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Abstract: This paper introduces a variational method for destriping data acquired by pushbroom-type
satellite imaging systems. The model leverages sparsity in signals and is based on current research in
sparse optimization and compressed sensing. It is based on the basic principles of regularization and
data fidelity with certain constraints using modern methods in variational optimization, namely, total
variation (TV), L1 fidelity, and the alternating direction method of multipliers (ADMM). The proposed
algorithm, TV–L1, uses sparsity-promoting energy functionals to achieve two important imaging
effects. The TV term maintains boundary sharpness of the content in the underlying clean image,
while the L1 fidelity allows for the equitable removal of stripes without over- or under-penalization,
providing a more accurate model of presumably independent sensors with an unspecified and
unrestricted bias distribution. A comparison is made between the TV–L2 model and the proposed
TV–L1 model to exemplify the qualitative efficacy of an L1 striping penalty. The model makes use of
novel minimization splittings and proximal mapping operators, successfully yielding more realistic
destriped images in very few iterations.

Keywords: alternating direction method of multipliers (ADMM); image striping restoration; raster
scan; sparse optimization; split Bregman; total variation; variational destriping

1. Introduction

Image striping is a well-known phenomenon that arises in multi-detector imaging systems ranging
from pushbroom-type instruments, such as the Airborne Multi-angle Spectro Polarimetric Imager
(AirMSPI), to atomic force mircroscopy (AFM). Biases in lateral detection occur as a result of response
variation in spatial detectors, such as in satellite imaging systems, or temporal changes, such as in
raster scans. Although these systems are optimally precalibrated, post-processing, such as destriping,
of data is a prerequisite for accurate and valid analyses. Striping removal has been traditionally
performed using either statistically based methods [1,2] or low-pass filtering in the frequency domain
[3–7]. These methods, however, do not remove stripes completely and have effects of blurring the
image. More recently, wavelet-based filtering methods have been proposed [8–10]. However, such
methods also blur the images and produce ringing effects in reconstruction.

In [11], the authors introduced a robust destriping algorithm with a spatially adaptive
unidirectional total variation (TV) model. The authors developed a new destriping method that
combines the TV–Stokes model and unidirectional TV model in [12]. In [13], the authors introduced
a TV and framelet regularization model for destriping. The same authors proposed an anisotropic
spectral–spatial TV regularization to enhance the smoothness of the solution along both the spectral
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and spatial dimension in [14]. In [13,14], the authors employed the L2 norm as the fidelity term, and
we refer to these models as TV–L2 in this paper.

We follow the pedigree of variational and partial differential equation (PDE)-based methods
applied to images [15,16] in order to construct a well-defined, optimizable model yielding fast and
high-quality destriping. The focus of our paper is not on creating a sparse wavelet representation of
the destriped image, but rather on how to remove the optimal striping mask while preserving high
image fidelity. In this paper, we propose using the L1 penalty for striping size.

Our research is robust to both isotropic and anisotropic versions of TV, whereas [13] argue that the
anisotropic case is the only appropriate case. While it is true that the anisotropic case uses decoupled
energy for the measure of smoothness and is therefore easier to minimize, isotropic TV is not selective
in which direction smoothness is penalized. Image content smoothness (or lack thereof) is not known
a priori, and thus no preference should immediately be given to certain directions for evaluating
smoothness. Using the L1 penalty, and depending on the data, the isotropic TV, which theoretically uses
more local information, allows for qualitatively better, less invasive and more intelligent destriping.
We compare the L1 and L2 penalties, ultimately favoring the L1 as a result of a wider yet tighter
distribution of the striping mask. We include detailed derivations and a motivated evolution of the
optimization problem with pedagogy in mind so that the proposed TV–L1 method, along with its
alternating direction method of multipliers (ADMM) (split Bregman) optimization, can be accessible to
all academic disciplines involved with image processing.

We construct a variational model that is well-defined, qualitatively motivated, and easily
minimized. The constructed energy uses sparsity-promoting energy functionals, on the basis of
TV and L1 energy, to achieve minimally invasive destriping. Both isotropic and anisotropic TV, along
with L1 energy, are considered in our variational model. The ADMM is used in conjunction with
nonlinear proximal operators to efficiently optimize the energy, yielding quick and high-quality results.

2. Materials and Methods

In this section, we describe the striping problem, provide the background and motivations, discuss
tools from functional analysis to be used in describing the model, develop the proposed TV–L1 model,
and provide the algorithm.

