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Abstract: Mapping of surficial geology is an important requirement for broadening the geoscience 
database of northern Canada. Surficial geology maps are an integral data source for mineral and 
energy exploration. Moreover, they provide information such as the location of gravels and sands, 
which are important for infrastructure development. Currently, surficial geology maps are 
produced through expert interpretation of aerial photography and field data. However, 
interpretation is known to be subjective, labour-intensive and difficult to repeat. The expert 
knowledge required for interpretation can be challenging to maintain and transfer. In this research, 
we seek to assess the potential of deep neural networks to aid surficial geology mapping by 
providing an objective surficial materials initial layer that experts can modify to speed map 
development and improve consistency between mapped areas. Such an approach may also harness 
expert knowledge in a way that is transferable to unmapped areas. For this purpose, we assess the 
ability of convolution neural networks (CNN) to predict surficial geology classes under two 
sampling scenarios. In the first scenario, a CNN uses samples collected over the area to be mapped. 
In the second, a CNN trained over one area is then applied to locations where the available samples 
were not used in training the network. The latter case is important, as a collection of in situ training 
data can be costly. The evaluation of the CNN was carried out using aerial photos, Landsat 
reflectance, and high-resolution digital elevation data over five areas within the South Rae 
geological region of Northwest Territories, Canada. The results are encouraging, with the CNN 
generating average accuracy of 76% when locally trained. For independent test areas (i.e., trained 
over one area and applied over other), accuracy dropped to 59–70% depending on the classes 
selected for mapping. In the South Rae region, significant confusion was found between till veneer 
and till blanket as well as glaciofluvial subclasses (esker, terraced, and hummocky ice-contact). 
Merging these classes respectively increased accuracy for independent test area to 68% on average. 
Relative to the more widely used Random Forest machine learning algorithm, this represents an 
improvement in accuracy of 4%. Furthermore, the CNN produced better results for less frequent 
classes with distinct spatial structure. 
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1. Introduction 

Mapping of surficial geology is an important requirement for broadening the geoscience 
database of northern Canada. Surficial geology maps are an integral data source for mineral—
exploration infrastructure, land-use planning, hazard assessment and other applications. However, 
mapping large remote regions can be a major challenge requiring significant labour and cost for 
timely production. With access to remotely sensed imagery, new machine learning approaches are 
emerging that support the surficial geological mapping of vast northern regions appropriate for 
regional scale mineral exploration and related land-use management. This is particularly relevant in 
Northern Canada, which is a huge territory that cannot easily be mapped following a systematic field 
sampling approach [1]. In addition, traditional mapping methods are based on interpretation of air 
photos requiring expert knowledge and experience. Interpretation is subjective, labour-intensive and 
difficult to repeat, while expert knowledge can be challenging to maintain and transfer [2]. 
Furthermore, fieldwork in remote regions is costly and logistically challenging.  

Remote Predictive Mapping (RPM) is a relatively rapid and cost-effective way to generate an 
initial classification of surficial materials over large areas [3]. Machine learning applied to remote 
sensing data is an approach that can provide more consistent results over time and space assuming 
method, training samples and parameters are appropriately selected. Applying a well-trained model 
can reduce the subjectivity associated with expert interpretation. While it may not be as detailed or 
locally accurate as traditional methods, RPM products can guide fieldwork towards areas with more 
complex geology, serve as first order geologic maps in areas where little knowledge currently exists, 
and improve map production, accuracy and consistency by combining machine learning and expert 
interpretation. 

There have been several successful examples of machine learning applied to remote sensing data 
for remote predictive mapping of surficial materials [4–9]. Most of the recent mapping approaches 
utilized Decision Trees (DT), Random Forest (RF) [10,11], Support Vector Machine (SVM) or 
bootstrap Maximum Likelihood (ML) algorithms [12]. In most surficial materials mapping cases, 
these algorithms are dominantly implemented in a manner that limit utilization of the spatial 
properties of the surficial material classes related to the geomorphology and class composition of 
base materials such as rock, gravel, sand, vegetation, and water. Often, surficial material classes are 
comprised of materials with very different spectral signatures. For example, till veneer is described 
as discontinuous sheet of diamicton, a poorly sorted sediment containing a mixture of grain-sizes 
from clay to boulders, overlying bedrock. Thus, to determine a particular surficial material class, a 
larger area needs to be sampled, such that spatial features and spectral signatures of material 
ensembles can be considered. 

