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Abstract: When confronted with limited labelled samples, most studies adopt an unsupervised feature
learning scheme and incorporate the extracted features into a traditional classifier (e.g., support vector
machine, SVM) to deal with hyperspectral imagery classification. However, these methods have
limitations in generalizing well in challenging cases due to the limited representative capacity of the
shallow feature learning model, as well as the insufficient robustness of the classifier which only depends
on the supervision of labelled samples. To address these two problems simultaneously, we present an
effective low-rank representation-based classification framework for hyperspectral imagery. In particular,
a novel unsupervised segmented stacked denoising auto-encoder-based feature learning model is
proposed to depict the spatial-spectral characteristics of each pixel in the imagery with deep hierarchical
structure. With the extracted features, a low-rank representation based robust classifier is then developed
which takes advantage of both the supervision provided by labelled samples and unsupervised
correlation (e.g., intra-class similarity and inter-class dissimilarity, etc.) among those unlabelled samples.
Both the deep unsupervised feature learning and the robust classifier benefit, improving the classification
accuracy with limited labelled samples. Extensive experiments on hyperspectral imagery classification
demonstrate the effectiveness of the proposed framework.

Keywords: deep unsupervised feature learning; segmented stacked denoising auto-encoder; low rank
representation; hyperspectral imagery classification

1. Introduction

Hyperspectral imaging collects the spectral information across a certain range of the electromagnetic
spectrum at narrow wavelengths (e.g., 10 nm) [1], which makes the resulting hyperspectral image (HSI)
a 3D data cube showing spatial-spectral characteristics. In contrast to traditional gray-scale or color
images, abundant spectral information makes it convenient for HSIs to detect or identify objects from
a cluttered background. Thus, HSIs have been widely employed in many applications, such as resource
exploration [2], environment monitoring [3], object recognition [4], biopharming [5], etc.

In these applications, one of the fundamental tasks is the HSI classification, which aims to employ
the classifier trained on some observed labelled samples to assign a label to each pixel based on
appropriate features. Many HSI classification methods have been proposed [6–11]. According to the
extraction of features using labelled samples or not, these methods can be roughly divided into two
categories, including the supervised feature learning method and the unsupervised feature learning
method. A brief review can be found in Section 2.
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In the supervised feature learning method, a specific objective function is designed to drive feature
learning from labelled samples [12,13]. Recently, witnessing the great success of deep neural networks
(DNNs) in various computer vision tasks [14,15], some studies begin addressing HSI classification with
DNNs [16,17], where the desired feature and classifier are integrated into a unified mapping function
and can be learned from labelled samples via an end-to-end training scheme. More importantly,
with the deep hierarchical structure, DNNs enable the learning of more representative features and
discriminative classifiers, thus obviously improving the classification accuracy. To this end, extensive
labelled samples are needed in training the DNNs. However, labelling pixels in an HSI mainly depends
on the experience of experts in geoscience, which is often costly and time-consuming. Therefore, it is
crucial in practice to deal with HSI classification with limited labelled samples [18].

When being confronted with limited labelled samples, most studies [19,20] adopt an unsupervised
feature learning method, where features are extracted in an unsupervised way (i.e., without using the
supervision provided by labelled samples) and then embedded into a supervision-inspired classifier.
However, most of these methods suffer from two limitations. On one hand, they often employ
a heuristic feature extraction model with shallow structure, which prevents the extracted features from
being representative enough for challenging cases (e.g., different materials exhibit similar spectra in
an HSI, or vice versa). On the other hand, supervision-inspired classifiers only leverage the information
of labelled samples without consideration of the crucial unsupervised correlation provided by those
unlabelled samples (e.g., intra-class similarity and inter-class dissimilarity). In other words, this kind
of classifier considers the unlabelled samples independently, which makes it difficult to deal with
various challenging cases (e.g., sample variation or noise corruption). Both of these limitations hinder
those unsupervised feature learning methods from successfully dealing with challenging cases in
HSI classification.

To mitigate these limitations, we present an effective low-rank representation based HSI
classification framework. Inspired by the success of the stacked auto-encoder [21] in unsupervised
learning, we propose a novel unsupervised segmented stacked denoising auto-encoder-based feature
learning model to extract the spatial-spectral characteristics of each pixel in the imagery with deep
hierarchical structure. Then, a low-rank representation based classification strategy is developed to
incorporate both the supervision information from labelled sample and the unsupervised low-rank
property among unlabelled samples into a robust classifier. In the proposed framework, the deep
structure of the segmented stacked denoising auto-encoder enables the learning of a complicated
feature for each pixel. Moreover, the spatial-spectral setting further increases the representative power
of the resulted feature. In the robust classifier, the intra-class similarity and inter-class dissimilarity
among unlabelled samples are implicitly captured in classification by exploiting the low-rank property
in their representation space, which improves the robustness of the classifier to various challenging
cases. Both of these advantages lead to obvious improvements in HSI classification accuracy, especially
when the labelled samples are limited. Experiments on two standard HSI classification datasets
demonstrate the superiority of the proposed framework over several sate-of-the-art methods.

In general, this study mainly contributes in the following three aspects:

• We propose a novel segmented stacked denoising auto-encoder-based spatial-spectral feature
learning model.

• We develop an effective low-rank representation based robust classifier.
• We demonstrate state-of-the-art performance in HSI classification, especially when the labelled

samples are limited.

