), and feature selection techniques, including genetic algorithm (GA), successive projection
algorithm (SPA) and recursive feature elimination based on support vector machine (SVM-RFE),
for inferring PSCs from remote sensing data. Results showed that: (1) SVM-RFE worked better in
selecting sensitive features; (2) RF performed better than PLS, ANN and SVM in calibrating PSCs
retrieval models; (3) machine learning techniques produced better performance than the chlorophyll-a
based three-component method; (4) sea surface temperature, wind stress, and spectral curvature
derived from the remote sensing reflectance at 490, 510, and 555 nm were among the most sensitive
features to PSCs; and (5) the combination of SVM-RFE feature selection techniques and random
forests regression was recommended for inferring PSCs. This study demonstrated the effectiveness
of machine learning techniques in selecting sensitive features and calibrating models for PSCs
estimations with remote sensing.

Keywords: phytoplankton size classes; machine learning; feature selection; random forest;
remote sensing

1. Introduction

Phytoplankton plays a critical role in ocean ecosystems and the global carbon cycle via carbon
fixation during photosynthesis, and they account for up to 50% of the total primary production on
Earth [1]. More importantly, phytoplankton can serve as a “biological pump” by moving fixed carbon
into deep ocean [2]. One of the factors affecting carbon fixation and sinking rate is the size of the
phytoplankton cell [3]. Phytoplankton size structures, expressed as phytoplankton size classes (PSCs),
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are divided into three size classes: microplankton (>20 µm), nanoplankton (2–20 µm), and picoplankton
(<2 µm) [4]. PSCs are found to closely relate to phytoplankton functional types (PFTs) [5]. Therefore,
synoptic mapping of PSCs has been recently targeted by ocean color remote sensing community [6].

The mechanism of PSCs retrieval from ocean color data lies in the fact that PSCs are
closely associated with the phytoplankton abundance as well as inherent and apparent optical
properties in waters [6–8]. Hitherto, several PSCs retrieval approaches have been developed [8],
including abundance-based, spectral-based, and statistical-based ones [6]. Abundance-based
methods employ chlorophyll a concentrations to infer phytoplankton size structure, because large
phytoplankton cells are generally associated with high biomass and small cells with low biomass [7].
Spectral-based methods depend on the spectral shape of either phytoplankton absorption or particulate
backscattering [9–12].

Machine learning techniques have also successfully applied to estimate PSCs and PFTs. For
examples, Raitsos et al. [13] and Brewin et al. [8] applied artificial neural networks to retrieve PFTs
and PSCs from bio-optical, spatial, temporal, and physical features; Organelli et al. [14] calibrated a
partial least squares (PLS) models with in situ particulate absorption coefficients for PSCs retrieval in
the Mediterranean Sea. In addition to the original spectral features of waters, their spectral derivatives
and indices were also applied in model development, and feature selection techniques were applied to
identify sensitive features for PSCs and PFTs estimations. For examples, Torrecilla et al. [15] found,
through the sensitivity test in cluster analysis, that the second derivatives of original spectral features of
waters worked better than band ratios and original features in discriminating phytoplankton pigment
assemblages; and Li et al. [16] used support vector machine recursive feature elimination (SVM-RFE)
to select sensitive spectral features and then applied them to develop PSCs estimation models with
SVM regression.

Considering the successful applications of abovementioned methods, machine learning techniques
may be promising for PSCs mapping over global oceans, while statistical PSCs modeling mainly
involves sensitive feature selection and model calibration. However, few comprehensive comparisons
of machine learning techniques for inferring PSCs with remote sensing data were carried out in the
literature. Therefore, this study, using the NOMAD HPLC database and satellite-derived products,
aimed to compare the effectiveness of machine learning techniques for selecting useful spectral features
and developing PSCs retrieval models. Three feature selection algorithms, including genetic algorithm,
successive projection algorithm and SVM-RFE, and four modeling techniques, including PLS, ANN,
SVM and random forests, were tested. The results from this study would be a good reference for
statistical estimations of PSCs with remote sensing techniques.

2. Materials and Methods

2.1. In-Situ Pigments

The global pigment data of the NOMAD HPLC database (https://seabass.gsfc.nasa.gov) was
used in this study, and it includes high quality data selected for ocean color algorithm development [17].
This database includes 4459 pigment measurements in sea surface waters between 1991 and 2007,
among which 3118 were sampled within the SeaWiFS acquisition period. The Diagnostic Pigment
Analysis method, which was proposed by Vidussi et al. [18] and extended by Uitz et al. [19] and
Hirata et al. [11], was applied to calculate the fractions of picoplankton (Fp), nanoplankton (Fn),
and microplankton (Fm) [8], and it employed seven diagnostic pigments, including fucoxanthin,
peridinin, 19′-hexanoyloxyfucoxanthin, 19′-butanoyloxyfucoxanthin, alloxanthin, total chlorophyll
b and zeaxanthin, to infer PSCs. To control the quality of pigments measurement, only the samples
with in situ measured chlorophyll a (Chl a) concentration exceeding three standard deviations of mean
covariance for the sum of accessory pigments were discarded, because they were found to be highly
correlated and covaried in a quasi-linear manner [20]. Finally, a total of 2871 samples were used in
this study.

