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Abstract: The Qinghai-Tibet Plateau (QTP) is known as the Third Polar of the earth and the Water
Tower of Asia, with more than 70% of the area on the QTP is covered by permafrost possibly.
An accurate permafrost distribution map based on valid and available methods is indispensable
for the local environment evaluation and engineering constructions planning. Most of the previous
permafrost maps have employed traditional mapping method based on field surveys and borehole
investigation data. However their accuracy is limited because it is extremely difficulties in obtaining
mass data in the high-altitude and cold regions as the QTP; moreover, the mapping method, which
would effectively integrate many factors, is still facing great challenges. With the rapid development of
remote sensing technology in permafrost mapping, spatial data derived from the satellite sensors can
recognize the permafrost environment features and quantitatively estimate permafrost distribution.
Until now there is no map indicated permafrost presence/absence on the QTP that has been generated
only by remote sensing data as yet. Therefore, this paper used permafrost-influencing factors and
examined distribution features of each factor in permafrost regions and seasonally frozen ground
regions. Then, using the Decision Tree method with the environmental factors, the 1 km resolution
permafrost map over the QTP was obtained. The result shows higher accuracy compared to the
previous published map of permafrost on the QTP and the map of the glaciers, frozen ground
and deserts in China, which also demonstrates that making comprehensive use of remote sensing
technology in permafrost mapping research is fast, macro and feasible. Furthermore, this result
provides a simple and valid method for further permafrost research.
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1. Introduction

Permafrost is defined as ground (soil or rock and included ice and organic material) where
temperature have remained at or below 0 ◦C for a period of least two consecutive years [1,2], which is
an key component of cryosphere and assessing the impact of the climatic change. It is not only a crucial
component in the soil biogeochemistry, local hydrology, ecosystems, heat and energy exchange, but
also the sensitive indicator of global warming [3]. The Qinghai-Tibet Plateau (QTP) known as “the
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Third Pole of the world” and “the Water Tower of Asia” represents 26.8% of the total area of China [4].
The permafrost on the QTP is higher ground temperature, thin-thickness and poor-thermal stability,
so it is extremely sensitive to the climate change and called as “driver and amplifier” of global climate
change [5]. Especially at high temperatures, in high-ice content regions, and human engineering
activities (include the expansion of the QTP highway, the construction and maintenance of the QTP
railway, oil pipeline and communication cable lying, etc.) destroy the topsoil structure of the permafrost
and disturb the thermal balance between the surface and the atmosphere, which in turn affects the
stability of engineering structures and increase environmental fragility [6–10]. During recent decades,
the permafrost of the QTP is experiencing significant degrading [7,11,12] due to the combined effects of
human activities and global climatic warming. Whereas, the QTP is an economically undeveloped area,
how to plan the future infrastructures under such fragile ecological environment is a big challenge.
Therefore, it is imperative to study the detailed permafrost distribution on the QTP in order to research
the response and feedback of permafrost to human engineering activities and global climatic change.

In the past 50 years, many permafrost maps of the QTP are published in different scales.
The previous permafrost distribution maps, such as the 1:600,000 permafrost map along the QTH [13],
1:4,000,000 map of snow, ice, and frozen ground in China [14] and 1:3,000,000 map of permafrost on
the QTP [15] were created using conventional or traditional classification method. The method is
usually plotting the permafrost boundaries on the topographic maps by hand with aerial photographs,
satellite images, air temperature, terrain analysis and empirical knowledge, so it is difficult to avoid
artificial errors and some uncertainty in those maps [16]. The most of recently published permafrost
maps were compiled with three common permafrost distribution models, including: (a) Thermal offset
model; (b) Empirical-statistical model; and (c) Process-oriented models [17]. The process-oriented
models and thermal offset model were based on finite-difference, finite-element and numerical
heat flow [18–20], which can reflect the changes of permafrost dynamics. The empirical-statistical
model is based on establishing statistical relationships between altitude, latitude and permafrost
distribution characteristics, such as elevation, mean annual ground temperature (MAGT), mean
annual air temperature (MAAT) and low limit of permafrost. The mapping data were obtained
through interpolation, extrapolation and statistical analysis based on field observation. However, the
observation points and survey sites of the QTP were mostly located centrally in the Qinghai-Tibet
Engineering Corridor (where the Qinghai-Tibet highway and Qinghai-Tibet railway crosses) and were
relatively less in the western part of the QTP. Hence, due to the QTP’s huge extent, complex terrain,
extreme climate, and inaccessibility of high altitude, it is difficult to accurately and comprehensively
reflect the permafrost distribution over the entire QTP by the direct field investigations. In such
a situation, the utilization of remote sensing data might be a fast and feasible manner.