2.1. Striping Structure

Let U(x, y) be a stripe-free image of size R by C, and let G(y) be a multiplicative stripe noise of
length R. Then the observed image, F, can be written as

F(x, y) = G(x, y)U(x, y) (1)

Taking logarithms of both sides of Equation (1) yields an additive structure more suitable for
energy minimization methods. The model can now be written as

f (x, y) = g(y) + u(x, y)

where f (x, y) = ln(F(x, y)), g(x, y) = ln(G(x, y)), and u(x, y) = ln(U(x, y)).
Striping in images can be viewed as structured noise, of which variations are mainly concentrated

along one axis. This can be mathematically encoded as ‖∇xG‖ � ‖∇yG‖, or with the logarithmic
terms, as ‖∇xg‖ � ‖∇yg‖.
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2.2. Tikhonov Minimization

A classical Tikhonov minimization problem would consist of a smoothness regularizer and a data
fidelity term, both easily differentiable, with the striping constraint [17]:

min
u

{
‖∇u(x, y)‖2

2 +
λ

2
‖u(x, y)− f (x, y)‖2

2

}
such that ‖∇xg‖ � ‖∇yg‖

This constraint can be simplified by the approximation that∇xG(x, y) = 0 ∀(x, y), which would
make G(x, y) = G(y), and g(x, y) = g(y) functions of only one variable. Using the additive identity
between f , g, and u along with the constraint approximation, the new unconstrained minimization
problem is

min
g

{
‖∇y( f (x, y)− g(x, y))‖2

2 +
λ

2
‖g(x, y)‖2

2

}
By taking the first variation of the energy and setting it to zero, the closed-form solution to this

minimization problem is

g(x, y)= (∇y · ∇y + λI)−1(∇y · ∇y f (x, y))

= (
∂2

∂y2 + λI)−1( fyy(x, y))

However, this solution would cause g to become bivariate, in contradiction with the constraint.
Instead, using the Cartesian regularity of our rectangular domain Ω = Ix × Iy and using g(x, y) = g(y),
we can come to a solution that is in agreement with the constraint by integrating with respect to x:

∫
Ω

g(x, y)dx =
∫

Ix
g(y)dx = g(y)

∫
Ix

dx = g(y)µ(Ix) =
∫

Ix
(

∂2

∂y2 + λI)−1( fyy(x, y))dx ⇒

g(y) =
1

µ(Ix)

∫
Ix
(

∂2

∂y2 + λI)−1( fyy(x, y))dx

2.3. Fourier Interpretation

Utilizing the Plancherel Fourier isometry, the solution can be interpreted in spectral form as

ĝ(ωy) =
1

µ(Ix)

( ω2
y

λ + ω2
y

)
f̂ =

( ω2
y

λ + ω2
y

)
¯̂f

For a specific x, the stripping g(y) is constant and is of higher frequency, whereas the underlying
clean image varies more slowly (has more low-frequency content) and for each x has somewhat
different frequencies. Therefore, the average frequencies of the clean image are low in magnitude and
are of lower frequency, while the average frequencies of the stripping are high in magnitude and are
of higher frequency. Therefore, the average frequencies (averaged over ωx) of the cleaned image are
simply the average frequencies of the original image multiplied by a one-dimensional low-pass filter

λ
λ+z2 . Likewise, the striping mask on the spectral side, ĝ, is obtained analogously to a one-dimensional

high-pass filter z2

λ+z2 .
Although this minimization problem is readily solvable in closed form and has a motivated

physical interpretation, we must abandon the quadratic energy terms so that we may have less
penalization for heavier striping and to allow for less smooth solutions. Although the differentiability
of terms is easy to work with, enough optimization machinery has been developed that we may tread
forward without it. We now investigate and outline some tools from signal processing in order to refine
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our model. Stripe and ring artifact removal from this frequency perspective has been accomplished
using wavelet and Fourier filtering [18].

2.4. Tools from Functional Analysis

We now introduce the notations and tools from functional analysis that are used in Section 2.5.

2.4.1. Total Variation: Anisotropic vs. Isotropic

The idea of using TV as a regularizer and denoiser that promotes sparsity and piecewise constant
smoothness can be traced back to Rudin, Osher, and Fatemi [19,20]. We begin with defining the notion
of TV, which is used as a regularizer in the model.