New machine learning algorithms based on deep learning provide a potential means to address 
some of the limitations of past efforts for surficial geology RPM. Deep learning is one of the fastest-
growing trends in big data analysis and was deemed one of the 10 breakthrough technologies in the 
[13] MIT Technology Review of 2013. The name “deep learning neural network” reflects the inclusion 
of a number of hidden layers. Unlike their shallow counterparts, deep neural networks exploit feature 
representations learned exclusively from data, instead of hand-crafting features that are mostly 
designed based on domain-specific knowledge. In recent times, deep neural networks have received 
significant attention due to the development of graphic processing unit (GPU) technology, which has 
enabled large networks to be trained much more efficiently than previously. Another major 
advancement has been the development of deep neural networks designed specifically for image 
recognition tasks. These are known as convolution neural networks (CNNs). They have shown to be 
effective with high spatial resolution imagery where objects of interest have strong spatial  
structure [14–16]. CNNs take an image as input and apply convolution filters to these images to 
generate features that can discriminate image objects. The filters’ weights are learned through 
stochastic gradient decent using error backpropagation and thus are optimized for the defined 
recognition task. The typical CNN architecture consists of a convolution filter layer followed by a 
down-sampling pooling layer. This sequence is repeated several times before a final dense layer that 



Remote Sens. 2018, 10, 307  3 of 19 

 

summarizes the results and assigns the final output activation from the network [17–20]. Different 
architectures and methods are evolving rapidly for a range of recognition tasks. 

In this research, we evaluate CNNs as means to improve surficial materials RPM for the case 
where a model is trained and applied in the same spatial domain and where it is trained from one 
area and applied in another. This CNN is compared against the more widely used RF algorithm as a 
benchmark to assess potential improvement.  

2. Materials and Methods 

2.1. Study Area Location and Physiography 

The area of interest is located in the southeast corner of the Northwest Territories, Canada and 
defined by National Topographic System map sheet 75B, Abitau Lake (Figure 1). This region is 
underlain by the high-grade metamorphic rocks of the South Rae geological province of the Canadian 
Shield [21]. Most of the region exceeds 500 m elevation, ranging from ~420 m to 575 m above sea level. 
Ridged to hummocky crystalline rocks form broad sloping uplands and lowlands. Bedrock exposure 
varies from 0 to 40%. Swaths of streamlined terrain (till), till veneers and blankets, and minor 
hummocky moraine comprised of sandy, silty till of varying composition and thickness dominate the 
upland cover. Lowlands are primarily filled with lakes and wetlands (organic deposits). Large esker 
systems cross the area, dominantly oriented northeast to southwest (esker-glacial landform is a long 
winding ridge composed of stratified sand and gravel, which was deposited by a subglacial or 
englacial meltwater stream). This region lies within the Selwyn Lake Upland ecoregion that extends 
northwest from the Churchill River in Manitoba to the East Arm Hills at the eastern end of Great 
Slave Lake [22] (Ecoregions Working Group, 1989). It is classified as having a low subarctic climate 
and is part of the boreal forest–tundra transition zone extending from Labrador to Alaska, with tree 
cover decreasing north–northwest. The characteristic vegetation consists of stuntd black spruce, 
dwarf birch and Labrador Tea, with a ground cover of lichen and moss. Poorly drained wetlands are 
dominated by bog–fen sequences of black spruce, ericaceous shrubs and mosses. Much of the area 
has been burned by forest fires over the past several decades and regrowth has been slow. Permafrost 
is extensive and discontinuous with low to medium ice content throughout the ecoregion. More 
detailed descriptions of the region’s geology and landscape can be found in [23] Campbell and  
Eagles [24], Pehrsson et al. [25], and Campbell et al. In this study, five subareas, within National 
Topographic System Abitau Lake map sheet 75B (Figure 1) were used. 
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Figure 1. Location of the study area. 