https://seabass.gsfc.nasa.gov
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2.2. Satellite Data

SeaWiFS ocean color data were used in this study for inferring PSCs, because most of the NOMAD
samples were collected during SeaWiFS acquisition period. The level three 8-day composite products
(9 × 9 km2 resolution) of SeaWiFS remote sensing reflectance (Rrs) at 412, 443, 490, 510, 555, and 670 nm,
phytoplankton absorption coefficient at 443 nm (aph_443), particulate backscattering coefficient at
443 nm (bbp_443), near surface Chl a, photosynthetically active radiation (PAR) and optical aerosol
thickness at 865 nm (T865) were downloaded from NASA Oceancolor website (https://oceancolor.
gsfc.nasa.gov/). The Chl a concentration was estimated with the OCx band ratio algorithm merged
with color index [21], and aph_443 and bbp_443 were retrieved with Generalized Inherent Optical
Property [22].

Besides ocean color data, remotely sensed sea surface temperature (SST) and wind stress products
were also incorporated in PSCs modelling. The nighttime Advanced Very High Resolution Radiometer
(AVHRR) Pathfinder 5.0 daily of sea surface temperature data (4 × 4 km2 resolution) were obtained
from the NOAA website (https://data.nodc.noaa.gov/pathfinder/), and weekly composites of mean
wind stress data derived from ER-2 (1◦ × 1◦ resolution) and QuikSCAT (0.5◦ × 0.5◦ resolution) were
obtained from ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded.

2.3. Procedure for Matching Satellite and In Situ data

To maximize the number of match-ups of in situ and satellite data, the in situ HPLC database
was matched to SeWiFS level three 8-day products. A 3 × 3 window matching procedure adopted
by Hu et al. [23] was used to extract pixel values around each sampling station. The mean of valid
values within the window was calculated for each satellite-sensed parameter. The pixels with low
quality were identified considering quality control flags or high T865 values, and removed from further
analyses. The match-ups with incomplete satellite-sensed parameters were identified and eliminated.
To further control the quality of match-ups, in situ measured vs. SeaWiFS-derived Rrs(443) as well as in
situ measured vs. SeaWiFS-derived Chl a concentrations were also used to reduce the error caused by
temporal gaps. The match-ups with any SeaWiFS-derived parameter exceeding three mean covariance
for in situ measured ones were eliminated. Finally, a total of 725 match-ups were selected in this study.

2.4. Feature Selection Techniques

Feature selection is a process of selecting a subset of relevant and sensitive features for model
development, and it is helpful to simplify model and enhances generalization by reducing overfitting.
Feature selection techniques are generally divided into filters, wrappers, and embedded methods,
according to the relationship between feature selection and the modeling process [24]. Filters are
independent from model calibration, and they often applied as a pre-processing method; however,
they may fail to select the most sensitive features [24]. Wrappers consider modeling techniques as
a black box, and just rely on the prediction performance to evaluate the usefulness of subsets of
features [25]. Embedded methods perform feature selection in model training process, and select the
features contributing the most to model accuracy. Two wrapper methods, including genetic algorithm
(GA) and successive projection algorithm (SPA), and one embedded method, i.e., recursive feature
selection (RFE), were applied in this study.

GA, a popular heuristic optimization technique, uses a probabilistic and non-local search process
inspired by Darwin’s natural selection theory [26]. In GA, a subset of features is encoded into a binary
string called chromosomes, in which a binary code (1 or 0) for each feature represents selected or
not. It starts with a set of randomly initiated chromosomes, selects chromosomes resulting in higher
prediction performance, and then generates next generations with the selected population through
crossover and mutation. The evolution was stopped at 50 generations, and the selected features of
the fittest chromosome were identified. The prediction performance of each subset of features was
evaluated using PLS regression. The selection process was repeated 100 times, and the selection

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
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frequencies of features were calculated and ranked in decreasing order to be successively adopted in
modeling [27].

SPA, a forward selection technique, is devised to minimize the collinearity between selected
features [28], and it uses a simple projection operation in vector space to obtain a subset of features
with minimal collinearity. SPA starts with one feature, and then sequentially selects new feature
having the maximum projection value on the orthogonal subspace of previously selected features [29].
This process is continued until the prediction performance obtained by PLS regression does not
increase. In implementation, each feature was tested iteratively to be the first feature selected, and the
sequential selection process was carried out for each initial feature. And, the subset with which PLS
regression produces the lowest prediction error was selected as the optimal features.

RFE, a backward selection technique, first trains a model with all features, removes the feature
contributing the least to model, and then retrains the model with the remaining features [30]. The
procedure is repeated sequentially, and the number of features is determined according to the
highest prediction performance. In this study, RFE based on support vector machine regression
(SVM-RFE) was implemented. Feature contribution was evaluated according to the absolute of weight
change with and without taking the feature into calculation. The weight value was calculated as:
W2 = (∑ α ∗ y ∗ K(x, x))2 [31], where α are the support vectors, y is a variable to be modeled, and
K(x, x) is the kernel function.

2.5. Model Development

Four supervised machine learning techniques, including PLS, ANN, SVM, and random forests
(RF), were applied to calibrate remote sensing-based PSCs retrieval models.