Definition 1. The TV of a function f ∈ L1(Ω) is

V( f , Ω) := sup
{ ∫

Ω
f (x)divφ(x)dx : φ ∈ C1

c (Ω,Rn), ‖φ‖L∞(Ω) ≤ 1
}

For a differentiable function f ∈ Ω, with Ω ⊆ Rn, the TV of f can be written as

V( f , Ω) =
∫
Ω

|∇ f (x)|dx

The choice of vectorial norm inside the integral yields the two different types of TV.

Definition 2. Isotropic TV: | · | denotes the l2-norm, in which case

V( f , Ω) =
∫
Ω

(
n

∑
i

f 2
xi
(x))

1
2 dx

Definition 3. Anisotropic TV: | · | denotes the l1-norm, in which case

V( f , Ω) =
∫
Ω

n

∑
i
| fxi (x)|dx

The isotropic and anisotropic cases differ in terms of the geometries they each preserve. While
the decoupled anisotropic TV preserves piecewise constant orthogonal structures, such as rectangular
roofs, the coupled isotropic TV preserves piecewise constant radial structures, such as silos. Our
model is robust with respect to either choice of TV, and dual derivations of variable updates are shown;
however, the experiments and results are based on the anisotropic definition.

2.4.2. Shrinkage Proximal Operator

We introduce a splitting variable and quadratic penalty into the model. The solution to the
l1-regularized least-squares problem:

arg min
~x

µ‖~x‖1 +
1
2
‖~x−~y‖2

2

is given by the soft threshold proximal mapping operator, shrinkage [21,22]:

Definition 4.
Shrink(~x, µ) = Sµ(~x) =

~x
|~x| max{|~x| − µ, 0}
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If ‖~x‖1 = |x1| + |x2|, as in the anisotropic case of TV, the shrinkage is decoupled and done
component wise. On the other hand, if ‖~x‖1 =

√
|x1|2 + |x2|2, as in the isotropic case, the terms are

coupled and both components are updated simultaneously. Both variants have their merits; while the
former is computationally simpler, the latter has the advantage of using more local information and
may be more conformant to certain image processing applications.

2.5. TV–L1 ADMM Model

We now describe our model using the motivations and tools introduced earlier. The two energy
components of the minimization problem are the smoothness regularizer and the data fidelity term.
The energy of the data fidelity term, λ

2 ‖ f (x, y) − u(x, y)‖2
2 = λ

2 ‖g(y)‖2
2, can be interpreted as the

magnitude of the striping mask. The L2 fidelity overly penalizes stripes of large magnitude and
likewise underexaggerates the significance of stripes of small magnitude. In areas of no striping, we
intend our (logarithm of the) striping mask to be very close to zero, while in areas of heavy striping, we
wish to remove such striping and thus yield a larger magnitude of our striping mask in that region. The
L1 fidelity gives a smaller striping mask in areas of no striping, leaving enough energy to remove the
heavier striping in localized areas of the image. Because there is no prior knowledge of the distribution
of the stripes and qualitatively we may wish to remove deep striping effects while preserving sharp
geometry, we believe it is better to update the model with an L1 striping penalty, ‖g‖1.

An L2 gradient term would cause oversmoothing of the retrieved clean image u(x, y). This could
cause a loss in boundary sharpness of elements in the image (e.g., lakes, rooftops, etc.), which seems
important in the pursuit and usage of destriped images. Implementing a TV-based regularizer would
give performance similar to the L2 gradient but maintains boundary sharpness more natural to the
underlying image. Although these terms are not differentiable, impeding a closed-form solution,
state-of-the-art nonlinear optimization algorithms are available for fast convergence to qualitatively
meaningful minimizers. The unconstrained TV L1 model (TV–L1) is

min
u

{
V(u(x, y), Ix × Iy) + λ||u(x, y)− f (x, y)‖1

}
or equivalently, minimizing with respect to the striping mask g,

min
g

{
V( f (x, y)− g(y), Ix × Iy) + λ‖g(y)‖1

}
2.5.1. Discretization

For the purpose of application and computation, we now move the problem into a discrete setting.
Let Ω = {x1, ..., xC} × {y1, ..., yR} be an R× C image. First variations are approximated via forward
differences, so that ∂ f

∂y (xi, yj) ≈ f (xi, yj+1) − f (xi, yj) := δy fi,j for j = 1, ..., R − 1 and analogously
∂ f
∂x ≈ f (xi+1, yj)− f (xi, yj) := δx fi,j for i = 1, ..., C− 1. We take Neumann boundary conditions, so
that on the forward boundary (i = C or j = R), the derivative is set to zero.