2.2. Data 

2.2.1. Landsat Time Series 

Landsat L1G TM/ETM+ scenes used were acquired by the U.S. Geological Survey between July 
and August, 1984–2012. To create a reflectance time series, the following processing steps were 
applied: reprojection, calibration, and cloud/cloud shadow detection using the processing 
methodology described in Latifovic et al. (2015) [26]. The Landsat L1G data are in the UTM map 
projection. However, the UTM is not an appropriate projection for large areas that cross several UTM 
zones. The Lambert Conformal Conic (LCC) projection is typically used in Canada for large area 
spatial datasets, as it does not require separate zones, yet keeps distortion to an acceptable level. The 
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LCC projection was specified with two standard parallels at 49°N and 77°N. The central meridian 
was 95°W and the latitude of origin was 0°. 

Remote mapping of surficial materials in part relies on the association between vegetation and 
the underlying geological conditions. Fires can be problematic because vegetation is more indicative 
of the post-fire succession than an expression of surficial geology. However, fires expose bedrock 
potentially improving its detection. For this research, it was clear that removing fires would be 
beneficial as much of the area is tree covered. Ultimately, we are seeking to retrieve the sensor 
observations between 1985 and 2012 that represent vegetation in its latest successional stage.  

Analysis of the historical fire database [27] suggests that approximately 80% of the burned area 
in the region occurred after 1984 and thus the observations can be replaced. To accomplish this, and 
develop high quality data for analysis, a data synthesis approach was developed and applied to the 
Landsat time series, using the normalized difference water index (NDWI) defined in Gao (1996) [28] 
as a selection criterion rather than normalized difference vegetation index (NDVI). The NDWI is a 
measure of liquid water molecules in vegetation canopies that interact with the incoming solar 
radiation [26] while NDVI is measure of chlorophyll absorption. In this study, NDWI is considered a 
better index for selection because it is significantly less affected by atmospheric scattering and 
absorption, it is much more sensitive to vegetation structure and it does not saturate as quickly as 
NDVI. In the first processing step, yearly average reflectance from clear-sky pixel observations were 
computed for each year and then a temporal smoothing filter was applied using a window size of 
three years. The maximum NDWI values from the smoothed time series were determined and, in the 
second step, used to find all observations in the time series within ±10% range. These values were 
averaged to get a robust reflectance measure for each Landsat band. Figure 2 shows that most of the 
area affected by fires were replaced with observations obtained before fire occurred, although the 
burn-scare of some pre-1984 fires are still evident in the image.  

Another advantage of this processing approach was that it greatly improves image quality by 
averaging observations over multiple years. The blue band is usually too noisy to be used for analysis 
due to its strong sensitivity to atmosphere conditions. Nevertheless, Figure 3 shows an example of 
the blue band reflectance for both the best available measurement from the 2009–2011 composite, and 
the long-term average composite developed for use in this study. Much of the noise in the shorter-
term composite has been removed using the described processing steps. Time series data processing 
provides a potential advantage as the blue band reflectance makes available specific information that 
improves classification of bedrock lithology and surficial materials. In addition to the band top of 
atmosphere reflectance, the Tasseled Cap Transformation (TCT) [29] was applied to produce 
Brightness, Greenness and Wetness orthogonal components, which allow for reduction of data 
dimensionality. The TCT was generated using coefficients provided by Huang et al. [30] for ETM and 
by Crist [31] for TM sensors. 
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Figure 2. Landsat mosaics of National Topographic System map 75B: The image (a) shows the long-
term average. The image (b) shows the long-term average with fire scars removed. The top image is 
RGB composite with near infrared band in red, shortwave infrared band in green and blue band in 
red. The bottom mosaics and the zoomed-in examples are true colour images composite as red band 
in red, green band in green, and blue band in blue. 

 

Figure 3. Blue band comparison: the image (a) shows the best available measurement from 2009–2011. 
Image (b) shows the long-term average from 1984–2011 generated using the temporal processing. 