PLS is a popular multivariate analysis technique in spectral modeling [32]. It holds a similar
structure to principal component regression; however, it takes dependent variables into account when
generating latent variables. Specifically, PLS regression searches for a set of latent variables that
perform a simultaneous decomposition of independent and dependent variables with the constraint
that these components explain the covariance between them as much as possible. Therefore, it can
reduce dimensionality and computation time while avoiding multi-collinearity. SIMPLS [33] was used
to implement PLS regression in this study, and leave-one-out cross-validation was used to determine
optimal number of latent variables.

ANN is based on a collection of connected artificial neurons, and it stimulates human learning
processes through establishing and reinforcing the connections between input and output [34].
Generally, ANN consists of input, hidden, and output layers, each with a set of interconnected
neurons, and transforming from input data into output values. The connections between neurons were
represented by a weight matrix, which represents the linkage between the input and output data. One
popular ANN algorithm, feed forward neural networks with back-propagation, was implemented
with 10 hidden neurons in this study. To train the ANN, the connection weight matrix was initiated
with an arbitrary one. The output values were compared with the training data, and the estimation
error was calculated. The estimation error was back-propagated to the network, and GA algorithm
was used to optimize the weight matrix.

SVM regression is a kernel-based learning algorithm, it first maps training data into a new
hyperspace using a kernel function, and then constructs an optimal hyper plane fitting training
data [35]. The major advantage of SVM lies in its complex fitting ability for non-linear data. Least
squares SVM (LSSVM) is a modified version of SVM, which solves multivariate modeling by applying
least squares error in training error function. In LSSVM, a linear estimation is done in a kernel-induced
feature space (y = ωTφ(x) + b), where φ(x) denotes the feature map. Therefore, LSSVM has a more
simplified training process than SVM. In this study, LSSVM was implemented using the LS-SVM lab
toolbox [36], and also the most popular radial basis function (RBF, exp (−‖xi − x‖2/2σ2) because of
its adaptability to non-linear data, where σ2. is the width of Gaussian function.
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RF is a tree-based non-parametric ensemble learning technique. It produces a final prediction by
combining predictions from many individual decision trees [37], which are created by drawing a subset
of training samples through a bagging approach. In RF, about two thirds of the samples (referred
to as in-bag samples) are used to train the trees. The remaining samples (referred to as out-of-bag
samples) are used in the internal cross-validation, which produces an error estimate called out-of-bag
error. Therefore, RF are robust to noise and resistant to overfitting. The RF was implemented using the
package provided by [38], with 500 trees in this study.

2.6. Modeling Framework

Three main steps are need to develop a statistical PSCs algorithm [16]: (1) constructing input features
for selection; (2) selecting sensitive features using feature selection techniques; and (3) calibrating models
using statistical methods. In this study, four types of data were used, including ocean color (Rrs at 412,
443, 490, 510, 555, and 670 nm, band indices, aph_443 and bbp_443), temporal (month), biological (Chl a)
and physical (PAR, SST, and wind stress) data. In addition to six original Rrs, six continuum-removed
spectra and twenty spectral curvature were also constructed [16], which were denoted CR(λ) and CV(λ1,
λ2, λ3) with λ1 < λ2 < λ3, respectively. Thus, a total of 39 features were incorporated into feature selections.
The modeling framework used in this study is illustrated in Figure 1:

(1) Two-thirds of the samples (483 samples) were randomly selected from NOMAD match-ups as a
training dataset, and the left 241 samples were used as a validation dataset. Each input feature
and phytoplankton size class was transformed to be dimensionless by standardization using the
mean and standard deviation of training set.

(2) Sensitive features were selected for each phytoplankton size class (i.e., Fm, Fn and Fp) using
GA, SPA, and SVM-RFE, respectively. During feature selection, 10-fold cross validation was
implemented for model selection, and Akaike information criterion [39] was used to select
optimal features.

(3) Statistical models were calibrated for each phytoplankton size class by using above-selected
features with PLS, SVM, ANN and RF, respectively, and 10-fold cross validation was carried out
to evaluate calibration performance.

(4) After one model was calibrated with the training dataset, the validation dataset was used to test
its performance.

(5) To ensure the robustness of results, steps (1)–(4) were repeated 100 times, and the calibration and
validation results from each iteration were compiled together for assessing model performance.

2.7. Result Comparison and Interpretation

To evaluate model calibration and validation performance, the coefficient of determination (R2),
root mean square error (RMSE), mean absolute percentage error (MAPE), and relative RMSE (RRMSE)
were calculated from the 10-fold cross validation and validation results [40].

For evaluating the sensitive features selected for each phytoplankton size class by each feature
selection technique, the mean number of selected features over 100 iterations and the selected frequency
for each feature were statistically calculated, and the features with selected frequency over 50%
were identified as frequently selected features and analyzed. For each phytoplankton size class, the
features frequently selected by at least two feature selection techniques were considered as useful
ones. The correlations between these useful features and three PSCs were analyzed to figure out the
relationships between these variables.
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3. Results

3.1. Microphytoplankton

The cross validation and independent validation results for Fm from the combinations of three
feature selection algorithms and four modeling techniques, as well as three baseline methods are
shown in Table 1. Cross and independent validations produced generally consistent performances.
The models calibrated with the features selected by GA, SPA and SVM-RFE, and all the features showed
no obvious difference. However, the prediction performances of these four modeling techniques
showed a clear pattern (RF > SVM > ANN > PLS) with RF being the best and PLS the worst,
irrespective of feature selection algorithms. RF explained 76–78% of the variation of validation
dataset with a RMSE of 0.13–0.14, and SVM, ANN, and PLS explained 73–75%, 72–73% and 64–65% of
the variation, respectively.