The remainder of this paper is organised as follows. In Section 2, we introduce the related work.
Section 3 gives the details of the proposed framework. The experimental results are reported in
Section 4. The study is discussed in Section 5. Finally, a conclusion is provided in Section 6.
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2. Related Work

In this section, we will briefly review the existing feature learning methods and classifiers for HSI
classification. Specifically, those feature learning methods can be divided into supervised methods and
unsupervised methods.

Supervised feature learning method. A deep neural network (DNN) is a kind of machine
learning method; the basic idea is to build a neural network model containing multiple hidden
layers, which needs a large amount of training data to train the network model. There are already
many supervised DNN methods [12,14–17,22–26]. In [22], deep convolutional neural networks
(DCNNs) are employed to classify HSIs directly in the spectral domain. In [12], Zhang et al.
proposed a dual-channel convolutional neural network-based spectral-spatial classification framework;
in this article, a one- dimensional CNN is applied to extract the hierarchical spectral features and
a two-dimensional CNN is used to extract the hierarchical spatial features, then a softmax regression
classifier is used to combine the spectral and spatial features together and predict classification results.
Because deeper neural networks are more difficult to train, in [14], He et al. proposed the image
recognition method based on deep residual network (ResNet) to deal with the difficulty of training
in DNNs. In [23], a ResNet is built for HSI classification. The back propagation neural network
(BP) [27,28] is also a well-known supervised machine learning method, and it has been used in remote
sensing image classification [27] and handwritten digit recognition [28]. However, as we all know,
most of the supervised feature leaning methods need a large amount of labelled data to train the
model, which is always unrealistic when there are only a small number of labelled samples available.
Therefore, more and more scholars began to study unsupervised feature learning methods.

Unsupervised feature learning method. Transformation-based feature learning methods [29–32]
map or transfer the original data from the high-dimensional data space into the low-dimensional
feature space. The well-known transformation-based characteristics learning methods include principal
component analysis (PCA), minimum noise fraction (MNF), etc. PCA [32] can express data in
minimum mean square error, but it will be influenced by noise. Therefore, Green et al. [30] and
Lee et al. [31] proposed minimum noise separation methods, which arrange the components of the
transformation according to the order of signal-to-noise ratio (SNR). Morphological profile-based
methods (MPs) are also a kind of unsupervised feature learning method. MPs [33,34] with erosion
and dilation operators can capture spatial structures in the images, leading to high classification
accuracy. In [33], Li et al. proposed a generalized composite kernel-based method (GCK); first the
principal component analysis (PCA) is used to extract the principal components, then the extended
multi-attribute morphological profiles (EMAPs) are used to extract spatial information, and lastly the
multinomial logistic regression is utilized as the classifier. In addition, the stacked auto-encoder (SAE)
is a well-known unsupervised deep feature learning method [21,35]. Considering that the spectrum
of the HSI is high and has information redundancy, in order to fully excavate the spectral correlation
and reduce the dimensionality, in [21], Zabalza et al. segment the spectral band into different groups
and then use different SAE networks to extract the deep features. Unsupervised learning methods
have achieved tremendous success, but most of these methods extract features with shallow structure,
which limits the representation capacity of the models, so in this study, we extracted deep features
with the stacked denoising auto-encoder (SDAE). After the features are extracted, we need a classifier
to sign the feature to a certain class label.

Statistical learning-based classifier. Statistical learning is based on a statistical function; it uses
the typical representative sample to complete the training of the classification model, lets the
classification and recognition system learn the category characteristics, and then classifies according
to the classification rules. K-nearest neighbor (KNN), K-means, and iterative self-organizing data
analysis technique(ISODATA) are the most common statistical learning methods. In [36], Guo et al.
proposed the classification method based on the KNN; in this paper the good value k is determined
automatically. In [37], Abbas et al. proposed the classification method based on K-means and
ISODATA clustering algorithms. Spectrum matching-based methods directly match a spectrum with
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the known spectrum in the spectral library or the reference spectrum, then the spectrum is classified
according to the matching result. The common methods include spectral encoding match, spectral
correlation coefficient, spectral angle match, spectral information divergence method, etc. In [38],
Xu et al. proposed the spectral matching approach based on scale-invariant feature transform(SIFT).
In [39], Murphy et al. introduced the variable information into the spectral angle match to improve
the classification accuracy. In [40], Du et al. first applied spectral information divergence on the
hyperspectral image classification; the similarity measure is the probability of spectral information
divergence distribution between two pixels. When the spectral information divergence is smaller,
the two pixels are more similar. In [41], Baassou et al. combined the dispersion of spatial and spectral
information to carry out high spectral image classification. Support vector machine (SVM) [7,42–46]
is a typical kernel-based classification method; the basic idea is to map the originally indivisible
feature space to the high-dimensional linear separable feature space by kernel function, so as to solve
a non-linear classification problem by a linear classification method. Since the dimension of the original
data has no effect on the size of the kernel matrix, the kernel function method can effectively deal with
the high-dimensional data, thus avoiding the dimension disaster problem of the traditional pattern
recognition methods. In addition, logistic regression (LR) [47–49] uses the regression function to
classify the features into one or multiple classes. These conventional methods can achieve classification
tasks easily, but they consider the unlabelled samples independently and neglect the inter-class
and intra-class property, which leads to these methods failing to gain robust classification results.
Thus, representation based methods gain attention.