Remote sensing cannot directly reflect the permafrost presence/absence, but it can help to
determine the surface features of permafrost. In addition, the data acquired by remote sensing is more
comprehensive compared to limited investigated data. Especially the use of higher spatial, spectral and
temporal resolution remote sensing data does not just improve the accuracy of available data, but also
prevents the insufficiency effect of field observations. During the last few decades, permafrost scientists
used a portion remote sensing and developed several models to simulate the permafrost distribution
on the QTP [21–31], for example, Zou et al. [16] generated a new permafrost map by the Temperature
at the Top of Permafrost (TTOP) model combined with MODIS LST and ground observation datasets;
Ran [32] simulated the permafrost stability on the QTP by using a geographically weighted regression
model based on remotely sensed land surface temperature, soil properties, leaf area index, and mean
annual ground temperature of 142 boreholes. However, there is no map of permafrost distribution
on the QTP that has been generated only by remote sensing data as yet. Therefore, the objective
of this study is to make comprehensive use of remote sensing technology to obtain some surface
environmental information (elevation, land surface temperature, vegetation distribution, and soil
moisture) related to permafrost presence/absence, and fully use multi-source remote sensing data to
study on permafrost mapping over the QTP. The mapping method is using decision tree algorithm,
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the classification thresholds of remotely sensed variables in decision tree analysis are defined by using
the areas of agreement from two previous published permafrost maps (1:3,000,000 Map of Permafrost
on the QTP Frozen soil and the permafrost map of the QTP derived from 1:4,000,000 Map of the
Glaciers, Frozen Ground and Deserts in China), and remote sensing data from 2003 are used in order
to reduce time gap with the two previous published permafrost maps. Finally, the result is verified
by Western Kunlun, Wenquan and Gaize three areas. The consistency of permafrost distribution is
evaluated by overall accuracy and Kappa coefficients among the different published permafrost maps
over the QTP.

2. Regional Conditions

2.1. Study Area

The QTP (73.19◦E~104.47◦E, 26◦N~39.47◦N) area is about 2.62 × 106 km2, and most of the land
surface is estimated to be within permafrost zones. The QTP is considered to be the youngest and most
complex plateau in the world. The elevation of the QTP is between 3000–5000 m asl and the average
elevation is more than 4000 m asl. It is composed with plenty of mountains and plateaus; the mountains
of the QTP are uneven and have great differences, for example, the average elevation of the Himalayas
is about 6000 m asl, while the elevation of the Yarlung Zangbo River valley plain is only 3000 m asl.
In addition, the mountain series of the QTP can be divided into east-west and south-north directions,
the east-west mountains are the most prevalent and occupy the largest area; the south-north mountain
are mainly distributed in the southeast of the plateau and near the Hengduan Mountains. These two
groups of mountains form the basic geomorphological framework of the QTP [33]. The MAAT in
the hinterland of the plateau is below 0 ◦C, and the monthly average temperature is less than 10 ◦C.
For example, the southern and central QTP is the warm region, where air temperature is lower than
10 ◦C for nine months in a year; the Qiangtang Plateau and Hoh Xil is the cold region of the QTP,
where air temperature is lower than 0 ◦C for seven months and lower than −10 ◦C for three or four
months in a year [34]. The unique topography of the QTP determines the distribution characteristics
of climate and vegetation; from the northwest to the southeast, there are mainly three ecological
systems: alpine meadow, alpine steppe, alpine swamp and wetland [35]. The vegetation type of
Northwest Plateau is the alpine, grassland and non-vegetation; the center of the QTP is meadow
steppe and meadow with a high vegetation cover in this region. Generally, changes in vegetation can
cause changes in ground surface conditions, such as evapotranspiration, albedo, and infiltration rate
of precipitation, which can indirectly influence the thermal dynamics of permafrost [36], however,
NDVI (Normalized Differential Vegetation Index) as the best indicator of vegetation growth state and
vegetation coverage is widely used in vegetation remote sensing, it shows NDVI can be used as one
of the parameters reflecting the frozen ground. In addition, the basic permafrost types of the QTP
are low-latitude and high-altitude plateau permafrost, and the permafrost in the Qilian Mountains,
Himalaya Range, Kunlun Mountains, Hengduan Mountains, belongs to a middle-low latitude and high
altitude alpine permafrost, which have obvious zonality, especially vertical zonality (e.g., the lower
bound of permafrost lowered with the latitude increasing and the thickness of frozen soil increases
with the altitude increasing).