Table 1. Model performance of cross validation (CV) and independent validation (V) for microplankton
size fractions obtained by different combinations of feature selection and modelling techniques. Feature
selection techniques included genetic algorithm (GA), successive projection algorithm (SPA), and
recursive feature elimination based on support vector machine regression (SVM-RFE). And, the
modeling techniques included partial least square (PLS) regression, artificial neural network (ANN),
support vector machine (SVM), and random forests (RF).

Feature Selection Modeling Techniques R2
CV RMSECV RRMSECV R2

V RMSEV RRMSEV

GA

PLS 0.66 0.16 40.13% 0.65 0.16 40.59%
ANN 0.72 0.15 36.56% 0.72 0.15 36.675
SVM 0.75 0.14 35.04% 0.74 0.14 35.43%
RF 0.77 0.13 33.54% 0.77 0.13 33.47%

SPA

PLS 0.66 0.16 40.17% 0.65 0.16 40.72%
ANN 0.72 0.15 36.75% 0.72 0.15 36.94%
SVM 0.74 0.14 35.22% 0.73 0.14 36.01%
RF 0.76 0.14 34.06% 0.76 0.14 33.86%
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Table 1. Cont.

Feature Selection Modeling Techniques R2
CV RMSECV RRMSECV R2

V RMSEV RRMSEV

SVM-RFE

PLS 0.64 0.16 41.13% 0.64 0.17 41.11%
ANN 0.72 0.15 36.50% 0.72 0.15 36.68%
SVM 0.75 0.14 34.55% 0.74 0.14 35.82%
RF 0.77 0.13 33.17% 0.78 0.13 33.14%

– a

PLS 0.65 0.17 40.62% 0.65 0.16 40.49%
ANN 0.72 0.15 36.49% 0.73 0.14 36.18%
SVM 0.75 0.14 34.58% 0.75 0.14 34.95%
RF 0.77 0.13 33.53% 0.77 0.13 33.41%

– b Three-component 0.50 0.20 50.33% 0.49 0.20 50.78%

SVM-RFE c SVM 0.61 0.17 44.72% 0.59 0.18 44.59%
a refers to the first baseline method, in which all of the features were used in modeling; b indicates the second
baseline method, in which only chlorophyll a concentration was used; and c is the third baseline method, in which
only ocean color data were input into SVM-RFE for feature selection.

Figure 2 illustrates and compares the results for microplankton obtained by RF models calibrated
using the features from SVM-RFE, SVM models calibrated using the features from SVM-RFE,
three-component model and SVM model based on only ocean color features. The former two
models showed obvious better performance than the latter two. The RF models, with a R2 of 0.78, a
RMSE of 0.13 and a regression line of y = 0.85x + 0.06, produced similar results with those of SVM
models calibrated using the features from SVM-RFE (R2

V = 0.74, RMSE = 0.14 and a regression line:
y = 0.89x + 0.04). The three-component method produced the worst result with a slope of 0.69 and
a bias of 0.17 for its regression line, overestimating low fractions, underestimating high ones, and
producing scattering estimations for middle values. The mean parameter values for three-component
model are shown in Table 2. The SVM model based on only ocean color data produced the worse
result with R2

V = 0.59, RMSE = 0.18, and RRMSE = 44.59%. Figure 2d also proved the advantage of RF
methods, with more samples peaking at low relative errors.

Table 2. Mean parameter values obtained for three-component method from the dataset used in
this study.

Population Maximum Chl a for Given Population Initial Slope

Combined nano- and picoplankton 0.766 mg/m3 (Cm
p,n) 1.009 (Sp,n)

Picoplankton 0.102 mg/m3 (Cm
p ) 6.791 (Sp)

The sensitive features and their selected frequencies in 100 iterations are listed in Table 3.
On average, GA, SPA, and SVM-RFE selected 10.83, 10.05, and 9.29 features in each modeling with
eight, eight, and nine sensitive features identified, respectively. All of the three feature selection
algorithms identified SST, CV(490, 510, 555) and wind stress as useful features. Both GA and SPA
selected Chl a, aph_443 and CR(443) as sensitive features, and both SPA and SVM-RFE selected CV(443,
490, 510).
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Figure 2. Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC)
microplankton size fractions (Fm): (a) random forests using features selected with SVM-RFE, (b) SVM
using features selected with SVM-RFE, (c) SVM using ocean color features selected with SVM-RFE, and
(d) three-component method. The dashed line is a 1:1 line, and the solid line is a regression line. Plot
(e) shows the frequency distributions of their relative errors, and the numbers along the color ramp
indicates the pixel density after log transformation (y = ln(x)).

