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Abstract: Considering the influence of the ionosphere, troposphere, and other systematic errors on
double-differenced ambiguity resolution (AR), we present an optimal triple-frequency code-phase
combination determination method driven by both the model and the real data. The new method
makes full use of triple-frequency code measurements (especially the low-noise of the code on the
B3 signal) to minimize the total noise level and achieve the largest AR success rate (model-driven)
under different ionosphere residual situations (data-driven), thus speeding up the AR by directly
rounding. With the triple-frequency Beidou Navigation Satellite System (BDS) data collected at five
stations from a continuously-operating reference station network in Guangdong Province of China,
different testing scenarios are defined (a medium baseline, whose distance is between 20 km and
50 km; a medium-long baseline, whose distance is between 50 km and 100 km; and a long baseline,
whose distance is larger than 100 km). The efficiency of the optimal code-phase combination on the AR
success rate was compared with that of the geometry-free and ionosphere-free (GIF) combination and
the Hatch-Melbourne-Wiibbena (HMW) combination. Results show that the optimal combinations can
always achieve better results than the HMW combination with B2 and B3 signals, especially when the
satellite elevation angle is larger than 45°. For the wide-lane AR which aims to obtain decimeter-level
kinematic positioning service, the standard deviation (STD) of ambiguity residuals for the suboptimal
combination are only about 0.2 cycles, and the AR success rate by directly rounding can be up to
99%. Compared with the HMW combinations using Bl and B2 signals and using B1 and B3 signals,
the suboptimal combination achieves the best results in all baselines, with an overall improvement
of about 40% and 20%, respectively. Additionally, the STD difference between the optimal and the
GIF code-phase combinations decreases as the baseline length increases. This indicates that the GIF
combination is more suitable for long baselines. The proposed optimal code-phase combination
determination method can be applied to other multi-frequency global navigation satellite systems,
such as new-generation BDS, Galileo, and modernized GPS.

Keywords: optimal linear combination; triple-frequency; BDS signals; Hatch-Melbourne-Wiibbena
(HMW) combination; standard deviation (STD)
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1. Introduction

The Beidou navigation satellite system (BDS) already operates with three frequencies, i.e.,
B1I (1561.098 MHz), B2I (1207.14 MHz), and B3I (1268.52 MHz). Compared with traditional GNSS
systems with dual-frequency signals, triple-frequency measurements can significantly benefit precise
satellite-based data processing, such as cycle slip detection [1-3], integer ambiguity resolution
(AR) [4] for both baseline solutions [5-8], and precise point positioning (PPP) [9,10]. To alleviate the
computational burden, we can select more special linear combinations. Therefore, how to determine
useful linear combinations becomes a primary issue to be dealt with. Usually the combinations with
long wavelength, limited ionosphere delay, limited troposphere delay, or low noise are preferred.

Many efforts have been made to discuss how to select useful linear combinations from an early
stage. Following a systematic search for possible wide-lane (WL) combinations using dual-frequency
signals by Cocard and Geiger [11], systematic investigations of optimal carrier phase combinations
for the triple-frequency case were conducted. Richert and El-Sheimy [12] discussed the optimal
combinations of triple-frequency GNSS signals, and gave the mathematical theory involved in
creating linear combinations and developed three categories of combinations from the perspective
of the ionosphere effects, the effects of thermal noise and multipath, and the troposphere effects.
Cocard et al. [13] presented the concepts of lane-number to describe the wavelength of a particular
combination, and analyzed the noise and ionosphere amplification factors with respect to the
resulting wavelength for GPS signals. Urquhart [14] analyzed the multi-frequency carrier phase linear
combination for GPS and Galileo and pointed out three factors to determine the optimal combinations,
including the atmospheric errors, the observation noise, and the corresponding wavelength. Similar
work for BDS signals has been done by Li et al. [15] and Zhang and He [16]. For the application of
AR using triple-frequency combinations, Han and Rizos [17] first extended the linear combination
theory of carrier phase measurements, and proposed some typical carrier phase combinations with the
free ionosphere and some with longer wavelengths. Feng [18] identified three combinations suffered
from minimal or relatively-low ionosphere effects under different observational conditions. Geng and
Bock [10] determined a new triple-frequency ionosphere-free (IF) carrier phase combination using the
wide-lane carrier phase combinations with L1/L2 and L2/L5 signal pairs, helping implement rapid
triple-frequency PPP AR. However, the above proposed combinations are all geometry-based, thus, an
integer least-squares estimation is needed to resolve the combination ambiguities. In the meantime,
if the geometry-free (GF) carrier phase combinations are used, it is difficult to guarantee the integer
nature of the combination ambiguities, or it is impossible to determine the combination ambiguities by
directly rounding because of the very large total noise level.