2.2. Investigated Regions and Its Permafrost Maps

In order to evaluate the accuracy of this study, three investigated regions (Figure 1)-Western
Kunlun (WKL), Wenquan (WQ), and Gaize (GZ) conducted from ‘the comprehensive investigation of
permafrost and its environments on the QTP’ are selected as verification data. WKL (78.8◦E~79.5◦E,
35.6◦N~36.1◦N) (3508.1 km2) is located in the northwestern margin of the QTP [37], and belongs
to the typical mid-latitude alpine permafrost zone. GZ (84◦E~86.03◦E, 32.27◦N~34◦N) is located
in the south the QTP and northeast of the Gaize county [38], with altitude is between 4400 m and
6200 m asl and with area is 41,256 km2. WQ (99◦60’E~99◦42’E, 35◦60’N~35◦42’N) is located in
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the east of the QTP, area is about 2250 km2, the permafrost area accounted for the 66.7% of entire
region [39]. Three investigated regions are located in the transition zones between permafrost and
seasonally frozen ground with different climatic and geographic conditions. Permafrost maps of three
investigated regions (IRs) are based on field survey data by employing geophysical exploration
(Ground Penetrating Radar, GPR; Time-domain ElectroMagnetic, TEM), mechanical excavation,
ground-based observations, and drilling method. Due to the elevation and terrain factors have
much greater influence on permafrost presence/absence than that of longitude and latitude in the local
region, those IRs permafrost maps were generated using the criteria of lower limits of permafrost in
different conditions combined the DEM data and terrain factors (slope and aspect), and a portion of the
observed results of geophysical methods and boreholes was reserved to validate the maps [37,38,40].
The validation result of WQ investigated regions permafrost map shows an accuracy of 85.6% [39].
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Figure 1. Spatial distribution of the field Investigated Regions (IRs) over the QTP.

2.3. Spatial Datasets

2.3.1. Elevation

Elevation is the main controlling factor of vertical zoning in the QTP, which cannot only reflect
morphological features of terrain, but also extract much surface information, including slope, aspect,
and topography. Recently, digital elevation model (DEM) as a conventional terrain tool is usually
used in the research of earth’s surface topography, geomorphology, surface structure analog, therefore
this study uses DEM dataset (Figure 2a) with a resolution of 1 km × 1 km that is projected to Albers
Equal Area Conic in order to ensure the area is not deformed. DEM datasets of the QTP are from
“Environmental and Ecological Science Data Center for West China” (http://westdc.westgis.ac.cn).

http://westdc.westgis.ac.cn
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2.3.2. MODIS LST Products

MODerate-resolution Imaging Spectroradiometer (MODIS) sensors equipped with Terra and
Aqua satellites provide multi band Land Surface Temperature (LST) data. LST is retrieved by
split-window algorithm in infrared band [41,42]. A piecewise function [43] of ground temperature
shows that the surface temperature takes on a sinusoidal function in daytime while in nighttime
it declines almost linearly. Therefore, daily mean LST can be calculated with four instantaneous
observations from the MODIS LST products (MYD11A1 and MOD11A1 with 1 km resolution) every
day by integral sum of Sin-Linear piecewise function. Finally, the mean annual surface temperature
(MAST) of 2003 (Figure 2b) is equal to the arithmetic mean value of daily LST in 2003.

2.3.3. NDVI

Vegetation has scattering and reflection effects on solar radiation, which can reduce the amount of
surface net radiation and lowered the near surface temperature. Furthermore, it can also intercept snow,
preserve heat and increase transpiration, which indirectly affects the spatial distribution of frozen
soil [44]. Therefore, in some areas, vegetation was used as an indicator for permafrost classification,
for example, Grams [45] deemed that white spruce and birches could indicate permafrost boundary in
Alaska valley, Nguyen [26] used vegetation types as an indicator of permafrost or seasonally frozen
ground to classify the local permafrost distribution boundary. NDVI is often used to describe the
parameters of the quantity and quality of vegetation. Hence, this study select NDVI as one of the
parameters related to the permafrost distribution. NDVI data was extracted from the synthesized
product data (MOD13A1 and MYD13A1), the image resolution was resampled to 1 km, and a little
missing data was filled through the Kriging interpolation method. Finally, the NDVI annual maximum
value (Figure 2c) of the QTP was calculated by the band computing tool of ENVI 5.0 (The Environment
for Visualizing Images) software.
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2.3.4. Soil Moisture

When the seasons change, the surface wet and dry degree in frozen ground areas have a large
difference in time and space. During the freezing and thawing processes of the permafrost active
layer near the WuDaoliang of the QTP [46], freezing process usually started in mid-September until
completing in late October. In the following year, the freeze-thaw process near the surface occurred in
late March, and in early April a stable process of thawing in daytime and freezing in nighttime would
form, but the thawing of the active layer of permafrost started about the end of April from the top
downwards. In May and June, the surface temperature of the QTP gradually increased, and the active
layer began to thaw slowly, resulting in soil volume water increasing. Furthermore, the water content
began to significantly change in May, and satellite sensors could easily capture these changes, AMSR-E
(Advanced Microwave Scanning Radiometer-EOS) mounted on Aqua satellites provides 1–5 cm soil
moisture data (National Snow and Ice Data Center) stored in HDF-EOS format with a resolution of
25 km. hence the average value of AMSR-E soil water content in May 2003 (Figure 2d) was obtained
as an auxiliary classification information source due to its resolution was coarse compared to other
classification data, such as DEM, LST and NDVI.