Representation based classifier. Representation based methods [13,50–61] implement the
classification task by constructing a representation dictionary as a feature subspace and projecting the
sample to the feature space, such that the sample is linearly represented by the dictionary atoms. In most
cases, only a few of the representation coefficients is not zero, so we also call it a sparse representation
based classifier. One class of broadly used representation based methods is structured sparse coding.
In [13,57], a sparsity constraint (e.g., L1 norm is used to depict the sparsity, and L2 norm is used to
depict the convex) is always added onto a sparse coefficient in the structured sparse coding; there is
always some other joint sparsity prior, such as the Laplacian prior. In [50], Wen et al. proposed
joint adaptive sparsity and a low-rankness-based online video denoising framework; in this work,
the sparse of the vector and the low-rankness of the matrix are considered. Compared with traditional
classifiers, representation based methods can better exploit data correlation; in this paper, we develop
a classifier based on the representation learning.

3. The Proposed Method

In this section, we will introduce the proposed low-rank representation based hyperspectral
imagery classification framework in detail, which mainly consists of two blocks shown as in Figure 1.
The deep feature learning block unsupervisedly exploits pixel-wise features with a novel segmented
stacked denoising auto-encoder method, and the robust classification block assigns labels to all pixels
with a low-rank representation based classifier.

3.1. Notations

Before starting, we will first introduce some notations. A 3D HSI cube is often denoted as
X ∈ Rnr×nc×nb , which contains nr rows and nc columns, and nb is the band number. In this study,
we rearrange the 3D HSI to a 2D matrix X ∈ Rnb×np for convenience, where each row stacks
a vectorized 2D spatial band image with np = nr × nc pixels, and each column denotes one spectrum.

3.2. Segmented Stacked Denoising Auto-Encoder-Based Deep Feature Learning

In the segmented stacked denoising auto-encoder-based feature learning, we first divide all
spectra into several segments according to spectral correlation, then SDAE is employed on each
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segment to extract the spatial-spectral feature. Ultimately, we concatenate all features extracted on
each segment as a whole feature vector for each pixel.

Figure 1. The proposed architecture. HSI: hyperspectral image; SDAE: stacked denoising auto-encoder.

3.2.1. Spectral Correlation-Based Band Segmentation

HSIs often contain hundreds of spectral bands, which leadS to a continuous spectrum at each
pixel, shown in Figure 2. Due to the continuity, a strong correlation exists between bands. Moreover,
this kind of correlation varies from band to band. To better exploit the correlation between the
different spectral regions of the data, we divide the high-dimensional spectrum into multi-segment
low-dimensional spectral vector according to their correlation.

Firstly, for the given HSI X, we define the following covariance matrix Cov ∈ Rnb×nb across the
spectral domain as

Cov = E[(X− E(X))(X− E(X))T ] , (1)

where E denotes the mathematical expectation. With the covariance matrix Cov, we can further define
the correlation matrix Cor ∈ Rnb×nb as follows. Each element Cor(i, j) that depicts the correlation
between the i-th band and the j-th band of X can be formulated as

Cor (i, j) =
Cov (i, j)√

Cov (i, i)Cov (j, j)
. (2)

According to Equation (2), the correlation matrices for the Pavia University dataset and the
Indian Pines dataset are shown in Figure 3, where both horizontal and vertical axes represent bands of
the dataset. We use color to represent the degree of correlation. Darker indicates less correlation,
while lighter represents more correlation. On the basis of the exhibited correlation in Figure 3,
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we manually divide the spectrum in each dataset into some segments. Specifically, we divide the
spectrum of the Pavia University dataset into two segments, including bands 1–75 and bands 75–103.
Similarly, the Indian Pines dataset is divided into three segments, namely bands 1–30, bands 30–75,
and bands 75–169. It should be noted that we permit a bit of overlapping in different segments.

Figure 2. Spectral correlation analysis and band segmentation.

(a) Pavia Uiversity (b) Indian Pines

Figure 3. Spectral correlation matrices for Pavia University dataset and Indian Pines dataset.
Darker indicates less correlation, while lighter represents more correlation.

3.2.2. Deep Spatial-Spectral Feature Extraction

With the band segmentation, we employ the stacked denoising auto-encoder (SDAE) network [20]
to extract the deep spatial-spectral feature for each pixel in the given HSI without supervision.
The proposed feature extraction method is different from the SDAE proposed in [20], which only
extracts the feature from spectral information. Specifically, considering a specific pixel in the HSI,
we represent it by all spectra within a K× K neighbouring region centred at this pixel to collect the
raw spatial-spectral information. According to the band segmentation, the representation is divided
into several segments. Then, each segment is vectorized into a raw feature vector and fed into the
SDAE network to produce the deeply mapped spatial-spectral feature. Ultimately, all deeply mapped
features obtained on each segment are concatenated into a final feature vector for the considered pixel.
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The entire procedure is sketched in Figure 1. In the following, we will briefly introduce how to produce
the deeply mapped feature with the SDAE network.

The SDAE network is a prevalent unsupervised learning framework which consists of
two symmetric stages, including an encoding stage and a decoding stage. The encoding stage attempts
to map the unlabelled input noisy data into a hidden representation through several hierarchical layers,
while the decoding stage aims at reconstructing the original clean data by the hidden representation.
The architecture of a four-layer SDAE network is shown in Figure 4.