In the above discussions only the carrier phase measurements are adopted to form the linear
combinations. If the code measurements are involved, a difference can be made. The best-known
code-phase combination should be the Hatch-Melbourne-Wiibbena (HMW) combination [19-21] for
dual-frequency signals, which is expressed as:

AwrLNwr = (fiP1 + f2P2)/ (fi + f2) — (fiL1 — f2L2)/ (f1 — f2) )

where P and L represent the code and carrier phase in meters, f is the frequency, the subscript
numbers denote the frequency numbers, Ny; = Nj — N; is the WL ambiguity, and Ay is the
corresponding wavelength. From Equation (1) we can see that the HMW combination is free from
geometry, the ionosphere, and the troposphere, and is only affected by the noise of the code and
carrier phase measurements. Moreover, the WL ambiguity can be easily determined by rounding the
average after several epochs, whose efficiency in PPP-AR was discussed in detail by Geng et al. [22].
This combination was extended to the triple-frequency case and generated the “extra-wide-lane” (EWL)
combination with L2 and L5 for GPS [10], as well as B2 and B3 for BDS, whose wavelengths can reach
up to 5.861 m and 4.884 m, respectively. They were used in the first step of triple-frequency carrier
phase ambiguity resolution (TCAR) [15].
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Except for the HMW combination, many researchers tried to find other code-phase combinations
with similar characteristics. Henkel and Gtinther [23] recommended a group of code-phase
combinations with a wavelength of several meters and a noise level of a few centimeters, to maximize
the ambiguity discrimination and ensure the reliability. Wang and Rothacher [24] presented a simplified
method to minimize the noise level for the triple-frequency GF and ionosphere-free (GIF) linear
combinations with both code and carrier phase measurements. However, no validation was made
with real BDS data in the above two papers. Deo et al. [25] gives the triple-frequency ionosphere-free
combinations for code and phase observations separately, but only the dual-frequency signals were
used in the mixed code-phase combinations. Zhao et al. [26] introduced different criteria to select the
optimal combined signals for GF and geometry-based (GB) TCAR, respectively. For GF TCAR the sum
of the ionosphere scale factor (ISF), the measurement noise, the wavelength to total noise ratio, and the
success rate are all considered, and the coefficients of the code combination in code-EWL and code-WL
signal pairs were restricted to be integer numbers but, in fact, this is needless.

Since the second and third steps of general TCAR method is less reliable, Xu et al. [8] proposed
a new GIF combination with P1, P2, and the ambiguity-resolved EWL observation to determine
the WL ambiguity, and Zhao et al. [27] employed all three original code measurements and the
ambiguity-resolved carrier phase combinations in previous steps to round off the WL ambiguity and
the original ambiguity respectively. Inevitably, both the above proposed code-phase combinations rely
on the HMW combination. Besides, for cycle slip detection, researchers paid more attention on the
coefficients of the carrier phase part, and only P1 or a simple average of P1, P2 and P3 was used in the
code part of the GF code-phase combination [3,28].

Table 1 gives an overview of some important works related to the optimal combinations,
along with their characteristics and limitations. No employed parameters are listed since in some
contributions there are a series of combinations to select for a specific system. Generally, all researchers
proposed the EWL combination ¢ _1 1) as the optimal one thus more attention should be paid on the
code coefficients in the mixed code-phase combinations. A mixed code-phase combination may be
preferred because the geometry-free model can be established. In this situation the ambiguity can be
properly determined by directly rounding, rather than being searched in the geometry-based model.
On the other hand, the HMW combination on B2 and B3 signals can reliably fix the EWL ambiguity
within a few epochs, and in other proposed code-phase combinations the EWL combination should
be used. From this perspective, for a mixed code-phase combination, a comparison with the HMW
combination is necessary and sufficient to evaluate the performance of this new combination.

Table 1. Overview of several contributions to the optimal combinations for reliable AR.

Reference Characteristics Limitation

(1) Theoretically discussed the factors that effects
the performance of combinations

12-16 . (1) Only carrier phase is used
[ I () Qaye the general ’sele.ctlon procedure and () Th e};mbi guify should be
specific useful combinations searched due to the used
[10,17,18] select combinations that reduce or eliminate the ~ geometry-based model
Y effect of ionosphere delay
(1) Mixed code-phase combinations
(2) Minimize the noise level of the combinations .
[23,24] and fix ambiguity by rounding with high No BDS data are validated
success rate
8,26,27] (1) Mixed code-phase combinations WL ambiguity fixing relies on the
o (2) Fix ambiguity by rounding resolved EWL ambiguity
[3,.28] (1) Mixed code-phase combinations no specific discussion of the code

(2) Fix ambiguity by rounding coefficients in the combination
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From the above discussion we can see that, currently, the HMW combination is still an efficient
approach for AR with both dual-frequency and triple-frequency cases, and it can be applied in cycle-slip
detection and AR with high reliability. However, for the BDS system, attention should be paid to two
special problems:

(1) The noise levels of three original code measurements are no longer identical [29], thus,
the calculated total noise should be modified;

(2) There are satellite-induced code variations in BDS system which can up to several meters [30].
These systematic biases have a significant impact on AR using HMW combinations, as thoroughly
discussed by Zhang et al. [31] and a model correction is required before data processing [32].