D =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 0

 ∈ MR×R(R)

so that Du(xi0 , y) = (δyui0,1, · · · , δyui0,R−1, 0)T

The isotropic TV is

|∇I f (xi, yj)| ≈
√
(δx fi,j)2 + (δy fi,j)2
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The anisotropic TV is
|∇AI f (xi, yj)| ≈ |δx fi,j|+ |δy fi,j|

With these discrete operators defined, the discrete unconstrained TV–L1 minimization problem is

min
g

{
∑
i,j
‖〈δx fi,j, δy( fi,j − gj)〉‖1 + λ‖g(y)‖1

}
The two types of the minimization problem are the following:
Anisotropic:

min
g

{
∑
i,j
|δy( fi,j − gj)|+ λ‖g(y)‖1

}
Isotropic:

min
g

{
∑
i,j

√
(δx fi,j)2 + (δy( fi,j − gj))2 + λ‖g(y)‖1

}
2.5.2. Augmented Lagrangian

Anisotropic: With the discrete forward difference approximation matrix defined above, we can
rewrite the minimization problem as follows:

Point Form: min
~g

{
∑
i,j
|δy( fi,j − gj)|+ λ‖g(y)‖1

}
Vector Form: min

~g

{
∑

i
‖D( fi −~g)‖1 + λ‖g(y)‖1

}
Matrix Form: min

~g

{
‖D( f −~g⊗ ~1C)‖1,1 + λ‖g(y)‖1

}
To render the constrained minimization problem unconstrained, we introduce auxiliary variables,

Lagrangian multipliers (split Bregman), and quadratic penalty terms, so that the augmented
Lagrangian is defined as follows:

Lα,λ(bi, h, g, qi, r) = ∑
i

(
‖bi‖1 +

α

2
‖bi − D(g− fi)‖2

2 + 〈qi, bi − D(g− fi)〉
)

+λ
(
‖h‖1 +

α

2
‖h− g‖2

2 + 〈r, h− g〉
)

= ∑
i

(
‖bi‖1 +

α

2
‖bi − D(g− fi) +

qi
α
‖2

2

)
+λ

(
‖h‖1 +

α

2
‖h− g +

r
α
‖2

2

)
+O(q2

i , r2)

We now solve the unconstrained saddle point problem:

min
bi ,h,g

max
qi ,r
Lα,λ(bi, h, g, qi, r)

The solution to the original constrained minimization problem is now found as the saddle point
of the augmented Lagrangian L in a sequence of iterative suboptimizations called the ADMM [23–28].
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The splitting variables bi and h are updated by the proximal mapping operator:

bk+1
i = arg min

bi

Lα,λ(bi, hk, gk, qk
i , rk)

= arg min
bi

{
‖bi‖1 +

α

2
‖bi − D(g− fi) +

qi
α
‖2

2

}
= S 1

α

(
D(g− fi)−

qi
α

)
hk+1 = arg min

h
Lα,λ(bk+1

i , h, gk, qk
i , rk)

= arg min
hi

{
‖h‖1 +

α

2
‖h− g‖2

2

}
= S 1

α

(
g− r

α

)
Because of the introduction of the splitting variables, g is only contained in quadratic terms and

thus is easily solved for

gk+1 = arg min
g
Lα,λ(bk+1

i , hk+1, g, qk
i , rk)

= arg min
g

{
α

2 ∑
i
‖bi − D(g− fi) +

qi
α
‖2

2 +
λα

2
‖h− g +

r
α
‖2

2

}
⇒

δL
δg

= α ∑
i
−DT(bi − D(g− fi) +

qi
α
)− λα(h− g +

r
α
) =

α(CDT D + λI)g− αDT(∑
i

bi + D fi +
qi
α
)− λαh + λr = 0 ⇒

g = (CDT D + λI)−1

(
DT(∑

i
bi + D fi +

qi
α
) + λ(h− r

α
)

)

The Langrangian multipliers (split Bregman variables) are updated through gradient ascent:

qk+1
i = qk

i + τα(bk+1
i − D(gk+1 − fi))

rk+1 = rk + τλα(hk+1 − gk+1))

Isotropic: As a result of the coupling of the terms in this version of the minimization problem,
we cannot compactly write the problem with matrices as above; however, the solution is just as
readily available. Here the � denotes the Hadamard matrix power operator, which acts pointwise on
the matrix.