In general, for an SDAE with 2L layers (L layers for encoding and L layers for decoding),
the encoding operation in the kth encoding layer can be given as

f j
(k+1) = φ(Wj

(k+1) f j
(k) + bj

(k+1)), j = 1, . . . , s, k = 0, . . . , L− 1 , (3)

where Wj
(k+1) and bj

(k+1) denote the weight matrix and the corresponding in bias. s is the number of

the segments of the given HSI, and f j
(k+1) is the output feature of the jth segment in the kth encoding

layer. φ(·) denotes the non-linear sigmoid activation function, which is formulated as

φ (x) =
1

1 + exp (−x)
. (4)

In Equation (3), f j
(k) is the output of the previous layer and f j

(0) is the original input data

x ∈ X, the last output f j
(L) is the high-level features which are extracted by the SDAE network;

by concatenating the segmented feature f j
(L), we can obtain the final feature F (including the deep

feature Ftrain of training data and the deep feature Ftest of test data).
In the decoding part, the decoding operation in the kth decoding layer can be given as

zj
(k+1) = φ(Wj

′(k+1)zj
(k) + bj

′(k+1)), k = 0, . . . , L− 1 , (5)

where Wj
′(k+1) and bj

′(k+1) denote the weight matrix and the corresponding in bias in decoding.
zj
(k+1) denotes the output of the k-th layer. zj

(0) = f j
L. The output zj

(L) of the last decoding layer is
the reconstruction of the original input x.

For simplicity, we denote the SDAE network as S(·, Θ), where Θ = {Wj
k, bj

k, Wj
′k, bj

′k}k=0,...,L−1
collects all parameters. Given N training samples {xi}i=1,...,N , the training problem for the SDAE
network can be formulated as

min
Θ

1
N

N

∑
i=1
‖S(xi, Θ)− xi‖2 . (6)

Given the trained SDAE network, we feed an input x into the network; the output of the last
encoding layer is considered to be the learned deep feature of x.

Figure 4. The stacked denoising auto-encoder network is stacked by two encoding layers and two
decoding layers.
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3.3. Low-Rank Representation Based Robust Classification

In contrast to the statistic learning-based classifiers (e.g., SVM, KNN), we develop a low-rank
representation based classifier which simultaneously exploits the supervision provided by labelled
samples and the unsupervised correlation among those unlabelled samples. To this end, we represent
the feature matrix F ∈ Rm×n for all unlabelled samples on a given dictionary D as

F = DZ + E , (7)

where Z ∈ Rl×n denotes the representation coefficient matrix, and E ∈ Rm×n is the residual matrix.

3.3.1. Structured Dictionary

To benefit from exploiting the unsupervised correlation among unlabelled samples, we construct
a structured dictionary D = [D1, D2, . . . , DL], where the component Di ∈ RM×ni contains all labelled
samples belonging to the i-th class, which is selected from training feature Ftrain, and ni is the number
of labelled samples in this class.

3.3.2. Low-Rank Representation

It has been shown that materials from the same category exhibit similar spectra in HSIs,
while materials from different categories do not. Figure 5 provides a typical example. Due to the
obvious intra-class similarity and inter-class dissimilarity, each sample can be represented well by
others in the same class [53], while not by others in another class. Thus, when being represented
on the structured dictionary D, samples from the i-th class in F are expected to produce large
representation coefficients on the Di component and small coefficients on other components Dj (j 6= i).
With appropriate permutation on columns of F (i.e., samples from the same class are gathered into
some successive columns), the representation coefficient matrix Z will exhibit obvious diagonal-block
structure, shown in Figure 6. Therefore, the supervision from the labelled samples as well as the
unsupervised correlation (i.e., intra-class similarity and inter-class dissimilarity) in unlabelled samples
can be simultaneously exploited by depicting the underlying block-diagonal structure of Z.

(a) Select spectrums from two classes (b) Spectral curves of two classes

Figure 5. The spectral characteristics of same class and different class.

However, the true labels for samples in F are unknown, which makes it intractable to directly
reveal the block-diagonal structure in Z. Nevertheless, the underlying block-diagonal structure enables
Z to be low-rank [53,54]. Thus, we turn to exploit the low-rank property of Z to implicitly exploit its
block-diagonal structure. In addition, due to the intra-class similarity, each sample can be represented
well, and the residual matrix E is often sparse. Based on these two points, we give the following
low-rank representation framework:



Remote Sens. 2018, 10, 284 9 of 24

min
Z,E
‖Z‖∗ + λ‖E‖1s.t.F = DZ + E , (8)

where the nuclear norm ‖·‖∗ minimizes the rank of Z to control the structural, l1 norm ‖·‖1 is utilized
to represent the sparsity of the representation error, and λ is the balancing weight.

Figure 6. The representation with diagonal-block structure.

In this study, we employ inexact augmented Lagrange multiplier method to solve the above
nuclear norm optimization problem (Equation (8)). Given Z, we can assign the label to a specific
sample according to the intra-class similarity with the following classifier:

yi = arg min
l

∥∥∥ f i − Dlzl
∥∥∥2

2
, (9)

where f i is the feature of the ith sample, yi is the predict label, Dl is the dictionary of the lth class, zl is
the representation coefficients matrix corresponding to samples Dl .

3.4. Low-Rank Representation Based Hyperspectral Imagery Classification Framework

According to the introduction above, the entire flow of the proposed low-rank representation
based hyperspectral imagery classification framework can be summarized in Algorithm 1.

Algorithm 1 Low-Rank Representation Based Hyperspectral Imagery Classification with Segmented
Stacked Denosing Auto-Encoder Spatial-Spectral Feature
Input: the number of network layers, the number of neurons in each hidden layer, training data,
training label, and test data.
1. Obtain segmented spectrum for all training and test data as Equation (2);
2. Train the SDAE networks with the segmented training data, then obtain the deep feature Ftrain of the

training data, and Ftest of the test data as Equation (3);
3. Construct the structured dictionary D with Ftrain and training label;
4. Compute the low-rank representation parameter Z for Ftest as Equation (8);
5. Predict classification result yi of each Ftest as Equation (9);
Output: The predict label of the test data.