3. Methods

The regression relationship between the permafrost distribution and influencing factors (elevation,
LST, NDVI, SM, albedo et al.) were analyzed by Wang [47], the results showed that the correlation
coefficients of four factors (elevation, LST, NDVI and SM) with permafrost are the highest, and elevation
is the governing factor. Therefore, elevation, LST, NDVI and SM, are selected as input parameters of
decision tree.

3.1. Decision Tree Establishment Process

Decision tree algorithm is a typical classification method, it performs a recursive binary
partitioning of the feature space [48,49]. Each decision tree has only one root node, but there can be
several internal nodes and two or more terminal nodes. Generally, discriminant functions derived from
training sample are indispensable because establishment of the next branch or sub-node need to take
different discriminant functions as prerequisite until expected decision tree is generated. The following
(Sections 3.1.1 and 3.1.2) presents the generation of the discriminant function and the establishment of
the decision tree of this study.

3.1.1. Classification Threshold Value

In order to understand distribution features of each influencing factor in permafrost regions and
seasonally frozen ground regions, this study selected the two published and widely used permafrost
distribution maps [7,10,50–52] as prior information to gain classification threshold of decision tree,
which are:

(1) The 1:3,000,000 Map of Permafrost on the QTP (Figure 3a), which was compiled by State
Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences [15] (hereafter referred to as “QTP96_map”) based on permafrost
investigated data, literature, aerial photographs, satellite and others relevant maps; it shows the
permafrost area of TP is 1.29 × 106 km2;

(2) 1:4,000,000 Map of the Glaciers, Frozen Ground and Deserts in China [53], was compiled
by following material or means: TOPO30 DEM with 1 km resolution, air temperature and ground
temperature, field investigation of frozen soil, borehole data exploration, and interpretation of aerial
photographs and satellite images. The permafrost distribution on the QTP used the research result of
mean annual ground model, firstly, Nan [54] made regression analysis between mean annual ground
temperature and latitude, elevation with the field survey data of 76 boreholes along the Qinghai-Tibet
Highway; secondly, the mean average ground temperature over the entire QTP was calculated with
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elevation and latitude data; lastly, 0.5 ◦C was taken as the classified value between permafrost and
seasonally frozen ground, and finished the permafrost map over the QTP(Figure 3b, hereafter referred
to as the “QTP06_map”).Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 19 
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in China.

Based on the two published permafrost maps (1:3,000,000 Map of Permafrost on the QTP and
the permafrost map of the QTP derived from 1:4,000,000 Map of the Glaciers, Frozen Ground and
Deserts in China), the permafrost agreeing in both maps is defined “both permafrost”, the seasonally
frozen ground agreeing in both maps as “both seasonal frozen ground”, and the rest as uncertain class
(Figure 4).
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The relationship [55] between lower limit and latitude of permafrost in the northern hemisphere
shows that the lower limit of permafrost reaches the maximum value at 25◦22′N, and then decreases
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with the increasing of latitude. In view of latitude affecting the distribution of permafrost, the QTP is
equally divided into five zones from north to south according to the latitude. Subsequent classification
is completed on each zone.

The elevation of all the pixels on each latitude zone with both permafrost or both seasonally
frozen ground is counted, taking the first zone as an example: if 95% elevation value of both permafrost
is greater than 3594 m, then the probability that those corresponding pixels will be seasonally frozen
ground is not greater than 5%, so the pixels which elevation is lower than 3594 m are considered as
seasonally frozen ground; likewise, if 95% elevation value of both seasonally frozen ground is less
than 3938 m, then the probability that those corresponding pixels will be permafrost is not greater
than 5%, so the pixels which elevation is greater than 3938 m are considered as permafrost; the pixels
which elevation is between 3594 m and 3938 m are still uncertain class. The elevation threshold values
(Table 1) of other zones are similar to the first zone.

Table 1. Classification threshold of every index for five latitude zones.