  



Remote Sens. 2018, 10, 307  7 of 19 

 

2.2.2. Air Photos 

Historical air photos at approximately 1:50,000 scale are commonly used by the Geological 
Survey of Canada (GSC) for mapping surficial materials and geomorphology by expert 
interpretation. These easily accessible and affordable photos [32] can be scanned to high spatial 
resolution (typically <2 m), and cover large extents of Canada. However, they can often be difficult 
and time-intensive to geolocate, radiometrically balance, and mosaic into an accurate and seamless 
product suitable for large area interpretation and mapping applications. An automation of the 
required processes and methodology, for processing ~400 images covering a large portion of the 
South Rae region, was developed in this study. Landsat data were used as a spatial reference, as the 
intent was to use the resulting air photo mosaic for data fusion, to achieve a high-resolution multi-
spectral image for surficial materials and/or geological mapping. Pre-processing, processing 
diagnostics, iterative corrections, radiometric normalization, and fusion were automated to generate 
an accurate and seamless product. This methodology can be applied anywhere in Canada to provide 
enhanced data for interpretation or mapping of geological attributes. 

2.2.3. Digital Elevation Model 

Two digital elevation model (DEM) data sets were used for terrain characterization (Figure 4). 
The first was the 1:50,000 scale Canadian Digital Elevation Data (CDED) rasterized to 30 m resolution. 
The second data set was from the Arctic DEM project, which is a National Geospatial-Intelligence 
Agency-National Science Foundation public-private initiative to automatically produce a high-
resolution, high quality, digital elevation model of the Arctic using optical stereo imagery. For the 
current research, the 8 m spatial resolution product was acquired and used [33].  

 
Figure 4. Examples of the two-digital elevation datasets used. The image (a) shows the Canadian 
Digital Elevation Data 1:50,000 scale rasterized to 30 m and image (b) shows the 8 m Arctic digital 
elevation model. 
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2.2.4. Surficial Materials Reference Data 

The surficial materials reference data used includes ground truth observations acquired during 
field campaigns and a surficial geology map generated by expert interpretation. The surficial material 
labels for ground truth samples (Figure 5a) were defined using in situ field records. Secondary 
reference samples were defined by interpretation of photographs (Figure 5b) taken from the 
helicopter during flights between ground truth sites. The reference surficial geology map (Figure 5c) 
from [34], produced by expert interpretation of air photos and fine resolution WordView2 satellite 
images, remote observations and ground truth data, was used as a main source of reference data for 
the majority of training and testing samples.  

 
Figure 5. Surficial materials reference data sets: (a) ground truth; (b) aerial photographs from 
helicopter; and (c) surficial geology map [34]. 

The percent area of each surficial material unit in the reference map, shown in Figure 5c, is given 
in Table 1. The main surficial materials are tills, organics, water, and exposed rock. There are several 
glaciofluvial sediment units covering a small percentage of the total area. Only units highlighted in 
bold in Table 1 were considered for mapping in this analysis. Other units did not cover a sufficiently 
large area to be used for training and testing models. 
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Table 1. Surficial geology units and distribution within an National Topographic System (NTS) map 
sheet 75B. 

Value Percent Area Code Description
1 8.8 Tv Glacial sediments: till veneer 
2 18.9 Owb Organic deposits
3 34.1 Tb Glacial sediments: till blanket 
4 4.4 R Bedrock: undifferentiated 
5 9.9 Th Glacial sediments: hummocky till 
6 1.3 GFh Glaciofluvial sediments: hummocky 
7 0.7 GFt Glaciofluvial sediments: terraced 
8 1.2 GFr Glaciofluvial sediments: esker 
9 0.1 GLr Glaciolacustrine sediments: beach 