Table 3. Sensitive features for retrieving microphytoplankton size fractions selected, respectively, by
genetic algorithm (GA), successive projection algorithm (SPM) and recursive feature elimination based
on support vector machine regression (SVM-RFE).

GA SPA SVM-RFE

Features Frequency Features Frequency Features Frequency

Chl-a 100 CV(490, 510, 555) 100 PAR 100
Wind stress 100 Chl-a 100 Month 99

SST 100 SST 100 SST 98
CV(490, 510, 555) 99 Wind stress 97 CV(490, 510, 555) 97

CR(510) 85 CV(443, 490, 510) 75 CV(443, 490, 555) 85
CR(443) 64 aph_443 61 Rrs(510) 83
Rrs(670) 53 CR(555) 52 Rrs(490) 65
aph_443 53 CR(443) 51 Wind stress 56

CV(443, 490, 510) 53

Note: the features selected by all of the three algorithms are shown in bold.
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3.2. Nanoplankton

The cross validation and independent validation results for nanoplankton size classes obtained
by different methods are shown in Table 4. Similar to the results of Fm, the cross validation and
independent validation for Fn produced generally consistent performances. Irrespective of modeling
technique, the models calibrated with the features from SVM-RFE performed the best, followed by
GA and SPA. The models calibrated with all features produced slightly worse performance than those
with the features selected by SVM-RFE. The prediction performance of these four modeling techniques
showed a consistent pattern (RF > SVM > ANN > PLS), with RF being the best, SVM second, and PLS
the worst. RF explained 49–56% of the variation of validation dataset with a RMSE of 0.11–0.12, while
SVM, ANN and PLS explained 43–50%, 39–45%, and 26–31% of the variation, respectively.

Table 4. Model performances of cross validation (CV) and independent validation (V) for nanoplankton
size fractions obtained by different combinations of feature selection and modelling techniques. Feature
selection techniques included genetic algorithm (GA), successive projection algorithm (SPA), and
recursive feature elimination based on support vector machine regression (SVM-RFE). The modeling
techniques included partial least square (PLS) regression, artificial neural network (ANN), support
vector machine (SVM), and random forests (RF).

Feature Selection Modeling Techniques R2
CV RMSECV RRMSECV R2

V RMSEV RRMSEV

GA

PLS 0.34 0.14 45.48% 0.31 0.14 46.12%
ANN 0.44 0.13 42.58% 0.43 0.13 42.67%
SVM 0.49 0.12 40.50% 0.47 0.12 41.18%
RF 0.54 0.12 38.75% 0.53 0.12 38.67%

SPA

PLS 0.34 0.14 45.60% 0.31 0.14 46.38%
ANN 0.41 0.13 43.72% 0.39 0.13 43.93%
SVM 0.46 0.13 41.90% 0.43 0.13 42.54%
RF 0.50 0.12 40.39% 0.49 0.12 40.40%

SVM-RFE

PLS 0.27 0.15 48.53% 0.26 0.15 48.80%
ANN 0.46 0.13 41.92% 0.45 0.13 41.91%
SVM 0.52 0.12 39.62% 0.48 0.12 40.74%
RF 0.56 0.11 37.82% 0.56 0.11 37.73%

– a

PLS 0.32 0.14 46.38% 0.31 0.14 46.29%
ANN 0.45 0.13 42.06% 0.45 0.13 41.86%
SVM 0.52 0.12 39.59% 0.50 0.12 39.83%
RF 0.54 0.12 38.58% 0.54 0.12 38.48%

– b Three-component 0.18 0.16 50.32% 0.17 0.16 52.17%

SVM-RFE c SVM 0.41 0.13 43.57% 0.37 0.13 44.76%

Note: a refers to the first baseline method, in which all of the features were used in modeling; b indicates the second
baseline method, in which only chlorophyll-a concentration was used; and c is the third baseline method, in which
only ocean color data were input into SVM-RFE for feature selection.

The sensitive features for nanoplankton size fractions and their selected frequencies in 100
iterations are listed in Table 5. On average, GA, SPA and SVM-RFE selected 9.03, 7.79, and 8.77 features
in each modeling with eight, five and eight sensitive features identified, respectively. All of the three
feature selection algorithms identified month and CV(490, 510, 555) as useful features. Both GA and
SPA selected Chl a, CR(490) and aph_443 as sensitive features, while both GA and SVM-RFE selected
wind stress and Rrs(490).
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Figure 3. Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC)
nanoplankton size fractions (Fn): (a) random forests using features selected with SVM-RFE, (b) SVM
using features selected with SVM-RFE, (c) SVM using ocean color features selected with SVM-RFE,
and (d) three-component method. The dashed line is a 1:1 line, and the solid is a regression line. Plot
(e) shows the frequency distributions of their relative errors, and the numbers along the color ramp
indicates the pixel density after log transformation (y = ln(x)).
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Table 5. Sensitive features for retrieving nanoplankton size fractions selected, respectively, by genetic
algorithm (GA), successive projection algorithm (SPM) and recursive feature elimination based on
support vector machine regression (SVM-RFE).