Point Form:
min
~g

{
∑
i,j

√
(δx fi,j)2 + (δy( fi,j − gj))2 + λ‖g(y)‖1

}
Matrix Form:

min
~g

{
‖[( f DT)�2 + (D( f −~g⊗ ~1C))

�2]�
1
2 ‖1,1 + λ‖g(y)‖1

}
Just as before, we introduce splitting variables and Lagrangian multipliers to form the

augmented Lagrangian:
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Lα,λ(ai,j, bi,j, h, g, pi,j, qi,j, r) = ∑
i,j

√
|ai,j|2 + |bi,j|2 +

α

2
‖ai,j − δx fi,j‖2

2 + 〈pi,j, ai,j − δx fi,j〉

+
α

2
‖bi,j − δy( fi,j − gj)‖2

2 + 〈qi,j, bi,j − δy( fi,j − gj)〉

+λ(‖h‖1 +
α

2
‖h− g‖2

2 + 〈r, h− g〉)

= ∑
i,j

√
|ai,j|2 + |bi,j|2 +

α

2
‖ai,j − δx fi,j +

pi,j

α
‖2

2

+
α

2
‖bi,j − δy( fi,j − gj) +

qi,j

α
‖2

2

+λ
(
‖h‖1 +

α

2
‖h− g +

r
α
‖2

2
)

+O(q2
i,j, p2

i,j, r2)

The splitting variables ai,j and bi,j are updated by the vectorial proximal mapping operator:

〈ai,j, bi,j〉 = arg min
〈ai,j ,bi,j〉

Lα,λ(ai,j, bi,j, hk, gk, pk
i , qk)

= arg min
〈ai,j ,bi,j〉

{√
|ai,j|2 + |bi,j|2 +

α

2
‖ai,j − δx fi,j +

pi,j

α
‖2

2

+
α

2
‖bi,j − δy( fi,j − gj) +

qi,j

α
‖2

2

}
= arg min

〈ai,j ,bi,j〉

{
‖〈ai,j, bi,j〉‖+

α

2
‖〈ai,j, bi,j〉 − 〈δx fi,j +

pi,j

α
, δy( fi,j − gj) +

qi,j

α
〉‖2
}

= S 1
α
(〈δx fi,j +

pi,j

α
, δy( fi,j − gj) +

qi,j

α
〉)

Each component of the vector is updated via shrinkage as follows:

ai,j =
δx fi,j +

pi,j
α

s
·max(s− 1

α
, 0)

bi,j =
δy( fi,j − gj) +

qi,j
α

s
·max(s− 1

α
, 0)

s =
√
(δx fi,j +

pi,j

α
)2 + (δy( fi,j − gj) +

qi,j

α
)2

The splitting variable h, the striping mask g, and the Lagrangian multipliers are updated as before
due to the common structure between the two models:

pk+1
i,j = pk

i,j + τα(δx fi,j +
pi,j

α
))

We now describe the algorithm for the TV–L1 model (see Algorithm 1). The first algorithm
(anisotropic) is presented in vector form. The second algorithm (isotropic) is presented in matrix form.
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2.5.3. Algorithm

Algorithm 1 Complete ADMM optimization of TV–L1.

1: Initialize: A0 = (~ai), B0 = (~bi), Q0 = (~qi)← 0 ∈ RR×C , ~g0, ~h0, ~r0 ← 0 ∈ RR×1, n← 0 ∈ R
2: f = (~fi)← ln(F), D ← 0 ∈ RR×R, (D)i,i = −1, (D)i,i+1 = 1 for i = 1, ..., R− 1
3: repeat
4: n← n + 1
5: case Anisotropic:
6: for i = 1 : C do
7: Update splitting variable for smoothness regularizer term via shrinkage:

~bi
n+1 ← S 1

α

(
D(~gn − ~fi)−

~qn
i

α

)
8: Update Lagrangian multiplier for regularizer term via dual ascent:

~qi
n+1 ← ~qi

n + τα(~bi
n+1 − D(~gn − ~fi))

9: end for

10: case Isotropic:
11: for i = 1 : C, j = 1 : R do
12: Update splitting variables for smoothness regularizer term via vectorial shrinkage:

〈an+1
i,j , bn+1

i,j 〉 ← S 1
α
(〈δx fi,j +

pn
i,j

α
, δy( fi,j − gn

j ) +
qn

i,j

α
〉)

13: Update Lagrangian multipliers for regularizer term via dual ascent:

pn+1
i,j ← pn

i,j + τα(δx fi,j +
pi,j

α
))

qn+1
i,j ← qn

i,j + τα(bn+1
i,j − δy(gn

j − fi,j))

14: end for

15: Update splitting variable for data fidelity term via shrinkage:

~hn+1 ← S 1
α

(
~gn −~rn

α

)
16: Update striping mask:

~gn+1 ← (CDT D + λI)−1

(
DT(∑

i

~bi
n+1

+ D~fi +
~qi

n+1

α
) + λ~hn+1 − λ

α
~rn

)
17: Update Lagrangian multiplier for data fidelity term via dual ascent:

~rn+1 ←~rn + τλα(~hn+1 −~gn+1))
18: Update energy terms:

En+1
1 ←∑

i
‖D(~fi −~gn+1)‖1, En+1

2 ← λ‖~gn+1‖1

En+1 ← En+1
1 + En+1

2
19: until convergence:

‖~gn+1 −~gn‖2
2/‖~gn‖2

2 < εg and |En+1 − En|2/|En|2 < εE

20: Retrieve clean image:
u← f − gn+1 ⊗ [11, 12, ..., 1C]

U ← exp(u)
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3. Results

In our experiments, we used data acquired by the AirMSPI. The AirMSPI is an airborne prototype
instrument similar to that of the future satellite-borne MSPI instrument for obtaining multi-angle
polarization imagery [29]. The instrument was built for NASA by the Jet Propulsion Laboratory
in Pasadena, California and has been flying aboard the NASA ER-2 high altitude aircraft since
October 2010.

The AirMSPI is an eight-band (355, 380, 445, 470, 555, 660, 865, and 935 nm) pushbroom
camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire
multi-angular observations over a ±67◦ along-track range. Two principal observing modes are
employed: step-and-stare, in which 11 km × 11 km targets are observed at a discrete set of view angles
with a spatial resolution of ∼10 m; and continuous sweep, in which the camera slews back and forth
along the flight track within ±67◦ to acquire wide-area coverage (11 km swath at nadir; target length
of 108 km) with a ∼25 m spatial resolution. Step-and-stare provides more angles, but continuous
sweep gives greater coverage. Multiple observing modes can be programmed into the instrument and
activated under cockpit control. Multi-angle radiance and polarization imagery from the AirMSPI will
provide 3D scene context where clouds and aerosol plumes are present. It will also enable the retrieval
of aerosol and cloud macrophysical properties (distribution and height), microphysical properties (size
distribution, single scattering albedo, and shape), and optical depth.

We first compare destriping results generated using TV–L2 and the proposed TV–L1 models.
Figure 1 shows the 355 nm ultraviolet (UV) channel image with stripes captured by the AirMSPI
instrument from the nadir angle at Mojave, California. The image has been destriped using the TV–L2

and TV–L1 models. As we can see from the destriped images and corresponding differences between
the captured and destriped images, the TV–L2 model does not preserve radiometric intensities in
regions where no stripes are present. Figure 2 (left) shows plots of the recovered function G for
the TV–L2 and TV–L1 destriped images. The TV–L1 recovered function G is closer to the identity,
particularly for the rows with no stripes, suggesting the TV–L1 reconstruction is more accurate than
the TV–L2 reconstruction. Figure 2 (right) shows plots of sums over all rows of the original image with
stripes (from Figure 1), as well as sums of rows for the TV–L2 and TV–L1 destriped images. These plots
indicate that the TV–L1 model preserves radiometric intensities of the original images better, and the
TV–L2 model produces more artificial smoothing throughout the image. Figure 3 shows histograms of
the function G for the TV–L2 and TV–L1 reconstructions. The TV–L1 reconstruction is pointier than the
TV–L2 reconstruction. It is also centered at 1, as opposed to the TV–L2 reconstruction, which further
indicates better accuracy of the TV–L1 model. We note that the true stripes, at around G ≈ 0.95, are
represented in the histograms by small bumps.

(a) (b) (c) (d) (e)

Figure 1. (a) The 355 nm channel image with stripes captured by Airborne Multi-angle Spectro
Polarimetric Imager (AirMSPI) instrument from nadir angle at Mojave, California. (b) Destriped
image using total variation TV–L2 model. (c) Difference between captured image from (a) and TV–L2