1 2 3 4 5

H (m)
Both permafrost (>) 3938 4755 4992 5049 4830

Both seasonally frozen ground (<) 3594 4298 4522 4650 4742

T (◦)
Both permafrost (<) −4.56 −4.13 −4.81 −6.86 −4.73

Both seasonally frozen ground (>) −2.01 −3.63 −2.54 −1.58 −1.26

NDVI
Both permafrost 0.026–0.054 0.013–0.039

0.245–0.271 0.065–0.232 0.001–0.142 0.003–0.310

Both seasonally frozen ground 0.133–0.219 / 0.620–0.891 0.477–0.903 0.671–0.929

SM
Both permafrost (>) 0.161 0.195 0.165 0.192 0.202

Both seasonally frozen ground (<) 0.094 0.096 0.088 0.086 0.085

The LST threshold method for each latitude zone is similar to elevation threshold method.
For example, in the first zone, if 95% LST value of both permafrost is less than −2.01 ◦C, then
the probability that those corresponding pixels will be seasonally frozen ground is not greater than 5%,
so the pixels which LST value is greater than −2.01 ◦C are considered as seasonally frozen ground;
if 95% LST value of both seasonally frozen ground is greater than −4.56 ◦C, then the probability that
those corresponding pixels will be permafrost is not greater than 5%, so the pixels which LST value is
less than −4.56 ◦C are considered as permafrost; the pixels which LST value is between −2.01 ◦C and
−4.56 ◦C are still uncertain class. The LST threshold values (Table 1) of other zones are similar to the
first zone.

Although many literatures pointed out that vegetation can be used as an indicator of frozen soil
types [44], the permafrost or seasonally frozen ground surface vegetation types and coverage is not
uniform. For example, the vegetation features of permafrost or seasonally frozen ground for each
latitude zone are different, and even there are both permafrost and seasonally frozen soil in a same
range of NDVI of a latitude zone. Because vegetation as a type indicator of frozen soil is complicated
and diverse, NDVI threshold value is different with elevation and LST. NDVI value range of both
permafrost and seasonally frozen ground in each latitude zone is counted as Table 2.

Table 2. NDVI statistics for the both classes of five latitude zones.

Range 1 2 3 4 5

Both permafrost 0.054–0.133 0.013–0.271 0.065–0.232 0.001–0.477 0.003–0.310
Both seasonally frozen ground 0.026–0.219 0.039–0.245 0.620–0.891 0.142–0.903 0.671–0.929

Obviously, there is a partial intersection in the NDVI range of values, taking the first latitude
zone as an example, the NDVI of both permafrost is 0.054–0.133 and the NDVI of both seasonally
frozen ground is 0.026–0.219, which means the intersection interval (0.026–0.133) has both permafrost
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and seasonally frozen ground, so this intersection part is still divided into uncertain class in order
to maintain mapping accuracy. After re-division of intersection interval in other latitude zones,
NDVI classified threshold is shown in Table 1.

Compared with the elevation, LST and vegetation three indicators, AMSR-E soil moisture with
25 km resolution can only be used as auxiliary classification parameter. The method of obtaining the
soil moisture threshold value is the same as elevation threshold method.

3.1.2. Classification Decision Tree

In this paper, a classification decision tree (Figure 5) was established based on the correlation
between elevation, LST, NDVI and soil moisture and permafrost distribution. The numbers (a)–(e)
represent five internal branches, which also represent the classification decision tree of the first, second,
third, fourth and fifth latitude zone respectively.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 19 

 

represent five internal branches, which also represent the classification decision tree of the first, 
second, third, fourth and fifth latitude zone respectively. 

Figure 5. Classification Decision Tree (P: permafrost, S: seasonally frozen ground): (a) in the first 
latitude zone; (b) in the second latitude zone; (c) in the third latitude zone; (d) in the fourth latitude 
zone; and (e) in the fifth latitude zone. 

3.2. Post Classification Processing 

After the gradual classification by four indicators (elevation, LST, NDVI and soil moisture) 
based on decision tree method, there are still few pixels (uncertain class) (Figure 6d) that cannot be 
classified and these pixels are in the transition zone between permafrost and seasonally frozen 
ground. 

Figure 5. Classification Decision Tree (P: permafrost, S: seasonally frozen ground): (a) in the first
latitude zone; (b) in the second latitude zone; (c) in the third latitude zone; (d) in the fourth latitude
zone; and (e) in the fifth latitude zone.