For these reasons we propose an optimal code-phase combination determination method,
considering all the factors that may affect the AR reliability for different situations. These factors include
the combined ionosphere delay, the wavelength, and the noise level of the code and carrier phase
measurements. For easy implementation, a sophisticated traversal searching approach is employed,
in which the range of the phase coefficients and the combined ISF is limited, and three conditions are
restricted with given a priori values of the ionosphere delay on Bl and noise levels on code and carrier
phase measurements.

This paper is organized as follows: we first briefly present the general functional model of
triple-frequency code-phase combinations and then give the GF code-phase combination. The two-step
method to determine the optimal triple-frequency GF code-phase combinations is introduced
afterwards. The coefficients of the determined optimal combinations are presented in the first
subsection of the Results section. Then the collected real triple-frequency BDS data are described and
the ambiguity residuals and their standard deviation (STD) for the determined optimal, suboptimal
combinations and the HMW combination are calculated and compared. Followed by this, we discuss
the results sufficiently, and then draw some conclusions in the last section, including better performance
of the determined optimal and suboptimal combinations than the HMW combinations.

2. Materials and Methods

2.1. General Functional Model

Given the original code and carrier phase measurements in meters with frequency i, i.e., P; and L;,
the corresponding observation equations can be expressed as:

PS, = o} +dTS +dI, +dO5 + c(dt, — dt* + dH;, — dHS) + ep @)

Lzs',r = p;s’ +dT; — dlf/r +dO; + c(dt, — ar’ + dh;, — d”lf) — AiNiS,r +er 3)

where the superscript s and the subscript r represent the satellite and the receiver, and p denotes the
distance between them. dT, dI, and dO are the troposphere delay, the ionosphere delay, and the orbital
error, respectively, c is the speed of light in vacuum. dt, and df; represent the clock errors of the receiver
and the satellite, dH and dh are the hardware delays of the code and the carrier phase. N and A are the
integer ambiguity and the corresponding wavelength, and ¢ is the measurement noise.

Generally, the linear combination from the code and carrier phase measurements of
triple-frequency signals can be formulated as follows:

L= (tl1P1 +ar P, + IZ3P3) + (b1L1 +byLy + b3L3) 4)

where the subscripts of the measurements denote the frequency, 4; and b; (i = 1, 2, 3) are the
corresponding coefficients. Derived from Equations (2) and (3), the observation equation of the
code-phase combination can be expressed as:
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L= (m+ay+az+b+by+b3G

+C(dHr/ (alraZrﬂ3) o dHEal,az,%) + dhr/ (blrb21b3) o dh?hl,bz,b:;)) (5)
—(b1A1Ny + bpAs Ny + b3A3N3) + B4y by a9 —by,a5—bs) 411 + €L

where G is the overall geometric part and written as:

G = p; +dT; 4+ dO; + c(dt, — dt®) (6)
dH 4, ,,a,) and dhy, 1, 5.y are the combination of hardware delay for code and carrier phase respectively,
dly is the ionosphere delay on B1, and f is the ISF defined by Li et al. [7] and expressed as:

ap 42 43
Baraza3) = 12(2 tot 2) @)
1 2 3

The geometric part in the first term on the right side of Equation (5) can be scaled by its coefficients.

A GF combination can be obtained if the Equation (8) holds true, and a geometry-preserving one if
Equation (9) is favorable:

ay+ay+az+by+by+b3=0 (8)

a1 +ap,+az+by+by+bz3=1 9)

2.2. GF Code-Phase Combination

To simplify the observation of Equation (5) and ignore the effect of the hardware delays,
the double-differenced measurements are used in this paper. Furthermore, since the optimal code-phase
combination is used for fast AR, the condition Equation (8) for GF combinations are satisfied. Therefore,
we can get the observation equation of the double-differenced GF code-phase combination as follows:

AL = ,3( Adl; — (bl/\lAN1 + by Ay AN; + bg/\gANg,) + ear (10)

a1—by,ay—by,a3—b3)

where A is the double-differencing operator.

From Equation (4) we can see that the triple-frequency GF code-phase combination can be divided
into two parts: the code combination part and the phase combination part. In order to simplify the
discussion, in each part the geometry-based mode is adopted, i.e., the code and phase coefficients
should satisfy the following condition:

ay+ay+az=1
11
{b1+b2+b3:1 (11)

Then, according to Feng [18], the geometry-based phase part can be reformulated and Equation (4)
is thereby rewritten as:

B ifiLl1 +jfalo +kf3Ls
ifi +jif2 +kfs

where i, j, and k are the integer coefficients. The double-differenced observation Equation (10) is,
therefore, modified to:

L = (a1P; + ay P, + a3Ps) (12)

AL = BoAdL — A(i,j,k) (iAN7 + JANp + kAN3) + ear (13)
where By = B4 a9 T ‘B’(i,].,k) is the combined ISF of the code-phase combination and
_ /AT fatkl fs) .
Bliji = W is the ISF of the phase part.
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If the combined ionosphere residual, together with the measurement noise of the code and carrier
phase, is regarded as the uncertainty of the integer ambiguity, the GF code-phase combination makes
it possible to determine the integer ambiguity by directly rounding with the following formula:

AN(j ) = iANy + jAN; +kAN; = [—AL /A(i,]-,k)} (14)

where [*] is the rounding operator. Provided the difference between the calculated float ambiguity
and its true value follows the normal distribution centered at zero, the AR success rate Ps equals the
probability of rounding the float ambiguity to its true value. This theoretical value is computed in
Appendix A.