destriped image from (b). (d) Destriped image using TV–L1 model. (e) Difference between captured
image from (a) and TV–L1 destriped image from (d).
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Figure 2. Comparisons of total variation TV–L2 and TV–L1 destriping for the results shown in Figure 1.
On the left, plots of recovered function G for TV–L2 destriped image (blue) and TV–L1 destriped
image (red) are shown. TV–L1 recovered function G is closer to the identity, particularly for the
rows with no stripes, suggesting TV–L1 reconstruction is more accurate than TV–L2 reconstruction.
On the right, plots of sums over all rows of original image with stripes (black), TV–L2 destriped
image (blue), and TV–L1 destriped image (red) are shown. These plots indicate that TV–L1 model
preserves radiometric intensities of the original images better, and TV–L2 model produces more
artificial smoothing throughout the image.
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Figure 3. Comparisons of total variation TV–L2 and TV–L1 destriping for the results shown in
Figure 1. (a) Histogram of function G for TV–L2 reconstruction. (b) Histogram of function G for
TV–L1 reconstruction. TV–L1 reconstruction is pointier than TV–L2 reconstruction. It is also centered
at 1, as opposed to TV–L2 reconstruction, which further indicates better accuracy of TV–L1 model.

Figures 4–6 display similar results to those shown in Figures 1–3 for the 355 nm channel image
with stripes depicting clouds over the Pacific Ocean captured by the AirMSPI instrument from the
66.0◦F angle.
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(a) (b) (c) (d) (e)

Figure 4. (a) The 355 nm channel image with stripes depicting clouds over the Pacific Ocean captured
by Airborne Multi-angle Spectro Polarimetric Imager (AirMSPI) instrument from 66.0◦F angle. (b)
Destriped image using total variation TV–L2 model. (c) Difference between captured image from (a)
and TV–L2 destriped image from (b). (d) Destriped image using TV–L1 model. (e) Difference between
captured image from (a) and TV–L1 destriped image from (d).
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Figure 5. Comparisons of total variation TV–L2 and TV–L1 destriping for the results shown in Figure 4.
On the left, plots of recovered function G for TV–L2 destriped image (blue) and TV–L1 destriped
image (red) are shown. TV–L1 recovered function G is closer to the identity, particularly for the
rows with no stripes, suggesting TV–L1 reconstruction is more accurate than TV–L2 reconstruction.
On the right, plots of sums over all rows of original image with stripes (black), TV–L2 destriped
image (blue), and TV–L1 destriped image (red) are shown. These plots indicate that TV–L1 model
preserves radiometric intensities of the original images better, and TV–L2 model produces more
artificial smoothing throughout the image.
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Figure 6. Comparisons of total variation TV–L2 and TV–L1 destriping for the results shown in
Figure 4. (a) Histogram of function G for TV–L2 reconstruction. (b) Histogram of function G for
TV–L1 reconstruction. TV–L1 reconstruction is pointier than TV–L2 reconstruction. It is also centered
at 1, as opposed to TV–L2 reconstruction, which further indicates better accuracy of TV–L1 model.

Because the TV–L1 model generates results with better accuracy than the TV–L2 model, we focus on
the TV–L1 model in the following examples. Figures 7–9 show more examples of the TV–L1 reconstruction
of images captured using the continuous-sweep observing mode. Figures 10 and 11 display images captured
using the step-and-stare observing mode as well as destriped results using the TV–L1 model.

Original, f Reconstructed, u Difference, f − u

(a)

(b)

(c)

Figure 7. Images with stripes captured by Airborne Multi-angle Spectro Polarimetric Imager (AirMSPI)
instrument at Mojave, California (left); destriped images using total variation TV–L1 model (center);
and differences between captured and destriped images (right) are shown. The bands and viewing
angles are (a) 380 nm band at nadir angle, (b) 355 nm band at 66.1◦F angle, and (c) 355 nm band at
66.1◦A angle; 355 nm band at nadir angle is shown in Figure 1.
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Original, f Reconstructed, u Difference, f − u

(a)

(b)

Figure 8. Images with stripes depicting clouds over the Pacific Ocean captured by Airborne Multi-angle
Spectro Polarimetric Imager (AirMSPI) instrument (left), destriped images using total variation TV–L1

model (center), and differences between captured and destriped images (right) are shown. The bands
are (a) 380 nm, and (b) 660 nm, all at 66.0◦F; 355 nm band at 66.0◦F angle is shown in Figure 4.

Original, f Reconstructed, u Difference, f − u

(a)

(b)

(c)

Figure 9. Images with stripes of dry Ivanpah Lake, California, captured by Airborne Multi-angle
Spectro Polarimetric Imager (AirMSPI) instrument (left); destriped images using total variation TV–L1

model (center); and differences between captured and destriped images (right) are shown. The bands
are (a) 355 nm, (b) 380 nm, and (c) 865 nm, all at nadir angle.
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Original, f Reconstructed, u Difference, f − u

(a)

(b)

Figure 10. Images captured by Airborne Multi-angle Spectro Polarimetric Imager (AirMSPI) instrument
at Avalon, California (left); destriped images using total variation TV–L1 model (center); and
differences between captured and destriped images (right) are shown. The bands are (a) 355 nm,
and (b) 380 nm, both captured using the continuous-sweep observing mode.