Remote Sens. 2018, 10, 309 10 of 19

3.2. Post Classification Processing

After the gradual classification by four indicators (elevation, LST, NDVI and soil moisture) based
on decision tree method, there are still few pixels (uncertain class) (Figure 6d) that cannot be classified
and these pixels are in the transition zone between permafrost and seasonally frozen ground.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 19 
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The First Law of Geography, according to Waldo Tobler [56], reads “everything is related to
everything else, but near things are more related than distant things.” This theory is also applicable to
permafrost, if the number of permafrost pixels (Cp) adjacent to an uncertain pixels is greater than the
number of seasonally frozen ground pixels (Cs), then those uncertain pixels are classified permafrost,
otherwise—as seasonally frozen ground. If the number of permafrost pixels adjacent to an uncertain
pixel is equal to the number of seasonally frozen soil pixels, for example, this case occurs in the
3 × 3 range, then we can extend the neighborhood to the 5 × 5 range and further compare until all the
uncertain pixels can be classified (Figure 7). Finally, the permafrost distribution map on the QTP based
on multi-source remote sensing data is obtained and shown in Figure 8.
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3.3. Accuracy Evaluation Method

The overall accuracy and Kappa coefficients are usually used as indicators of qualitative
assessment accuracy. The overall accuracy [57] is the proportion of the number of pixels correctly
classified to the total number of sampled pixels (1), which shows the consistent degree between the
classification results of each random sample and the actual conditions of the corresponding region.
Kappa coefficient (2) [58] called KHAT statistics, is used to measure the agreement between two maps.
In comparison, the overall accuracy indicator just considers the correctly classified pixels, but kappa
coefficient (Ka) takes into account the inconsistent classified pixels.

Overall accuracy =
∑2

k=1 nkk

n
(1)

Kappa coefficient =
∑2

k=1 nkk −∑2
k=1 nk+n+k

n2 −∑2
k=1 nk+n+k

(2)

where n is the number of total pixels, nkk is the correctly classified pixels of the k type frozen soil, nk+ is
the total pixels of the k type frozen soil in investigate regions, n+k is the total pixels of the k type frozen
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soil in the corresponding regions of map (k = 1 represent permafrost, k = 2 represent seasonally frozen
soil in the above definition). Cohen [59] has been proposed quality values for K as follow: Ka ≥ 0.8
signifies excellent agreement, 0.6≤ Ka < 0.8 represents substantial agreement, 0.4≤ Ka < 0.6 represents
moderate agreement, 0.2 ≤ Ka < 0.4 represents fair agreement, and a lack of agreement corresponds to
Ka < 0.2.

4. Results

4.1. Mapping Result Based on Decision Tree

From the process of classification by decision tree, the area of the certain classes (permafrost and
seasonally frozen ground) is gradually expanded, and the number of unidentified pixels is reduced
during the execution of the decision tree. Figure 6 shows the QTP permafrost map changes after the
gradual classification of four indicators (elevation, LST, NDVI and soil moisture). Table 3 shows the
percentage of frozen ground types to the total area of the corresponding classification map. The results
directly reflect elevation and LST are most important factors for the permafrost presence/absence on
the QTP, and soil moisture is just an auxiliary index.

Table 3. The area ratio of the different frozen soil types over the Qinghai Tibet Plateau.

Percentage of Total Area (%)

Permafrost Seasonally Frozen Ground Uncertain

DEM 26.3 39.2 30.7
LST 38.6 46.7 10.8

NDVI 39.1 50.8 6.2
SM 40.4 51.4 4.3

Final-class 42.5 53.8 0.0

4.2. Validation at Investigated Regions

In this study, the accuracy of permafrost map over the QTP based on multi-source remote sensing
data is evaluated by overall accuracy and Kappa coefficients (Table 4) using the permafrost map of the
three investigated regions (WKL, WQ and GZ). From the comparative analysis (Figure 9) and results of
verification, with the improving of the resolution or scale, the total precision of the QTP map has been
exactly improved. Especially, the WKL region on QTP06_map was completely divided into permafrost
and Kappa coefficient was 0 because the permafrost area of this frozen map was overestimated, which
was consistent with the other verification conclusions [60]. However, seasonally frozen soil over
the WKL of the QTP permafrost map based on multi-source remote sensing data accounts for 9.5%
of the total area, and its spatial distribution of permafrost is in agreement with investigated region.
Besides, overall accuracy of WQ and GZ on the QTP permafrost map based on multi-source remote
sensing data is more than 85%, and Kappa coefficients of WQ and GZ are 0.71 and 0.69 respectively.
However, the Kappa coefficients of WQ and GZ of two previous published maps are both less than 0.5.
Compared with the QTP96_map and the QTP06_map, the accuracy of the QTP permafrost map based
on multi-source remote sensing data has shown better result.

Table 4. Comparison of the accuracy of the frozen soil map of the Qinghai Tibet Plateau.