4. Experiments and Results

4.1. Datasets

As Figure 7, the Pavia University dataset was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor. The image scenes have 610× 340 pixels, as collected by the German
Aerospace Agency. The dataset has 103 spectral bands. It has a spectral coverage from 0.43 to 0.86 µm
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and a spatial resolution of 1.3 m. Approximately 42,776 labelled pixels with 9 classes are from the
ground truth map, and the numbers of training and test samples are shown in Table 1.

The Indian Pines dataset was gathered by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor in northwestern Indiana, USA. There are 145× 145 pixels and 220 spectral channels,
the spectral coverage from 0.4 to 2.45 µm including the visible and infrared spectral region with
a spatial resolution of 20 m. From the statistical viewpoint, we discarded some classes which only have
a few labelled samples and selected nine classes, for which the numbers of training and test samples
are listed in Table 2.

(a) Pavia Uiversity (b) Indian Pines

Figure 7. 3D cubes of Pavia University and Indian Pines.

Table 1. Number of training (labelled) samples and test (unlabelled) samples in the Pavia University dataset.

Number Class Training Test

1 Asphalt 200 6431
2 Meadows 200 18,449
3 Gravel 200 1899
4 Trees 200 2864
5 Metal Sheets 200 1145
6 Bare Soil 200 4829
7 Bitumen 200 1130
8 Bricks 200 3482
9 Shadows 200 747

Total 1800 40,976

Table 2. Number of training (labelled) samples and test (unlabelled) samples in the Indian Pines dataset.

Number Class Training Test

1 Corn-notill 200 1228
2 Corn-mintill 200 630
3 Grass-pasture 200 283
4 Hay-windrowed 200 278
5 Soybean-notill 200 772
6 Soy-mintill 200 2255
7 Soybean-clean 200 393
8 Woods 200 1065
9 Grass-trees 200 547

Total 1800 7451

4.2. Comparison Methods

To demonstrate the superiority of the proposed method, we compared it with eight state-of-the-art
classification methods on HSIs, including SVM [42], Hu’s CNN [22], ResNet [23], SDAE-LR
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[20], SSAE-SVM [21], GCK [33], and SSDAE-LRR. Among these methods, SVM, SSAE-SVM,
GCK, and SSDAE-LRR adopt the unsupervised feature learning scheme, while the others employ
an end-to-end training scheme to learn features from labelled samples. Specifically, SVM adopts
the raw spectrum as the feature for each pixel. SDAE-LR utilizes the SDAE method to pretrain the
network; in the top layer of the network, the logistic regression (LR) approach is utilized to perform
supervised fine-tuning and classification. SSAE-SVM employs different SAE on segmented data to
extract deep features. The difference from the proposed method is that SSAE-SVM only integrates the
spectral information into features without considering the spatial information, and it adopts the SVM
as the classifier. Similar to the proposed method, SSDAE-LRR uses different SDAE to extract features,
and then a low-rank representation based classifier (LRR) is utilised to classify the feature; when the
size K of the neighbouring region is set as 1, the proposed method degrades into SSDAE-LRR.

In implementation, Hu’s CNN and GCK are trained with the codes published by authors,
and the other methods are re-implemented by ourselves; the tuned parameters are adopted for
best performance.

In the proposed method, the size K of the neighbouring region is set to 3. The number of encoding
or decoding layers is changed from 3 to 6; the optimal selection of these parameters is set according
to the real test data, the learning rate is 0.1, and the batch size is 20. The deep features that we
obtained from Pavia University and Indian Pines were 50 and 20, respectively. Consider a given HSI X,
which has s bands; when there are l encoding and decoding layers in the SDAE network, the number
of neurons in each hidden layer is n1, n2, . . . , nl , respectively. Hence, the number of parameters is
2× (s× n1 + n1 × n2 + · · ·+ nl−1 × nl) + nl × nl . For the Pavia University dataset, when training
the SDAE network, the number of labelled samples is 1800 and unlabelled samples is 4000, the total
parameters are 2.6× 105 (1.5× 105 and 1.1× 105 for each segment). For the Indian Pines dataset,
there are 1800 labelled samples and 4000 unlabelled samples used to train the network; the total
parameters are 5× 105 (0.5× 105, 0.9× 105, and 3.9× 105 for each segment).

4.3. Evaluation Metric

To quantitatively evaluate the performance of all methods, we adopted three standard measuring
criteria, namely overall accuracy (OA), average accuracy (AA), and KAPPA coefficient. OA denotes
the classification accuracy on all testing samples, AA measures the average class-wise classification
accuracy across all classes, and the KAPPA coefficient calculates the statistic degree of agreement in
classification over the expected results, and is often normalized to 0 and 1. For each criterion, a larger
score denotes a better classification result.

4.4. Comparison with State-of-the-Art Methods

In this part, we mainly focus on demonstrating the superiority of the proposed method in terms
of classification accuracy over the other comparison methods. To this end, we conducted classification
experiments on the two mentioned datasets. The number of training and testing samples are listed in
Tables 1 and 2. To reduce the effect of random sampling on the classification result, we report the
average classification results for all methods across 10 rounds with different sampling results.