GA SPA SVM-RFE

Features Frequency Features Frequency Features Frequency

Month 100 CR(490) 100 Rrs(490) 100
Chl-a 100 CV(490, 510, 555) 100 Month 100

CR(490) 95 Chl-a 100 PAR 100
CV(490, 510, 555) 89 aph_443 97 Wind stress 99

Rrs(412) 86 Month 64 CV(443, 490, 555) 95
aph_443 74 SST 95

Wind stress 62 CV(490, 510, 555) 92

Rrs(490) 59 CR(555) 64

Note: The features selected by all of the three algorithms are shown in bold.

3.3. Picoplankton

All of the cross validation and independent validation results for picoplankton size classes
obtained by different methods are shown in Table 6. The cross validation and independent validation
obtained by each method for Fp produced generally consistent performance. For each modeling
technique, the models calibrated features from GA, SPA, and SVM-RFE, and all features produced
similar results, in which SVM-RFE showed slightly better performance. The prediction performance
of these four modeling techniques showed a consistent pattern (RF > SVM > ANN > PLS) with RF
being the best, SVM the second and PLS the worst. RF explained 80–82% of the variation of validation
dataset with a RMSE of 0.10–0.11, while SVM, ANN, and PLS explained 77–80%, 76–77%, and 73% of
the variation, respectively.

Table 6. Model performances of cross validation (CV) and independent validation (V) for picoplankton
size fractions obtained by different combinations of feature selection and modelling techniques. Feature
selection techniques included genetic algorithm (GA), successive projection algorithm (SPA) and
recursive feature elimination based on support vector machine regression (SVM-RFE). The modeling
techniques included partial least square (PLS) regression, artificial neural network (ANN), support
vector machine (SVM), and random forests (RF).

Feature Selection Modeling Techniques R2
CV RMSECV RRMSECV R2

V RMSEV RRMSEV

GA

PLS 0.74 0.12 38.02 0.73 0.12 37.94
ANN 0.77 0.12 36.55 0.77 0.12 36.38
SVM 0.79 0.11 35.15 0.78 0.11 35.31
RF 0.80 0.11 34.51 0.81 0.11 34.21

SPA

PLS 0.74 0.12 37.98 0.73 0.12 37.94
ANN 0.76 0.12 37.01 0.76 0.12 36.76
SVM 0.78 0.11 35.97 0.77 0.12 36.17
RF 0.80 0.11 35.18 0.80 0.11 34.90

SVM-RFE

PLS 0.72 0.13 38.80 0.73 0.13 38.27
ANN 0.77 0.12 36.13 0.77 0.12 35.77
SVM 0.80 0.11 33.71 0.80 0.11 34.14
RF 0.82 0.11 33.45 0.82 0.10 33.09

– a

PLS 0.73 0.13 38.68 0.73 0.13 38.30
ANN 0.76 0.12 36.92 0.76 0.12 36.36
SVM 0.79 0.11 34.56 0.79 0.11 34.63
RF 0.80 0.11 34.77 0.80 0.11 34.39

– b Three-component 0.50 0.18 54.38 0.50 0.18 0.54

SVM-RFE c SVM 0.67 0.14 44.68 0.65 0.14 45.35

Note: a refers to the first baseline method, in which all of the features were used in modeling; b indicates the second
baseline method, in which only chlorophyll a concentration was used; and c is the third baseline method, in which
only ocean color data were input into SVM-RFE for feature selection.
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Figure 4 illustrates and compares the results for Fp obtained by RF model calibrated with
the features from SVM-RFE, SVM models calibrated using the features from SVM-RFE, the
three-component model, and the SVM model based on only ocean color features. All of these four
methods tended to underestimate high Fp. Comparatively, the three-component method produced the
worst result, producing high deviations from 1:1 line especially for low values (Figure 4b). The SVM
model based on only ocean color data produced acceptable performance with R2

V = 0.65, RMSE = 0.14,
and a regression line of y = 0.82 + 0.06. It, however, obviously overestimated very low fractions. RF
model performed the best with a R2

V of 0.82, a RMSE of 0.10, and a RRMSEV of 33.09%. Similar and
slightly worse results (R2

V = 0.80, RMSE = 0.11 and a regression line: y = 0.91x + 0.03) were obtained
by SVM models calibrated using the features selected by SVM-RFE. Figure 4d also demonstrates the
advantage of RF, producing the highest frequency at low relative errors; however, about 10–18% of
samples were estimated with over 200% relative errors.

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 18 

 

dataset with a RMSE of 0.10–0.11, while SVM, ANN, and PLS explained 77–80%, 76–77%, and 73% of 
the variation, respectively. 

Figure 4 illustrates and compares the results for Fp obtained by RF model calibrated with the 
features from SVM-RFE, SVM models calibrated using the features from SVM-RFE, the three-
component model, and the SVM model based on only ocean color features. All of these four methods 
tended to underestimate high Fp. Comparatively, the three-component method produced the worst 
result, producing high deviations from 1:1 line especially for low values (Figure 4b). The SVM model 
based on only ocean color data produced acceptable performance with R2V = 0.65, RMSE = 0.14, and 
a regression line of y = 0.82 + 0.06. It, however, obviously overestimated very low fractions. RF model 
performed the best with a R2V of 0.82, a RMSE of 0.10, and a RRMSEV of 33.09%. Similar and slightly 
worse results (R2V = 0.80, RMSE = 0.11 and a regression line: y = 0.91x + 0.03) were obtained by SVM 
models calibrated using the features selected by SVM-RFE. Figure 4d also demonstrates the 
advantage of RF, producing the highest frequency at low relative errors; however, about 10–18% of 
samples were estimated with over 200% relative errors. 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 4. Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC) 
picoplankton size fractions (Fp): (a) random forests using features selected with SVM-RFE, (b) SVM 
using features selected with SVM-RFE, (c) SVM using ocean color features selected with SVM-RFE, 
and (d) three-component method. The dash line is 1:1 line, and the solid is regression line. Plot (e) 