West Kunlun Wenquan Gaize

OA (%) Ka OA (%) Ka OA (%) Ka

QTP96_map 79.98 −0.0018 54.38 −0.15 63.49 0.15
QTP06_map 90.37 0 76.49 0.45 60.71 0.06
This study 94.73 0.70 85.76 0.71 85.15 0.69
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5. Discussion

According to the verification result over investigated regions and permafrost area comparison
with other permafrost maps of the QTP, permafrost map over the QTP based on Multi-Source remote
sensing data is better than two published permafrost maps of QTP. It also demonstrates the macroscopic,
dynamic and convenient advantages of remote sensing data in permafrost research.

So far, a number of models (elevation model, Mean Annual Ground Temperature Model
(MAGT) [54], Emissivity Model [61], and Annual Average Ground Surface Temperature Model [62])
have been developed and they can basically reflect the permafrost distribution on the QTP. However,
they still have several uncertainties, such as:

(1) The input parameter of elevation model is not enough and the resolution is coarser, which affect
the accuracy of the result;

(2) The MAGT is short of consecutive ground temperature observations, so there is much error in
Southeast Tibet permafrost regions, North Gangdise and near Himalaya Range;

(3) The inversion accuracy of the emissivity ratio in Emissivity Model is limited because of the
influence of elevation and MAST Model cannot reflect the distribution of frozen soil in south and
southeast Tibet due to scarcity of ground surface temperature observation data.

Besides, although the Frost Number [63] and Temperature at the Top of Permafrost (TTOP) [64]
have been transferred to the permafrost distribution on the QTP [65], the simulation results were not
satisfactory. On the one hand, high-altitude features of the QTP was not considered because frost
number was more suitable for high latitude permafrost distribution, on the other hand, topographic
conditions of QTP are so complex that it affected accuracy. However, compared with the previous
permafrost distribution models of the QTP, permafrost map based on multi-source remote sensing
data does not use single factor like the Elevation Model or the Surface Frost Number Model,
but comprehensively considers the governing factors (latitude, elevation, LST, NDVI and soil moisture)
related to permafrost distribution. Then, on the local scale, the gradual classification is achieved by the
approach of decision tree based on the importance of each factor. Furthermore, the permafrost map of
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the QTP derived from 1:4,000,000 map of the Glaciers, Frozen Ground and Deserts in China compiled
in 2002 and the Map of Permafrost on the Qinghai–Tibetan Plateau compiled in 1996, but Aqua satellite
was launched on 4 May 2002. In order to reduce time gap with the prior information (two previous
published maps), and keep data integrity and accuracy, this study selects multi-source remote sensing
data of 2003 year.

When it comes to a series of published permafrost maps of the QTP simulated using different
methods, the results of 1:3,000,000 map of permafrost distribution on the QTP by Li and Cheng
(129.8 × 104 km2 of permafrost, 122.4 × 104 km2 of seasonally frozen ground) has been internationally
recognized. In fact, the permafrost area of this map and the permafrost map over the QTP derived
from the 1:4,000,000 map of snow, ice, and frozen ground in China (hereafter referred to as the
“QTP88_map”) are overestimated [36,60,66]. The QTP06_map (the frozen soil map of QTP based on
MAGT) derived from 1:4,000,000 Map of the Glaciers, Frozen Ground and Deserts in China also was
used benchmark (Wang, Rinke, et al., 2016), which permafrost area was 111.8 × 104 km2. However,
the permafrost map over the QTP based on multi-source remote sensing data (hereafter referred to as
the “MRSD_QTP map”) in this study shows that the permafrost area and seasonally frozen ground
area are 111.3 × 104 km2 and 140.9 × 104 km2 respectively, its permafrost area is most similar to
the QTP06_map and the new map of the permafrost distribution on the Tibetan Plateau (hereafter
referred to as the “QTP16_map”) provided by Zou et al. [16]; the overall accuracy are 84.82%, 87.52%
respectively, and kappa coefficients are 0.70 and 0.74 (Table 5). In addition, the permafrost area
from the permafrost stability type distribution map over the QTP in the 2000s provided by Ran et al.
(2017) is approximately 107.9 × 104 km2 when the extremely unstable type of permafrost is neglected
because this kind of permafrost mainly belongs to frozen gravel and cave ice that are distributed
below the lower limit of permafrost and usually is not added to the total area of permafrost [55],
this result is also closer to the MRSD_QTP map. The consistency between the two maps is 87.52%,
and the Kappa coefficient is approximately 0.74, which illustrates this study generates a better result.
However, this study has rather much difference with other frozen soil maps over the QTP (Table 6),
such as Regional statistical survey, HY/CLM4, elevation model and TTOP, which may be caused by
permafrost degradation due to climate warming in different times, method variability and historic
climate data uncertainties.

Table 5. Spatial similarity metrics about different frozen soil maps over the QTP. Values indicate overall
accuracy (%) and values within parentheses are the Kappa coefficients.