Tables 3 and 4 summarize the numerical classification results of all methods on two HSI datasets,
where 200 labelled samples per class were used for training (a total of 1800 samples). We can find that
the proposed method produced much higher classification accuracy than that of SVM. For example,
on the Pavia University dataset, the proposed method outperformed SVM by 7.37% in OA. On the
Indian Pines dataset, the proposed method outperformed SVM by 3.60% in OA. This demonstrates
that the deeply learned feature performs better than the heuristically shallow feature. Moreover,
the proposed method even outperformed the state-of-the-art supervised feature learning method
with deep neural networks—Hu’s CNN and ResNet. This is because training deep neural networks
with limited labelled samples is prone to becoming trapped in local minima, while the proposed
unsupervised deep feature learning scheme have sufficient unlabelled samples for training. Compared
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with SDAE-LR, SSAE-SVM, and SSDAE-LRR, the proposed method improved the OA by 3.58%, 5.68%,
and 2.93% on the Pavia University dataset, and the improvements to Indian Pines dataset was up to
3.36%, 5.22%, and 3.97%, respectively. On the Pavia University dataset and the Indian Pines dataset,
GCK outperformed the proposed method by 0.57% and 4.75% in OA, respectively. However, in Tables 5
and 6, when only 100 labelled samples were used for training, the proposed method outperformed
GCK by 7.66% and 28.66% in OA on the Pavia University dataset and the Indian Pines dataset. We can
conclude that the proposed method outperformed GCK in HSI classification with small labelled
samples. These demonstrate the effectiveness of the spatial-spectral deep feature as well as the robust
low-rank representation based classifier.

In order to further illustrate the superiority of the proposed method, we show the visual
classification maps for all methods in Figures 8–11. It can be seen that the proposed method
shows more homogeneous results in each class than other comparison methods. This is because
the proposed method depicts the intra-class similarity and inter-class dissimilarity among all samples
well, with the robust classifier, while most of the comparison methods consider each unlabelled sample
independently.

According to the results above, we can conclude that the proposed method outperformed the
other 7 state-of-the-art comparison methods.

(a) Ground truth (b) Original-SVM (c) Hu’s CNN (d) ResNet

(e) SDAE-LR (f) SSAE-SVM (g) GCK (h) SSDAE-LRR

Figure 8. Cont.
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(i) The proposed method

Figure 8. Classification maps of different methods on Pavia University dataset (a total of 1800 labeled
samples were used for training).

(a) Ground truth (b) Original-SVM (c) Hu’s CNN (d) ResNet

(e) SDAE-LR (f) SSAE-SVM (g) GCK (h) SSDAE-LRR

(i) The proposed method

Figure 9. Classification maps of different methods on Indian Pines dataset (a total of 1800 labeled
samples were used for training).
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Table 3. Classification accuracy (%) of different methods on Pavia University dataset (a total of 1800 labeled samples were used for training).

Class Original-SVM Hu’s CNN ResNet SDAE-LR SSAE-SVM GCK SSDAE-LRR The Proposed Method

1 86.75 87.34 93.17 94.01 92.54 97.57 94.47 98.35
2 92.56 94.63 96.08 95.09 91.40 99.88 95.81 99.04
3 87.89 86.47 95.95 92.47 92.68 99.62 93.91 99.68
4 97.17 96.25 97.77 98.85 98.53 99.71 98.57 99.23
5 99.56 99.65 100 99.91 99.91 100 100 100
6 92.86 93.23 95.55 97.14 96.44 99.98 97.84 99.03
7 93.72 93.19 97.70 98.67 98.14 99.62 97.79 99.56
8 84.49 86.42 66.03 90.70 89.66 99.73 92.84 98.87
9 100 99.57 100 100 100 100 100 100

AA 92.78± 0.16 93.02± 0.17 93.58± 0.28 96.32± 0.06 95.48± 0.18 99.57± 0.14 96.81± 0.21 99.32± 0.45
OA 91.47± 0.96 92.56± 0.48 93.34± 0.34 95.26± 0.42 93.16± 0.80 99.47± 0.05 95.91± 0.32 98.84± 0.44

KAPPA 88.66± 1.19 90.68± 0.51 93.18± 0.21 95.14± 0.43 93.01± 0.81 99.29± 0.06 96.01± 0.18 98.81± 0.45

Table 4. Classification accuracy (%) of different methods on Indian Pines dataset (a total of 1800 labeled samples wereused for training).

Class Original-SVM Hu’s CNN ResNet SDAE-LR SSAE-SVM GCK SSDAE-LRR The Proposed Method

1 84.85 78.59 87.38 78.85 78.28 98.26 79.15 82.25
2 89.12 85.23 83.33 96.85 98.42 98.08 98.42 99.37
3 98.65 95.75 97.79 99.33 100 100 100 100
4 95.98 99.81 97.86 99.82 92.50 98.26 91.77 95.43
5 99.65 99.63 100 100 100 100 100 100
6 89.32 89.63 93.49 97.40 97.01 98.35 97.79 98.83
7 79.23 81.55 83.63 76.32 73.24 94.73 75.97 84.10
8 94.96 95.43 91.53 94.44 94.69 98.86 95.89 97.58
9 99.54 98.59 91.34 95.52 91.86 97.99 96.16 99.27

AA 92.34± 0.64 91.58± 0.04 91.82± 0.12 93.17± 1.15 91.87± 0.81 97.91± 0.48 92.78± 0.73 95.20± 0.12
OA 88.56± 0.41 87.29± 0.29 88.94± 0.32 88.80± 2.02 86.94± 1.54 96.91± 0.56 88.19± 1.15 92.16± 0.15

KAPPA 86.43± 0.45 84.93± 1.02 87.04± 0.54 88.62± 1.24 86.74± 0.03 96.31± 0.66 88.01± 0.87 92.03± 0.16
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Table 5. Classification accuracy (%) of different methods on Pavia University dataset (a total of 100 labeled samples were used for training).