10 0.02 At Alluvial sediments: terraced 
11 0.03 Ap Alluvial sediments: floodplain 
12 0.00 Af Alluvial sediments: fan sediments 
13 0.00 GFf Glaciofluvial sediments: outwash fan 
14 0.00 GLd Glaciolacustrine sediments: deltaic 
15 0.00 GFv Glaciofluvial sediments: veneer 
16 0.01 GLb Glaciolacustrine sediments: blanket 
17 0.01 GFb Glaciofluvial sediments: blanket 
18 0.00 GFp Glaciofluvial sediments: outwash plain 
19 20.53 H2O Water

2.2.5. Data Cubes 

To simplify processing and analysis, data were organized over five subareas as data cubes 
(Figure 6). Each data cube contained all data layers used in the analysis, including Landsat bands, 
DEM, TCT, mosaicked air photos, surficial material classes, vegetation indices, land cover, etc. Data 
cubes were resampled into a common georeferencing framework with the same spatial resolution of 
2 m. Initial exploratory analysis showed that the use of air photo data with 2 m spatial resolution was 
one of the more critical inputs to mapping accuracy. Landsat pixels (30 m) were replicated into 15 by 
15 pixels with the same value. No resampling was applied because CNN convolution and pooling 
operations would achieve the optimal resampling for this application. Locations of the data cubes are 
depicted in Figure 5. They are referred to as North (N), Northwest (NW), South (S), Southwest (SW) 
and Southeast (SE). Based on this data structure, software was developed for efficient data 
manipulation such as creating training or testing samples with different sample sizes and features, 
evaluating and applying RF and CNN models, comparing classified images and deriving statistics.  
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Figure 6. Example of the data cubes for National Topographic System map 075B Abitau study: these 
data sets are for the South subarea. 

2.3. Methods 

To evaluate both CNN and RF methods, we followed the procedure presented in Figure 7. The 
upper three rows present steps regarding data and data preparation. These steps were described in 
the previous sections. The bottom part of the Figure 7 shows steps involved in assessment of the RF 
and CNN for two scenarios, first when models were trained and applied over the same area, second 
when models were trained over one area and evaluated in a different area. The latter is referred to as 
independent test area. The following sections provide other relevant elements of the analysis 
including features used, RF parametrization, CNN architecture and the sampling and  
training approach. 
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Figure 7. Assessment of Random Forest and Convolution Neural Networks for mapping surficial 
materials. 

2.3.1. Generation of Training and Testing Data 

An initial analysis and evaluation revealed that accuracy of the classification with the full 
thematic legend was not satisfactory. Thus, we developed a reduced legend with more generalized 
surficial material classes by merging some of the classes for the legend given in Table 1. In order to 
get a better spatial depiction of eskers and glaciolacustrine beaches, these two classes where added. 
Table 2 shows the generalized legend with 8 classes used in the assessment.  

Table 2. Merged legend referred to as Legend 2. 

Value Class
1 Tills (merged Tv and Tb) 
2 Organic deposits (Owb)
3 Bedrock (R) 
4 Hummocky till (Th) 
5 Undifferentiated glaciofluvial sediments (GFr, GFh, GFt): sand and gravel 
6 Eskers (interpreted from high resolution imagery): sand and gravel 
7 Glaciolacustrine beaches (interpreted from high resolution imagery): sand 
8 Water (H2O) 

For each class, we used all available in situ samples, samples generated by interpretation of aerial 
photographs and samples extracted from the reference surficial geology map. The majority of 
samples came from the reference map; they were selected as randomly stratified samples from each 
subarea. The surficial geology map (Figure 5c) was used for sampling where a 20-pixel erosion 
operator was applied to avoid including samples at the edges of classes. Samples for eskers and 
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glaciolacustrine beaches were manually digitized from the high-resolution aerial photos. Thus, the 
sample set size for each subarea was 8 classes × 5000 samples = 40,000 samples. For training and 
testing models for each subarea, the sample was split to 90% for training and 10% for testing. Due to 
differences of the input data requirements for the RF and CNN, training and test data features were 
prepared differently. A number of different features combinations, spatial resolution, sampling unit 
size, and number of samples were assessed for each method. Final selection of the sampling design 
and model parametrization is described in the following Sections 2.3.2 and 2.3.3.  