2.3. A Two-Step Method

The optimal GF code-phase combination could achieve the largest AR success rate. The wavelength,
the combined ISF and phase noise factor (PNF) of code and carrier phase all depend on the combination
coefficients, thus from Equations (A1) and (A2) we can see that the AR success rate depends only
on the combination coefficients, the measurement noise, and the ionosphere residual on Bl. The
last two factors could be set as a prior values, so the vital issue is to determine the real-valued
coefficients (a1, a2, a3) and the integer coefficients (i, j, k). In this section, a two-step method is carried
out, different combination coefficients and their corresponding success rates are calculated, and the
optimal combinations are thereby screened out with the largest success rate.

Considering the coefficients (i, j, k) are integers and the combined ISF ¢ should be smaller than
1 to reduce the effect of ionosphere delays, a traversal searching method is adopted in the first step.
The ranges for i, j, k are all limited from —50 to 50, and the value of  is taken over the range [—1.0, 1.0]
with an interval of 0.01. The real-valued coefficients (a1, 4, a3) can be determined for a certain set of
values (i, j, k, Bo) using the following three conditions:

ap+ay+az=1
(5(111,{12,113) + ‘B/(i,j,k) - ﬁO) Adl; =0 (15)
Moy ap,03) min

where the first condition means the code part of the combination is geometry-based, the second
condition defines the combined ionosphere residual, and the last condition denotes the noise level of
the code part should be minimized. Absolutely, when Adl; = 0 the second condition is redundant.
In this situation the coefficients (a1, ay, a3) are determined as an extreme value of the binary function

2 2 . oy
T +”2n2, i J:l2n2’ i +12n2) are obtained. Additionally,

when By = 0 the code-phase combination turns ionosphere-free.
In the second step, the AR success rate for each triple-frequency code-phase combination

problem prior to the combined ISF, and values of (

determined in the previous step is calculated in Appendix A under the given ionosphere residual on
B1 and the measurement noise of the code and carrier phases. By sorting all the combinations whose
phase coefficients are linear-independent, we define the combinations with the largest and second
largest AR success rate as the optimal and suboptimal code-phase combinations, respectively.

3. Results

3.1. Optimal and Suboptimal Combinations

Taking the current BDS as an example and providing the measurement noise of the original code
and carrier phase as 0.3 m and 0.003 m, respectively, we give the selected optimal and suboptimal
code-phase combinations under different ionosphere residuals on B1, as shown in Tables 2 and 3.
The assumptions that Adl; = 0, 0.1, 0.5, and 1.0 m represent four typical cases, i.e., zero or short
baselines when the ionosphere residual can be ignored, medium baselines when station’s distance



Remote Sens. 2018, 10, 353 7 of 18

is between 20 km and 50 km, medium-long baselines when station’s distance is between 50 km
and 100 km, and long baselines when the station’s distance is larger than 100 km. Along with the
combination coefficients are the corresponding standard deviations and AR success rates.

Table 2. Optimal BDS triple-frequency code-phase combinations and the corresponding AR success
rate for different code noises and ionosphere residuals.

AdIl (m) (l, j, k) A(irjrk) (m) ﬁo al ar as OAN (Cycle) Ps (0/0)
0.0 0,-1,1) 4.8842 —0.09 0.0370 0.0370 0.9259 0.0423 100.00
0.1 0, -1,1) 4.8842 —0.09 0.0367 0.0372 0.9262 0.0423 100.00
0.5 0, -1,1) 4.8842 —0.08 0.0191 0.0432 0.9378 0.0431 100.00
1.0 0, -1,1) 4.8842 —0.05 —0.0337 0.0612 0.9725 0.0445 100.00

Table 3. Suboptimal BDS triple-frequency code-phase combinations and the corresponding AR success
rate for different code noises and ionosphere residuals.

AdIl (m) (i, j, k) /\(i,j,k) (m) ,30 al ar as OAN (Cycle) Ps (o/o)
0.0 1,1,-2) 1.2967 0.37 0.0370 0.0370  0.9259 0.1099 99.999
0.1 1,1,-2) 1.2967 036 0.0484 0.0332  0.9185 0.1134 99.999
0.5 1,1,-2) 1.2967 031 0.1363 0.0031 0.8605 0.1696 99.681
1.0 (1,0,-1) 1.0247 0.15 0.2493 —0.0354 0.7861 0.2308 96.973

Note that the effect of code variations for BDS has not been considered in the proposed
combinations, thus a previous correction of BDS code variations is necessary. Meanwhile, the proposed
method can be used not only for the current BDS system, but also for other systems with
multi-frequency signals, such as the new-generation BDS with B1l, B1C (1575.42 MHz), and B2a
(1176.45 MHz) signals [33,34], modernized GPS with L1, L2, and L5 signals, or Galileo with E1, E5 and
E6 signals.