Class Original-SVM Hu’s CNN ResNet SDAE-LR SSAE-SVM GCK SSDAE-LRR The Proposed Method

1 75.15 80.41 82.94 79.41 93.84 92.26 91.60 98.86
2 72.41 57.87 62.20 95.11 92.13 92.41 94.93 98.49
3 80.84 80.15 83.99 98.03 91.63 85.42 93.00 98.05
4 93.71 86.63 92.18 99.09 98.95 96.70 98.67 99.16
5 99.47 98.69 99.13 99.96 99.91 99.93 100 100
6 62.73 91.36 87.60 94.22 96.27 99.90 97.25 98.45
7 85.29 57.70 50.44 98.19 97.35 97.44 97.96 99.56
8 66.11 34.16 33.76 48.89 90.98 69.93 91.18 96.61
9 99.89 100 100 100 100 94.30 100 100

AA 81.73± 1.24 75.22± 1.54 75.80± 2.08 90.42± 3.99 95.67± 0.02 92.40± 0.72 96.07± 0.72 98.81± 0.05
OA 74.93± 3.87 68.16± 2.06 70.40± 1.16 90.16± 3.58 93.57± 0.16 90.65± 2.17 94.85± 0.84 98.31± 0.27

KAPPA 68.28± 2.63 67.49± 2.17 69.78± 1.43 89.93± 3.66 93.43± 0.17 87.92± 2.66 94.73± 0.56 98.27± 0.28

Table 6. Classification accuracy (%) of different methods on Indian Pines dataset (a total of 100 labeled samples were used for training).

Class Original-SVM Hu’s CNN ResNet SDAE-LR SSAE-SVM GCK SSDAE-LRR The Proposed Method

1 52.70 29.34 37.84 60.05 70.02 54.77 74.88 79.19
2 50.91 57.73 52.05 98.74 98.74 62.89 98.11 98.55
3 88.68 70.71 70.37 89.23 86.53 78.56 100 100
4 95.24 56.31 53.02 89.03 89.40 84.87 94.15 94.52
5 98.74 95.85 93.08 100 100 100 100 100
6 73.14 61.20 76.69 89.32 88.54 69.21 93.75 97.66
7 60.76 27.87 29.94 57.46 56.94 42.61 71.10 83.46
8 61.53 48.07 48.55 93.96 92.27 64.09 93.96 97.58
9 82.15 67.28 59.69 30.03 94.24 79.87 96.07 98.53

AA 73.76± 2.13 57.15± 1.91 57.91± 3.16 78.58± 2.16 84.92± 2.25 69.03± 3.74 91.33± 0.74 94.26± 0.05
OA 69.12± 0.80 47.18± 3.40 48.87± 4.01 66.36± 6.78 78.57± 3.07 62.13± 7.06 86.17± 0.89 90.80± 0.19

KAPPA 64.17± 1.01 46.45± 1.42 48.13± 2.48 65.01± 7.74 78.25± 3.11 56.75± 3.14 85.96± 1.72 90.65± 0.20
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(a) Ground truth (b) Original-SVM (c) Hu’s CNN (d) ResNet

(e) SDAE-LR (f) SSAE-SVM (g) GCK (h) SSDAE-LRR

(i) The proposed method

Figure 10. Classification maps of different methods on Pavia University dataset (a total of 100 labeled
samples were used for training).
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(a) Ground truth (b) Original-SVM (c) Hu’s CNN (d) ResNet

(e) SDAE-LR (f) SSAE-SVM (g) GCK (h) SSDAE-LRR

(i) The proposed method

Figure 11. Classification maps of different methods on Indian Pines dataset (a total of 100 labeled
samples were used for training).

4.5. Effectiveness Verification

In this part, we conduct extensive experiments to validate the effectiveness of the proposed
method in three respects. To verify the effectiveness of the deep spatial-spectral feature, we show
the experiments of the proposed method and its three deep spatial-spectral feature-based variants
in Section 4.5.1; to demonstrate the effectiveness of the robust classifier, the details of the proposed
method compared with its three variants based on the robust classifier are given in Section 4.5.2;
in Section 4.5.3, the robustness to limited labelled samples is provided.

4.5.1. Effectiveness of the Deep Spatial-Spectral Feature

To demonstrate the effectiveness of the proposed deep spatial-spectral feature (i.e., segmented
stacked denoising auto-encoder-based spatial-spectral feature), we compare the proposed method
with its three variants, namely Hu’s CNN-LRR, SDAE-LRR, and SSDAE-LRR. Similar to the proposed
method, the low-rank representation based classifier (LRR) is adopted by those three variants.
In contrast, Hu’s CNN-LRR adopts the supervised learned feature in comparison to Hu’s CNN,
SDAE-LRR employs the feature learned by SDAE without segmentation and spatial-spectral setting,
while SSDAE-LRR utilizes the feature learned by segmented SDAE without spatial-spectral setting.

With the same experimental setting as Section 4.2, the comparison results of all these methods on
two datasets are provided in Tables 1 and 2. It can be seen that the proposed method outperformed
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all the other variants in all cases. For example, on the Pavia University dataset, the proposed
method outperformed those variants by at least 2.93% in OA, 2.51% in AA, and 2.80% in KAPPA.
The superiority over Hu’s CNN-LRR demonstrates that the proposed deep spatial-spectral feature
performed even better than the supervised learned feature. The superiority over SSDAE-LRR verifies
that the spatial-spectral setting can further improve the representative capacity of HSI. The superiority
of SSDAE-LRR over SDAE-LRR illustrates the effectiveness of the band segmentation, which is similar
to the conclusion in [21].