2.3.2. Convolution Neural Network 

A number of different CNN configurations were tested ranging from simple two-layer networks 
to more complex configurations based on Alexnet [14] and residual convolution networks 
(RESNETs), respectively [15]. The best results were achieved with a 34 layer RESNET, which is 
consistent with published research. It consists of an initial convolution layer followed by blocks 
structured for residual learning and a final average pooling, overall 2.1 M parameters. Residual 
networks have been shown to be more robust to overfitting than other architectures. The sample unit 
size i.e., input image size was 96 by 96 pixels, and the selected number of input layers was seven 
including the air photo mosaic, Landsat TCT components brightness, greenness, and wetness, 8 m 
DEM, slope, and elevation variance. We tested input image windows of various sizes and found the 
selected size 96 × 96 the best suited to capture the main spatial properties of the desired classes. Using 
a smaller input window size improves delineation between class boundaries, but, if too small, the 
distinct spatial patterns can be missed. In exploratory analysis, we tried using Landsat pixel size 30 
m as base resolution by resampling air photo and DM, but the achieved accuracy was very low when 
compared to the case with 2 m spatial resolution. We trained a new model using only data from this 
study because we used nine non-standard input features, and most widely available pretrained 
models are based on three band true color images. To train the model, we used 100 epochs run on a 
Tesla K20c GPU with batch size of 50. The training rate for the first 20 epochs was set at 0.01 and 
remaining 50 at 0.001  

2.3.3. Random Forest 

For Random Forest classification, we used the Open Source Computer Vision Library [35]. The 
following values of the hyper-parameters were selected: the maximum possible depth of the tree 
(maxDepth = 30), the number of samples in a node to be split (MinSampleCount = 0.1%), the size of 
randomly selected features at each tree node that were used to find the best split(s) (ActiveVarCount = 3) 
and the number of trees (TC = 100). The values for maxDepth, TC and MinSampleCount were defined 
by varying one parameter at a time while keeping other two fixed and comparing the model 
performance with accuracy. We used the same input layers sets as in CNN, but the window size was 
reduced to 15 × 15 to be consistent with past RPM research using machine learning approaches  
in [9,12]. In these studies, entropy measures within 7 × 7 pixel windows were used derived from 
Landsat. However, more recent work only used the entropy from a 30 m DEM. Thus, for each data 
feature, the mean was computed within the 15 × 15 window, which is equivalent to a Landsat pixel. 
However, for the air photos, we also computed the standard deviation to provide a texture measure. 
DEM entropy would be captured by the mean of the DEM variance calculated at the down sampled 
2 m resolution. In initial trials, we tested different window sizes and number of trees and found little 
overall differences. We could have used the CNNs to identify features and fed those into the RF, but 
this would be little different from the CNN itself. Thus, we elected to compare with current  
common practice.  

3. Results 

3.1. Assessment of CCN (RESNET) vs. RF Methods for Surficial Materials Mapping 

To evaluate both CNN and RF methods for surficial materials prediction over the study area, we 
extracted samples from all subareas (Figure 5c), trained models, applied these to generate maps and 
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compared these to holdout samples over each subarea. The overall accuracies for this scenario are 
shown in Table 3. To evaluate independent test sets for each subarea, the models were trained on 
four subareas and applied to the held-out fifth subarea. Table 3 shows the accuracies for this analysis. 
Accuracy with training samples inside the mapped area is generally the same between the methods 
with an accuracy of ~76%. However, the results over independent test sets were higher with RESNET. 

Table 3. Results of accuracy assessment for different scenario and legends. 