QTP88_map QTP96_map QTP06_map QTP16_map MRSD_QTP map

QTP88_map - 76.26 (0.51) 79.36 (0.59) 74.42 (0.50) 77.45 (0.56)
QTP96_map - - 78.02 (0.56) 75.90 (0.52) 78.09 (0.56)
QTP06_map - - - 81.46 (0.63) 84.82 (0.70)
QTP16_map - - - - 87.52 (0.74)

MRSD_QTP map - - - - -

Table 6. Total area of frozen ground on the QTP, as calculated using different methods (Unit: 104 km2).

Methods Permafrost Area Seasonal Frozen Soil Area Data Sources

RegCM3/CLM4 122.2 127.9 1980–2000 average [67]
HY/CLM4 151.5 87.1 1981–2000 average [68]

K-model 126.8 125.5 [52]
Regional statistical survey 150 [69]

Elevation model 138.9 113.3 [52]
Mean annual ground temperature model 111.8 [70]

The surface frost number 127.8 123.6 [70]
TTOP 138.7 [70]

QTP16_map 106 146 [16]
QTP96_map 129.8 122.4 [52]

MRSD_QTP map 111.3 140.9 This study

Although the permafrost map over the QTP based on multi-source remote sensing data performed
better than the two published maps (QTP96_map and QTP06_map) and had substantial agreement
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with the investigated regions, it still had some uncertainties as follows: (1) The prior information was
relatively imperative, although this study selected the two most representative permafrost maps at
different stages as the reference basis, there are few uncertainties due to the own errors of those two
maps; (2) The final uncertain pixels after the classification with decision tree method were reclassified
by a regional growth search algorithm; although this had certain theoretical basis, it was still necessary
to find a more scientific and reasonable approach to classify these pixels as permafrost or seasonally
frozen ground; (3) AMSR-E soil moisture products used in this study is 25 km in spatial resolution;
the resolution had not been substantially improved though it was resampled to 1 km, thereby soil
moisture was used as ancillary data. With the development of microwave remote sensing, if the
accuracy and resolution of soil moisture are improved, the accuracy of permafrost map will also be
improved accordingly; (4) Compared with other prediction models, especially the physical model, the
result of this study cannot reflect the temporal dynamic changes of permafrost distribution.

The accuracy verification results of permafrost maps show that the area of seasonally frozen
ground of the investigated regions is more than that shown by the other permafrost maps in general
and discrepancies exist in transition zone between permafrost and seasonally frozen soil. On the
one hand, snow (thickness, duration, time and cover) solar radiation, topographic factor, climate
change and other factors, except governing factors, will also affect permafrost spatial distribution.
For example, the temperature is extremely low in the eastern, southern and abdomen mountains of the
QTP where snow exists all year round, thick and long snow cover on the permafrost. It has the effect of
heat preservation because the thermal conductivity of snow is very poor so that solar radiation during
the daytime is hard to get into the soil and the heat is not easy to lose in the nighttime. However, in the
high plains, valleys and basins of high-altitude areas on the QTP, snow thickness is thin and duration is
short, so snow might plays a cooling role [71]; On the other hand, time difference among the different
permafrost maps of the QTP in which climate warming caused permafrost degradation, will lead to the
area of permafrost reducing and the area of seasonally frozen ground increasing gradually. Therefore,
it is possible to generate a more accurate and reasonable permafrost map of the QTP integrating with
passive microwave snow products.

6. Conclusions

This study indirectly obtained the permafrost map on the QTP by exploiting the relationship
between environmental factors and frozen ground rather than limited investigated data, it is
a pragmatic approach for regional scale permafrost mapping. Compared to traditional mapping
method, spatial data derived from the satellite sensors has the macro, dynamic and comprehensive
advantages, and remedy the lack of investigated data.

Statistical result of this study shows that permafrost area is 42.5 percent of the QTP area
(111.3 × 104 km2), and the seasonally frozen ground area is 53.8 percent of the QTP area
(140.9 × 104 km2), which has the highly consistent with benchmark map (The Map of Permafrost
on the Qinghai–Tibetan Plateau). Moreover, the validation result shows that permafrost map of QTP
based on multi-source spatial data has high overall accuracy and kappa coefficient with three regions
(West Kunlun, Wenquan and Gaize) compared other two existing permafrost maps.

Remote sensing techniques have considerable potential for use as a tool in regional scale
permafrost mapping, which might provide a simple and promising approach for further permafrost
research. Furthermore, we believe that combined with passive microwave snow products, soil types,
energy exchange process model between ground and atmosphere, terrain factors and physical
mechanism of permafrost, the mapping model would be improved and might yield still more
accurate results.
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