 
 
 
 
 
 
 
 

 
 

 

 
 
 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Scatter plots of satellite-derived versus high performance liquid chromatography (HPLC)
picoplankton size fractions (Fp): (a) random forests using features selected with SVM-RFE, (b) SVM
using features selected with SVM-RFE, (c) SVM using ocean color features selected with SVM-RFE, and
(d) three-component method. The dash line is 1:1 line, and the solid is regression line. Plot (e) shows
the frequency distributions of their relative errors, and the numbers along the color ramp indicates the
pixel density after log transformation (y = ln(x)).
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The sensitive features for picoplankton size fractions and their selected frequencies in 100
iterations are listed in Table 7. On average, GA, SPA, and SVM-RFE selected 9.29, 7.32, and 10.15
features in each modeling with seven, five, and 10 sensitive features identified, respectively. All of the
three feature selection algorithms identified wind stress, CV(490, 510, 555) and SST as useful features.
Both GA and SPA selected CR(490) as sensitive features, while both GA and SVM-RFE selected Rrs(412)
and CV(443, 490, 555).

Table 7. Sensitive features for retrieving picoplankton size fractions selected, respectively, by genetic
algorithm (GA), successive projection algorithm (SPM), and recursive feature elimination based on
support vector machine regression (SVM-RFE).

GA SPA SVM-RFE

Features Frequency Features Frequency Features Frequency

Wind stress 100 SST 100 CV(490, 510, 555) 100
SST 100 CR(490) 97 Month 100

CR(490) 97 Wind stress 96 PAR 100
CV(490, 510, 555) 73 CV(490, 510, 555) 85 SST 100

Month 64 CV(443, 490, 510) 58 Wind stress 97
CV(443, 490, 555) 57 CV(443, 490, 555) 74

Rrs(412) 53 Rrs(412) 71
CR(555) 68
CR(510) 62
Rrs(490) 54

Note: The features selected by all of the three algorithms are shown in bold.

3.4. Correlation Analysis

The correlations of the selected features against PSCs varied greatly (Table 8). There were medium
to high correlations between each ocean color feature and some other ocean color features, except
for CV(443, 490, 510). For example, Rrs(412) was highly correlated to Rrs(412) and CR(510), and
moderately correlated to CR(490) and CV(443, 490, 555). The Chl a concentration was highly correlated
to aph_443, and moderately correlated to Rrs(412), CV(443, 490, 555), and CV(490, 510, 555). The Fm
was moderately correlated to Rrs(412), CV(443, 490, 555), CV(490, 510, 555), Chl a, SST, and Fn, and
highly and negatively correlated to Fp with a correlation coefficient of 0.80. The Fn was only found
to be moderately correlated to CV(490, 510, 555) with a correlation coefficient of 0.50. There existed
moderate correlations of Fp against Rrs(412), Rrs(490), CR(510), CV(443, 490, 555), and SST.
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Table 8. Correlation matrix showing the relationships of some selected features against phytoplankton size classes.

1.
Rrs(412)

2.
Rrs(490)

3.
CR(490)

4.
CR(510)

5. CV(443,
490, 510)

6. CV(443,
490, 555)

7. CV(490,
510, 555)

8.
Month

9.
aph_443

10.
Chl-a 11. Wind Stress 12. SST 13. Fm 14. Fn 15. Fp

1. 1.00
2. 0.85 1.00
3. −0.56 −0.38 1.00
4. −0.81 −0.56 0.79 1.00
5. −0.35 −0.34 0.24 0.27 1.00
6. 0.67 0.47 −0.23 −0.44 0.23 1.00
7. 0.36 0.24 0.04 −0.10 −0.12 0.65 1.00
8. −0.08 −0.10 −0.02 0.01 0.06 −0.01 −0.10 1.00
9. −0.36 −0.24 −0.18 0.05 −0.19 −0.65 −0.62 0.07 1.00
10. −0.53 −0.33 0.03 0.22 0.01 −0.77 −0.77 0.04 0.84 1.00
11. −0.16 −0.21 0.06 0.14 0.13 −0.03 0.11 −0.18 −0.05 −0.05 1.00
12. 0.42 0.41 −0.31 −0.44 −0.14 0.17 −0.12 0.31 −0.02 −0.07 −0.41 1.00
13. −0.64 −0.49 0.29 0.48 0.07 −0.69 −0.51 −0.07 0.46 0.62 0.10 −0.50 1.00
14. 0.02 0.01 0.21 0.19 0.05 0.30 0.50 −0.10 −0.36 −0.46 0.12 −0.13 −0.51 1.00
15. 0.72 0.57 −0.48 −0.68 −0.11 0.58 0.23 0.15 −0.28 −0.40 −0.20 0.67 −0.80 −0.11 1.00