Original, f Reconstructed, u Difference, f − u

(a)

(b)

Figure 11. Images with stripes captured by Airborne Multi-angle Spectro Polarimetric Imager (AirMSPI)
instrument at Fallbrook, California (left); destriped images using total variation TV–L1 model (center);
and differences between captured and destriped images (right) are shown. The bands are (a) 355 nm,
and (b) 380 nm, both captured using the continuous-sweep observing mode.

4. Discussion

We have provided detailed derivations and a motivated evolution of the optimization problem so
that the proposed TV–L1 method can be accessible to all academic disciplines involved with image
processing. We have presented a variational model that is well-defined, qualitatively motivated,
and easily minimized. The constructed energy uses sparsity-promoting energy functionals, on the
basis of TV and L1 energy, to achieve minimally invasive destriping. Both isotropic and anisotropic TV,
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along with L1 energy, are considered in our variational model. The ADMM is used in conjunction with
nonlinear proximal operators to efficiently optimize the energy, yielding quick and high-quality results.

The L2 fidelity overly penalizes stripes of large magnitude and likewise underexaggerates the
significance of stripes of small magnitude. In areas of no striping, we intend our striping mask to be
very close to the identity, while in areas of heavy striping, we wish to remove such striping and thus
yield a larger magnitude of our striping mask in that region. The L1 fidelity gives a smaller striping
mask in areas of no striping, leaving enough energy to remove the heavier striping in localized areas
of the image. Because there is no prior knowledge of the distribution of the stripes and qualitatively
we may wish to remove deep striping effects while preserving sharp geometry, we conclude that the
model with an L1 striping penalty is more effective.

The TV–L1 model preserves radiometric intensities of the original images better, and the TV–L2

model produces more artificial smoothing throughout the image. TV–L1 recovers the function G
that is closer to the identity, particularly for the rows with no stripes, suggesting that the TV–L1

reconstruction is more accurate than the TV–L2 reconstruction. The histograms of the function G for
the TV–L1 reconstruction are more compact around 1 than those for the TV–L2 reconstruction. They are
also centered at 1, as opposed to the TV–L2 reconstruction, which further indicates the better accuracy
of the TV–L1 model.

5. Conclusions

In this paper, we have presented a novel variational method for image destriping through fast
minimization techniques of appropriately modeled energy functionals, namely TV and the L1 data
fidelity term. Our destriping model solves the inverse problem as follows: it minimally removes
a univariate multiplicative striping mask from the data, such that the clean image is somewhat smooth
and the removed stripe has low energy. We assess the smoothness of the clean image using the TV,
which maintains sharp image features and preserves definition and contrast. We address both isotropic
and anisotropic TV in this paper, each having their respective strengths and weaknesses. We use L1

and, for comparison, L2 energy to measure the removed striping, ensuring minimal data removal and
thus a clean image of high fidelity.

The variational problem is solved efficiently using an ADMM approach: it introduces splitting
variables and quadratic penalties for deviations from the splitting variables to allow for efficient
optimization via proximal shrinkage operators, explicit quadratic solutions, and simple gradient ascent
for the Lagrangian multipliers. In our experiments, we have shown that the proposed TV–L1 method
yields qualitatively good results and removes minimal masking, and it does so quickly in terms of both
iterations and time. From the histogram distributions of G, we observe a narrower spread around 1,
yet a wider, more equidistributed support, suggesting that most of the time, there is minimal masking
removal (multiplier close to 1); however, in areas of heavy striping, the destriping effect is more
prevalent and is of greater magnitude.

Applications of this algorithm are not limited to satellite imagery, and they may be analogized to
other fields, such as raster scans in microscopy. Any scientific measurements (of images) made mostly
along a curve—parameterizable by a single dimension—may be susceptible to such striping biases
and may be a candidate for similar destriping. Future work will expand this model to multi-modal
images and color images, and it may incorporate other specific priors on the data.
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Abbreviations

The following abbreviations are used in this manuscript:

ADMM Alternating direction method of multipliers
AFM Atomic force mircroscopy
AirMSPI Airborne Multi-angle Spectro Polarimetric Imager
PDE Partial differential equation
TV Total variation
UV Ultraviolet
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