Method Subarea 
Sample 
from All 
Subareas 

Independent 
Test Sets 

Independent 
Test Sets (with 
Merged Tv and 

Tb Classes) 

Independent Test 
Sets (with Merged 
Tv, Tb, GFr, GFh, 

GFt Classes)  

Independent 
Test Sets with 

Legend 
Shown in 

Table 2 

RESNET 18 

N 0.76 0.61 0.64 0.65 0.66 
NW 0.77 0.49 0.51 0.55 0.59 

S 0.75 0.49 0.61 0.63 0.7 
SE 0.74 0.64 0.66 0.68 0.63 
SW 0.83 0.52 0.66 0.68 0.66 

Average  0.77 0.55 0.62 0.64 0.64 

RF 

N 0.77 0.58 0.60 0.61 0.60 
NW 0.78 0.48 0.50 0.54 0.52 

S 0.76 0.50 0.62 0.62 0.63 
SE 0.76 0.60 0.62 0.63 0.61 
SW 0.78 0.50 0.63 0.63 0.64 

Average  0.77 0.53 0.59 0.61 0.60 

The results in Table 3 do not suggest a large improvement with RESNET. Overall accuracy is 
rather low reflecting difficulty of separating classes. This is due to the nature of the class distribution 
where the majority of the area consists of classes not strongly defined by spatial properties. These 
include organics, water, and till making up ~84% of the area. If we examine class specific accuracies 
(computed as the average of the user’s and producer’s accuracy), we see a greater improvement in 
the classes that are more defined by spatial structure such as hummocky till, eskers, and beaches, 
which improve on RF by 16% on average for the independent test sets results (Figure 8). 

 
Figure 8. Accuracy of rare classes. 

3.2. Assessment of RESNET Surficial Materials Mapping and Spatial Extension 

Subsets of the surficial materials maps generated by RF and RESNET are shown in Figure 9. 
Visual examination of the RESNET results with the surficial geology reference map suggests a 
reasonable general agreement that is consistent with the accuracy assessment (Table 3). In general, 
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the spatial structure and main classes are reasonably well captured (Figure 9). The map generated by 
RF shows less agreement, particularly for the classes strongly defined by spatial properties.  

 
Figure 9. Example area of reference surficial geology map, RF and RESNET result. 

In Figure 10 NW cube, the glaciolacustrine beach class was added and is fully predicted in the 
result image only. It is a source of the differences observed as only a small area in the training maps 
was modified to include the beach class. There is confusion between thin and thick till and 
glaciofluvial subclasses. However, due to the uncertainty associated with the initial mapping, these 
results appear reasonable. Surficial geology mapping by air photo interpretation can be subjective 
and somewhat generalized spatially. Comparing surficial geology maps along map boundaries 
generated by different interpreters often reveals the difficultly of consistently mapping detailed 
classes between experts. This is largely a function of the thematic detail of the map products where 
generalization to simpler classes reduces the problem. For example, differences can exist between 
rock outcrop and thin till, but confusion between rock and thick till would be rare. Another factor to  
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Figure 10. RESNET classification results for Northwest, South and Southeast subareas.  
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consider is the spatial generalization of the reference surficial geology maps. The mapping process 
carried out by geological experts comprise careful analysis of data and knowledge of geological 
processes; an expert generalizes the region by depicting polygons that mostly contain a single class. 
However, often patches of other classes can exist within the polygon. For example, a polygon 
labeled as thin till is likely to contain areas of exposed rock. The use of the expert-based surficial 
geology maps is challenging for training machine learning algorithms and the accuracies are likely 
higher then what was reported here due to these factors. 

Overview results for three of the subareas are shown in Figure 10 for the RESNET results. These 
are independent test area results, which generally produced good agreement. They contain greater 
spatial variation than the reference maps, which is one of the larger differences in the comparisons. 
The Northwest (NW) subarea (Figure 10) has the lowest agreement with the reference map and 
appears to overestimate glaciofluvial and hummocky till classes due to complex terrain in the area. 
The South (S) subarea strongly overestimates rock outcrop (Figure 10). Converting this to thin till 
greatly improves the agreement between the reference and predicted results by approximately 10%. 
The Southeast (SE) subarea overestimated organics relative to the reference map (Figure 10). 
However, examination of the Landsat data suggests an underestimate of organics in the  
reference map. 