From Table 2 we can see that the phase coefficients of the optimal code-phase combination remains
(0, —1, 1) for all cases because of its long wavelength of 4.8842 m. The theoretical success rates of
rounding can always be up to 100.0%, though the code coefficients may be changed in different cases.
On the other hand, there is a trend that the combined ISF of the optimal combination gradually
decrease to zero along with the increase of the ionosphere residual on B1. We can infer that the
optimal code-phase combination will become the GIF combination for long baselines with very large
ionosphere residuals on Bl. In fact, the GIF code-phase combination that (i, j, k) = (0, —1, 1) and
(a1, az, a3) = (—0.1217, 0.0912, 1.0305) can also achieve nearly a 100.0% success rate no matter how
large the ionosphere residual on B1 is.

Different from the optimal code-phase combination, the phase coefficients of the suboptimal
combination (i, j, k) may be changed when the ionosphere residual on B1 becomes larger to 1.0 m.
The relative shorter wavelength can lead to smaller measurement noise of phase combination, and the
ionosphere residual of the phase part can be reduced by the code counterpart. The theoretical success
rate of rounding when the ionosphere residual on B1 is smaller than 1.0 m can remain over 95%.

It should be noted that the values of (a1, a2, a3) in Tables 2 and 3 cannot be directly used since
they are still not precise enough and will cause considerable computational errors. Therefore, more
precise values of code coefficients calculated from Equation (15) with integer coefficients (i, j, k) and
combined ISF B in Tables 2 and 3 are necessary for practical data processing.

3.2. Data Description

In order to validate the proposed algorithm and demonstrate the performance of the determined
combinations, triple-frequency BDS data with 1 Hz sampling rate on day of year (DOY) 339 of 2015 is
used, and the satellite cut-off elevation angle is set to 15°. The data were collected from ten stations in
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Guangdong Continuous Operational Reference System (GDCORS), whose distributions are plotted in
Figure 1. The UR370 receivers manufactured by Unicore Communications, Inc. (Beijing, China) are
used at stations ZHGT and QIAO, and the PD318 receivers manufactured by the Panda Space and
Time Technology Co., Ltd. (Wuhan, China) are used at another eight stations. Several baselines can be
formed: the baseline from ZHGT to QIAO (20 km), the baseline from GMGT to ZSGT (66 km), and the
baseline from YFGT to ZSGT (147 km) are selected as examples of medium, medium-long, and long
baselines for specific discussion. The values of AdI; for the three baselines are assumed to be 0.1 m,
0.5 m, and 1.0 m, respectively, thus, the optimal and suboptimal combinations are selected as shown
in Table 4.

112° 113° 114°
24 T - oy
.QYGT N
JFKGT %
. SSGT
0 2
©
2
k:
0 km 100 km
22°
T
112° 113°
Longitude

Figure 1. Distribution of the used stations in GDCORS and the selected baselines.

Table 4. The selected optimal and suboptimal combinations for three baselines in this experiment.

. Optimal Combination Suboptimal Combination
Baseline Dist (km)
@7,k (a1, a, a3) @7,k (a1, az, a3)
ZHGT-QIAO 20 0,-1,1) (0.0367, 0.0372, 0.9262) 1,1,-2) (0.0484, 0.0332, 0.9185)
GMGT-ZSGT 66 0,-1,1) (0.0191, 0.0432, 0.9378) 1,1,-2) (0.1363, 0.0031, 0.8605)
YFGT-ZSGT 147 0,-1,1)  (-0.0337,0.0612,0.9725) (1,0, —1)  (0.2493, —0.0354, 0.7861)

3.3. Optimal Combination

The ambiguity residuals of the optimal combination, the GIF code-phase combination, and the
HMW combination with B2 and B3 signals for three baselines are shown from Figures 2—4. In each
figure the blue dot represents the ambiguity residual, and the orange one represents the satellite
elevation angle. The optimal combination (marked as optimal), the GIF code-phase combination
(marked as GIF), and the HMW combination with B2 and B3 signals (marked as HMW23) are shown
in the left panels, the middle panels, and the right panels, respectively. The corresponding STD values
for each combination are also shown in each panel.
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ZHGT-QIAO (20km)

optimal GIF HMW23 90
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Figure 2. Comparison of ambiguity residuals and the corresponding standard deviations of optimal,
GIF, and HMW23 combinations for the medium baseline (20 km).
GMGT-ZSGT (66km)
optimal GIF HMW23 90
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()
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o
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Figure 3. Comparison of ambiguity residuals and the corresponding standard deviations of optimal,
GIF, and HMW23 combinations for the medium-long baseline (66 km).
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YFGT-ZSGT (147km)
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Figure 4. Comparison of ambiguity residuals and the corresponding standard deviations of optimal,
GIF, and HMW23 combinations for the long baseline (147 km).