Note: r ≥ 0.50 are shown in bold.
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4. Discussion

This study demonstrated the effectiveness of machine learning techniques in inferring
phytoplankton size classes from satellite-sensed data. A stable rank order was found among four
modeling techniques (RF > SVM > ANN > PLS) in terms of their prediction performance for inferring
PSCs. RF performed the best, and was slightly better than SVM, followed by ANN. The better
performance achieved by RF could be attributed to the combination of multiple diverse individual
decision trees. Additionally, the out-of-bag error estimation used in RF modeling guarantees its
generalization and resistance to overfitting [37,41]. The good results obtained by SVM should lie
in its complex fitting properties, even for non-linear data, through RBF kernel mapping [42]. Some
studies indicated that RF performed better than SVM, while contrary results could also be found
in the literature [41,43,44]. This might be explained by the fact that SVM worked better for small
sample size, while RF was thought to be more stable and reliable for large and high dimensional
datasets. Considering the growing numbers of PSCs databases [8], RF may be a better choice for PSCs
estimations globally. However, PLS was not recommended due to its obvious lower accuracy.

This study emphasized the usefulness of feature selection algorithms in selecting sensitive features
for PSC inferring. Although the models calibrated with all variables produced equivalent prediction
performance, feature selection techniques could dramatically reduce model complexity by selecting a
few sensitive features. The importance of ecological variables for PSCs estimations were highlighted,
and SST, wind stress and temporal variables were among the features frequently selected, because
these factors could directly affect phytoplankton growth and reproduction [13]. Additionally, the
less accurate predictions obtained by the models calibrated with only ocean color data also justified
their importance. The geographic information was not incorporated in modeling following the
suggestion by Raitsos and Lavender [13], since a global PSCs database covering oceans worldwide is
still not available.

The SVM-RFE used in this study showed its advantage over GA and SPA in selecting sensitive
PSCs features. This might be explained by: (1) as an embedded method, the feature ranking in
SVM-RFE was more effective, because it directly evaluates feature importance according to its
contribution to the model [30]; and (2) SVM was more effective than PLS regression [42,45], which
was used as the learning machine in GA and SPA. Theoretically, SVM can also be used as a learning
machine in GA; however, its efficiency would be reduced further, since it demands constant iterations
to optimize initial random chromosomes to identify sensitive features [26,27]. Comparatively, SPA
produced the worst performance, which might be explained by the fewer features it selected for
modeling. Moreover SPA was designed to eliminate collinearities among features, which may exclude
some useful and include some non-correlated but uninformative variables [27]. For example, CV(443,
490, 510), selected by SPA both for microplankton and picoplankton, produced very low correlation to
other features as well as PSCs.

This study indicated that the three-component method based on Chl a alone could not achieve
accurate estimations of PSCs. Similar result was also found by Alvain et al. [46] for PFTs. However,
Chl-a still plays important roles in PSCs retrieval [13]. Even though Chl a was not included in modeling,
the features closely related to it might be selected instead. For examples, spectral curvatures, like
CV(443, 490, 555) and CV(490, 510, 555), could be used to estimate Chl a [47]; and aph_443, instead of
Chl a, was also used in some abundance-based models [8]. Moreover, the results shown in Table 7
also supported this statement, since many prominent features were closely related to Chl a. The mean
parameters for the three-component model in our study was different from those of Brewin et al. [7],
which could be explained by the different dataset used to fit models [48]. Considering the parameters
obtained from different studies (refers to Table 4.2 in [6]), the parameters obtained in this study (Table 2)
should be valid.

We found that microplankton and picoplankton fractions could be estimated accurately from
space, and inferring nanoplankton fractions still appeared to be challenging. This was consistent with
the findings by Li et al. [16]. Such results could be explained by several reasons: (1) the microplankton
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and picoplankton abundances tend to increase and decrease monotonically, respectively, as a function
of total Chl a, while the Fn appears to first increase and then decrease with Chl a [6,49,50]; (2) several
features have been found moderately correlated to Fm and Fp, while only one with Fn; (3) Fn shows
narrow range of variations than Fm and Fp, which might partially account for its low determination of
coefficients; and (4) the determination deviations introduced by HPLC should also be considered, since
some types phytoplankton could be found both in picoplankton and nanoplankton [6,51]. The samples
with relative errors >200% for Fp were largely accounted for by those with low picoplankton fractions
(<2%), since a tiny absolute deviation would also tend to result in a large relative error.

5. Conclusions

Three feature selection algorithms (GA, SPA, and SVM-RFE) were applied to select the features
sensitive to phytoplankton size classes from a total of 39 ocean color, biological, physical, and
temporal variables, and four modeling techniques (PLS, ANN, SVM, and RF) were used to calibrate
PSCs retrieval models. The embedded feature selection method, SVM-RFE, worked better than
the other two wrapper methods (i.e., GA and SPA), and random forests produced the highest
prediction performance. Therefore, the combination of SVM-RFE and RF in further applications
was recommended. Moreover, besides popular ocean color data, the satellite-sensed ecological factors
were found useful for PSCs inferring.
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