4. Discussion 

Deep learning is gaining increasing interest in remote sensing as an approach for development 
and enhancement of mapping applications [36]. Remote sensing presents some new challenges for 
deep learning because it aims at retrieving geo-physical or bio-chemical quantities rather than 
detecting or recognizing objects. Much of the knowledge of deep learning CNN performance is based 
on benchmark databases such as CIFAR-100 [37] or ImageNet [38]. These databases generally contain 
objects with distinct spatial structure and thus the objective is ultimately to capture and encode that 
structure in the network. In this research, the surficial geology classes are more variable existing over 
a large range of scales with weakly distinct spatial structure between some classes. In addition, the 
subjective nature of expert geological interpretation causes some conflicts in the training dataset that 
would not be seen to the same degree in benchmark databases. Thus, this analysis is unique in that it 
presents a significant deep learning challenge to separate classes with strong spectral and spatial 
confusion in the presence of training data error. 

From this analysis, we can summarize some of the main considerations for the use of CNNs for 
remote sensing applications that are consistent with other research. Deep learning approaches require 
large and consistent training datasets to work well, as well as the infrastructure to train them in a 
reasonable time. The lack of sufficient training samples might cause severe overfitting and, therefore, 
greatly limit the capability of generalizing the model. It requires data with much finer spatial 
resolution to be able to extract high-level, hierarchical, and abstract features, which are generally 
more robust. Data augmentation is a common approach to train a CNN with a small sample. In this 
research, we did not use data augmentation as large samples were extracted. However, because of 
the strong dependence on sample quality, an improvement for future work would be to work with 
the geological expert to select and carefully quality control a small sample to be used in a data 
augmentation scheme. In addition, deep learning algorithms require much more experience. Setting 
up a network is much more tedious than using off-the-shelf classifiers such as random forests, as an 
in-depth knowledge of network architecture is needed. The architecture is important to achieve top 
performance, but, like most machine learning algorithms, the quality of the input data is generally 
more critical than the specific algorithm used. This was the case for the set of CNN architectures 
tested in this research.  

Another important aspect of CNNs is that they develop features from the inputs that are directly 
optimized for the specified object recognition task. Thus, only features that cannot be obtained from 
convolution filters should be used as inputs to the CNN. This also suggests that the classifier should 
be more robust to input feature sets than other approaches, provided steps to avoid overtraining are 
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undertaken. In initial experimentation, we tested several features set modifications without major 
changes in the accuracy. 

Apart from the potential performance advantage, the ability to use and adapt a pre-trained 
model is considered a potential unique advantage of CNNs. A CNN can be trained from an initial 
large training dataset and model weights can be updated for a specific region with a new training 
sample. For surficial geology mapping, we see deep learning CNNs as providing initial predictions 
that are refined by geologist and fed back into the model in an ongoing cycle reducing error and 
adapting to new or local conditions. This integrates the advanced knowledge of geological experts 
and ideally reduces subjectivity in the final products. It also can greatly reduce sampling 
requirements, as, theoretically, a smaller sample would be required to retrain an existing model to 
new areas. Evaluating this aspect for surficial geology mapping is planned for future work. However, 
in this research, the objective was to first determine that CNNs can perform as well or better than 
other machine learning methods currently in practice and that a model can be spatially extended over 
short distances. This is referred to as within landscape extension and is a key requirement for 
operational implementation over large regions. 

5. Conclusions 

CNNs are an interesting advancement in machine learning combining spectral and spatial 
properties, feature optimization for the specific classification task, and the ability to adapt pre-trained 
models to new tasks. However, understanding CNN performance for moderate resolution remote 
sensing classification has not been widely undertaken. In this research, we assessed CNNs for 
surficial geology mapping. A surficial materials classification map generated using a CNN could be 
considered as a first iteration in map production followed by geological expert refinement in a 
recursive process. Accuracies in this analysis were ~77% for holdout samples and 64% for extended 
i.e., model trained using samples from one area and applied on other adjacent areas. We see these 
results as reasonable for the more difficult case of independent testing area and the challenges 
associated with using existing surficial geology maps as training reference. We do believe that the 
presented mapping approach is worth improving by building an accurate reference database and 
testing different configurations. Future research will seek to improve training data to better evaluate 
accuracy for various network architectures. The study indicates that use of CNNs would improve 
remote predictive mapping as an effective tool for remote regions. 
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