From the three figures we can see that for the medium baseline the optimal combination
can achieve better results than those by the HMW23 combination, especially when the satellite
elevation angle is larger than 45°. For the medium-long and long baselines the performance of the
optimal combination becomes remarkably better than that of the HMW23 combination. Specifically,
an improvement of 24.5% and 15% are achieved for satellite C10.

Furthermore, the STD values for the three combinations of all IGSO and MEO satellites,
the improvement percentages of the optimal combination compared with the HMW23 combination
(Pip), and the STD differences between the optimal and the GIF code-phase combinations (4),
were calculated and are shown in Table 5. Generally, the results in the table coincide with the results for
satellites C10 and C14. An overall improvement of optimal combination compared with the HMW23
combination is achieved, with almost 100% AR success rate. In fact, from Figures 2—4 we can see
that the ambiguity residuals of the optimal combination at high satellite elevation angles are much
smaller than those of the HMW23 combination. Additionally, as the baseline length increases, the STD
difference J becomes smaller and smaller. This indicates that the GIF combination is more suitable for
long baselines.

Table 5. Performance comparison for all IGSO and MEO satellites among the optimal, the GIF, and the

HMW23 combinations.
STD (Cycle)
Baseline  Dist (km) y P, (%) & (Cycle)
Optimal GIF  HMW23
ZHGT-QIAO 20 0.0472 0.0539 0.0520 9.231 0.0067
GMGT-ZSGT 66 0.0555 0.0613 0.0667 16.792 0.0058
YFGT-ZSGT 147 0.0580 0.0618 0.0666 12.913 0.0038

3.4. Suboptimal Combination

Since the EWL ambiguities can be reliably fixed to their right values, we can use them to verify the
correctness of the determined integer ambiguity of the suboptimal combination, the HMW combination
with B1 and B2 signals, and with Bl and B3 signals. The corresponding ambiguity residuals of each
combination for three baselines are shown from Figures 5-7, together with the corresponding STD
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values. In these three figures the blue dots and orange dots also represent the ambiguity residual
and the satellite elevation angle, respectively. The suboptimal combination (marked as suboptimal),
the HMW combination with B1 and B2 signals (marked as HMW12), and the HMW combination with
B1 and B3 signals (marked as HMW13) are shown in the left panels, the middle panels, and the right
panels, respectively.
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Figure 5. Comparison of ambiguity residuals and the corresponding standard deviations of suboptimal,
HMW12, and HMW13 combinations for the medium baseline (20 km).
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Figure 6. Comparison of ambiguity residuals and the corresponding standard deviations of suboptimal,
HMW12, and HMW13 combinations for the medium baseline (66 km).
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Figure 7. Comparison of ambiguity residuals and the corresponding standard deviations of suboptimal,
HMW12, and HMW13 combinations for the medium baseline (147 km).

All the selected suboptimal combinations in the three baselines are WL combinations whose
wavelength is between 0.75 and 2.93 m [7], so the comparison between the suboptimal combination
and the HMW12 or the HMW13 combination is reasonable. From the above three figures we can see
that the suboptimal combination achieves the best results in all baselines with a dramatic improvement.
The STD of ambiguity residuals for the suboptimal combination of C10 and C14 are only about
0.2 cycles, thus, the AR success rate by directly rounding can be up to 99%. Additionally, no apparent
difference is observed between the IGSO and MEO satellites, except for the shortest baseline where
the residual for C14 is amplified much larger than the residual for C10. This is because, for short
baselines, the effect of the code measurement noise, rather than the ionosphere delay, plays a major role
in determining the selected combinations. The code measurement noise suffers more at low satellite
elevation angles, and there is a greater percentage of the observation data when C14 at a low satellite
elevation angle than that of C10. As the baseline distance increases, the effect of the code measurement
noise reduces, and the effect of the ionosphere delay enhances.

On the contrary, the HMW12 combination shows the worst performance, especially for satellite
C10 at low satellite elevation angles. This indicates that the selected suboptimal combination has
the lowest total noise level, and we can reliably fix the ambiguity of the suboptimal combination by
rounding with a short time span, even in a single epoch. However, relatively more time is required to
reliably fix the HMW12 or HMW13 ambiguity through a smoothing technique.

In addition, the STD values of the suboptimal, HMW12, and HMW13 combinations for all IGSO
and MEO satellites, the AR success rate of the suboptimal combination Ps, and the improvement
percentages of the suboptimal combination compared with the HMW12 combination and the HMW13
combination, which are marked as Pp1p and P13, are calculated and summarized in Table 6. Generally
speaking, the STD values of all three combinations for all IGSO and MEO satellites coincide with
the results of C10 and C14 shown from Figures 5-7. An improvement of approximately 50%
has been achieved compared with the HMW12 combination, and about 20% compared with the
HMW13 combination.

What is interesting is that for the longest baseline the phase part of the selected suboptimal
combination is identical to that of the HMW13 combination. However, the STD value of the
suboptimal combination still outperforms the HMW13 combination by 22.078%. This further
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demonstrates the better performance of the selected combination using our method compared with
the HMW combinations.

Table 6. Performance comparison for all IGSO and MEO satellites among the suboptimal, the HMW12,
and the HMW13 combinations.

. STD (Cycle)
Baseline Dist (km) Ps (%) Pp1p (%) P13 (%)
Suboptimal HMW12 HMW13
ZHGT-QIAO 20 0.1963 0.3112 0.2241 98.914 36.922 12.405
GMGT-ZSGT 66 0.1872 0.4156 0.2677 99.244 54.957 30.071
YFGT-ZSGT 147 0.2107 0.4167 0.2704 98.236 49.436 22.078

4. Discussion

Rapid and reliable AR is the prerequisite to provide precise positioning services, and the
systematic biases, including orbit error, troposphere delay, and ionosphere delay make it difficult
to fix the ambiguity if these biases are not removed or reduced. Since these biases can be divided
into two classes, i.e., the frequency-independent geometric term (orbit error and troposphere delay)
and the frequency-related term (ionosphere delay), the GF and IF combinations are used accordingly
to cancel each term, thus, the GIF combination is preferred. In this paper, we proposed a two-step
method, using both the triple-frequency code and carrier phase observations to select the optimal
code-phase combination which is also geometry- and ionosphere-free. The selected combinations can
instantaneously and reliably fix the ambiguity by simply rounding. From the results of the above
section, the phase part of the optimal combination is the EWL, and this agrees with a large number of
research results, both in theory [12,13,18] and in practice [27,28]. The HMW combination with the B2
and B3 signals shows an excellent capability in speed and reliability of AR. However, from Table 5,
we see the improvement using the optimal combination, though not much, in the way of further
reducing the total noise level.

On the other hand, the reliability of WL AR using the suboptimal combination has a remarkable
improvement. The STD of the ambiguity residual after rounding using the suboptimal combination
is much smaller than those using HMW12 or using HMW13 combinations, with more than 20%.
No matter the ambiguity N(1, 1, —2) for short or medium baselines, or the ambiguity N(1,0, —1) for long
baselines, once fixed, they can be used together with the fixed EWL ambiguity N(0, —1, 1) to determine
an arbitrary WL ambiguity since they are linear-dependent [12,13]. In addition, the ionosphere delay
on Bl can be estimated using two WL combinations [35]. In this way, decimeter-level kinematic
positioning services can be provided, which are comparable to that of carrier phase-smoothed code
differential positioning [36-38].

All the above test results, analysis and discussions focus on the performance of the proposed
method on AR success rates, which are indicated by the STD values of the ambiguity residuals in
Tables 5 and 6. If the STD values are much smaller, the corresponding combined ambiguity can be
reliably fixed after a few seconds’ smoothing, or even in a single epoch. Furthermore, the resolved
ambiguity can be immediately used for positioning at the decimeter level (with resolved EWL or WL
ambiguity) or at the centimeter level (with resolved original ambiguity). We emphasize how to select
optimal combinations in order to achieve fast and reliable AR, since it is the prerequisite for precise
positioning. How to achieve precise positioning with the resolved ambiguity is not an issue discussed
in this paper.

There are three different admissible integer estimators in use, i.e., integer rounding, integer
bootstrapping, and integer least-squares [39]. Theoretically speaking, the integer least-squares method
is the most rigorous and the least-squares ambiguity decorrelation adjustment (LAMBDA) method [40]
is widely used. However, the search efficiency will dramatically decrease for high-dimensional
integer ambiguity resolution [41], this problem may occur in the multi-frequency case. Even if,
currently, the so-called “partial AR” strategy [42—44] arises to fix part of the ambiguities, how to
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select the subset of the ambiguity is another introduced problem. Additionally, for integer least-squares
estimation, the procedure includes an integer ambiguity search and ambiguity validation, and the
latter is a troublesome problem to be solved [45]. If sufficiently reliable, the integer rounding could be
an alternative approach, and the selected optimal and suboptimal combinations in this paper make
this possible.

Compared with the current code-phase combinations in Table 1 and the HMW combination
using signals on two arbitrary frequencies, in our method not only are the selected combinations
free from geometry and insusceptible to the ionosphere delay (which is the same as those in most of
the current combinations and the HMW combination), but the noise level is also minimized and the
largest AR success rate of the selected combination by rounding is guaranteed. In different scenarios
the coefficients of the optimal combinations may be different, but the AR performance remains the
best, and the suboptimal combination remains independent of the optimal combination. From this
point of view, our proposed method is a collection of both model- and data-driven selection strategies.
The model-driven strategy is used to determine the optimal combination coefficients and achieve the
largest AR success rate under a certain level of measurement noise and ionosphere delay, and the
data-driven strategy is used to determine the proper a priori information of measurement noise and
ionosphere delay for baselines with various lengths. The mathematical model and the used data make
equivalent contributions to the optimal combination determination. For the BDS system, specifically,
different noise levels on different signal frequencies are taken fully into account; thus, an improvement
of around 10% can be achieved.

Finally, the overall performances of our method for several baselines with various lengths using
data at all ten stations (plotted in Figure 1) are shown in Table 7. From the table we can find that in all
baselines the optimal combination outperforms the HMW23 combination. Additionally, the suboptimal
combination is also effective, whose STD values are much smaller than those of the HMW12 and
HMW13 combinations, and the success rates by directly rounding are nearly 99%.

Table 7. Performance comparison for baselines with various lengths among the optimal, the HMW23,
the suboptimal, the HMW12, and the HMW13 combinations.

Dist STD (Cycle)
Type Baseline

(km) Optimal HMW23 Suboptimal HMWI12 HMW13
ZHGT-QIAO 20 0.0472 0.0520 0.1963 0.3112 0.2241
. GMGT-SSGT 30 0.0533 0.0581 0.2099 0.3133 0.2364
medium SDGT-ZSGT 32 0.0489 0.0537 0.2260 0.3445 0.2567
JMGT-ZSGT 35 0.0513 0.0559 0.2019 0.3009 0.2272
SSGT-SDGT 57 0.0552 0.0647 0.2189 0.4551 0.3055
medium-long SSGT-QYGT 59 0.0531 0.0609 0.2105 0.4128 0.2698
GMGT-ZSGT 66 0.0555 0.0667 0.1872 0.4156 0.2677
YFGT-FKGT 78 0.0597 0.0660 0.2043 0.3252 0.2433
SSGT-ZHGT 123 0.0587 0.0670 0.2180 0.4173 0.2737
long QYGT-ZSGT 132 0.0573 0.0640 0.2221 0.3744 0.2662
YFGT-ZSGT 147 0.0580 0.0666 0.2107 0.4167 0.2704
QYGT-FKGT 161 0.0629 0.0697 0.2187 0.3608 0.2633

5. Conclusions

In this paper we proposed a method to determine the optimal triple-frequency code-phase
combinations, in which the factors that affect the AR success rate were taken into account.
A sophisticated traversal search was employed to calculate the coefficients of the combinations
and select the optimal combinations under different ionosphere residuals. In order to validate the
algorithm and demonstrate the performance of the determined combinations, triple-frequency BDS
data were used and the standard deviations of ambiguity estimation for the optimal, the suboptimal,
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the geometry-ionosphere-free, and the HMW combination were calculated and compared. Results
show that:

1.  Although the optimal combination and the HMW23 combination can both achieve almost
100% AR success rate by rounding, the STD values of the ambiguity residual for the optimal
combination are slightly better than those of the HMW23 combination, especially when the
satellite elevation angle is higher than 45°. Specifically, an improvement of nearly 25% can be
achieved for C10 satellite in the medium-long baseline.

2. The suboptimal combination can achieve an AR success rate around 99% by rounding. Compared
with the HMW12 and HMW13 combinations, the suboptimal combination achieves best results in
all baselines, with a dramatic improvement of about 50% and 20%, respectively.

3.  Using the correctly fixed optimal and suboptimal ambiguities, the WL ambiguity can then
be instantaneously determined and the ionosphere delay on Bl can be estimated. Therefore,
decimeter-level kinematic positioning service can be provided.

As discussed in this paper, the factors of combinations that affect the AR success rate include
the combination coefficients, the measurement noise, and the ionosphere residual on B1. To achieve
the largest AR success rate, the former is determined by the model and the last two are up to the real
data. In the present method we built an explicit relationship between the combination coefficients
and the AR success rate, but intensive research on the relationship between the data-driven factors
and the AR success rate is insufficient. For example, the measurement noise is affected by the satellite
elevation angle and the ionosphere residual is related to the baseline length. We only give a different
prior ionosphere residual according to different baselines, and the satellite elevation angle is also
an important factor, as we can see from Figures 2-7. Followed this discussion, further study may be
conducted to obtain the relationship between precise data-driven factors, such as satellite elevation
angles and the AR success rate, and to derive a more rigorous optimal combination.
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Appendix A. Calculation of the Theoretical AR Success Rate

The theoretical AR success rate can be computed through the integral of the Gaussian probability
density function [46]:

— = )a (A1)
Ps = ——exp| ——— |dx Al
* 7 Jo05 V2roan P 20%
where x represents the difference between the float ambiguity estimation and its true value in cycles,
and 03, is the variance of x, expressed as:

Oin = (V%ul,az,%)aip + nu%i,j,k)aiL + (ﬁOAdll)z)/A%i,j,k) (A2)

where p(; ; 1) is the PNF [18] and is expressed as:

s A+ () + (kf)? (A3)
(if1 +jfa + kf3)

Mk =
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A small modification should be made for the code measurements of BDS system since the noise
of P3 is much smaller than that of P1 and P2 [29]. As a result the PNF of the code part for BDS system
is redefined as:

Wapanay) = @ + 05 + (na3)? (A4)

(a1,a2,03
where 7 is a factor smaller than 1, and a practical value of 0.2 is used [29]. Additionally, the code
variations of IGSO and MEO satellites are corrected using the models developed by Zou et al. [47],
while those of GEO satellites are not since no effective correction models are available.
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