In general, the proposed deep spatial-spectral feature is effective for HSI classification.

4.5.2. Effectiveness of the Robust Classifier

To verify the effectiveness of the low-rank representation based classifier (LRR), we compare the
proposed method with three variants, including SSDAESS-SVM, SSDAESS-LR and SSDAESS-OMP.
For fair comparison, these three variants employ the same segmented SDAE spatial-spectral feature
(denoted as SSDAESS) to characterize the unlabelled samples. The only difference from the proposed
method is that they adopt different classifiers. In particular, SSDAESS-SVM and SSDAESS-LR adopt
the SVM and LR as the classifiers, respectively. In contrast to those two statistical learning-based
classifiers, SSDAESS-OMP adopts the sparse representation based classifier, which is implemented by
the classical sparse coding method, orthogonal matching pursuit (OMP).

Under the same experimental settings as Section 4.2, the comparison results on two datasets are
summarized in Table 7. It can be seen that the proposed method obviously outperformed these three
variants in all cases. Taking the Indian Pines dataset as an example, the proposed method surpassed
these variants by at least 0.83% in AA, 1.20% in OA, and 1.21% in KAPPA. With the exception of the
supervision provided by the labelled samples, SSDAESS-OMP also considers the similarity between the
labelled samples and the unlabelled one which belong to the same class; because of this, it performed
better than SSDAESS-SVM and SSDAESS-LR. However, SSDAESS-OMP considers each unlabelled
sample independently; viz., it fails to utilize the crucial intra-class similarity as well as the inter-class
dissimilarity among those unlabelled samples as the proposed method, which limits its performance.

The experimental results above demonstrate that the proposed robust classifier is effective for
HSI classification.

Table 7. Classification accuracy (%) of the proposed method and its three variants with different
classifiers on two datasets.

Method Pavia University Indian Pines
AA OA KAPPA AA OA KAPPA

SSDAESS-SVM 98.83± 0.03 98.36± 0.20 98.32± 0.21 94.32± 0.11 90.88± 0.15 90.73± 0.15
SSDAESS-LR 97.59± 0.24 98.30± 0.14 98.26± 0.23 94.22± 0.51 90.70± 0.36 90.55± 0.35

SSDAESS-OMP 98.84± 0.05 98.38± 0.17 98.35± 0.18 94.37± 0.09 90.96± 0.15 90.82± 0.15
the proposed method 99.32± 0.45 98.84± 0.44 98.81± 0.45 95.20± 0.12 92.16± 0.15 92.03± 0.16

4.5.3. Robustness to Llimited Labelled Samples

Finally, to further demonstrate the potential of the proposed method in dealing with limited
labelled samples, we compare the proposed method with seven state-of-the-art methods (namely
SSDAE-LRR, RBF-SVM, BP [27], ResNet, GCK, SDAE-LR, and SSAE-SVM) on two datasets with
different numbers of labelled samples.

When the total number of the labelled samples ranges from 10 to 1800 (we balanced the number
of samples in each class as much as possible), the classification results for all methods on two datasets
are shown in Figures 12 and 13. In Figure 12, we can find that when the total labelled samples were
more than 900 (samples per class were more than 100), the classification accuracy for all methods
was still over 81%, and the proposed method was comparable to GCK. When the total number
of labelled samples decreased below 900 (samples per class were less than 100), the performances



Remote Sens. 2018, 10, 284 19 of 24

of RBF-SVM, BP, ResNet, and GCK dropped sharply. Similar phenomena can also be observed in
Figure 13. This demonstrates that both supervised-learned features and unsupervised-learned shallow
features are sensitive to the amount of labelled samples. In contrast, the proposed method preserved
its performance well, even when the total number of labelled samples was 10 (one sample per class),
as shown in Figure 12; on the Pavia University dataset, the overall accuracy was 98.40%, and the
performances of SSDAE-LRR, SDAE-LR, and SSAE-SVM dropped slightly. These demonstrate that both
the unsupervised-learned deep features performed robustly to the limited labelled sample; although
SDAE-LR is an supervised method, it can utilise more unlabelled information in the training phase.
Since the proposed SSDAE feature further considers the spatial information as well as embedding
it into a robust classifier, the proposed method outperformed SSDAE-LRR in all cases. Moreover,
the superiority was increased when the total number of labelled samples dropped, especially in
Figure 13.

Figure 12. OA curves for different methods in the classification of the Pavia University dataset with
different numbers of labelled samples.

Figure 13. OA curves for different methods in the classification of the Indian Pines dataset with
different numbers of labelled samples.
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Therefore, we can conclude that the proposed method is effective for HSI classification with
limited labelled samples.

5. Discussion

In this paper, a low-rank representation based HSI classification framework is proposed.
The experimental results above demonstrate the effectiveness of the proposed method, especially
when the labelled samples are limited.

According to the results of the experiments, it can be seen that when the number of labelled
samples is fixed as in Tables 3 and 4, the proposed method not only obviously surpassed SVM which
with shallow structure, but also even outperforms the state-of-the-art supervised feature learning
methods with deep neural networks (e.g., Hu’s CNN and ResNet). The reason for this comes from
two aspects.

On one hand, the proposed method adopts the SSDAE framework to allow features to be
learned unsupervised with a deep hierarchical structure, which enables the resulting features to
be much more representative than the shallow features which were heuristically learned by those
unsupervised feature learning-based methods. Although Hu’s CNN and ResNet also adopt the
deeply learned features, their supervised feature learning scheme is prone to being trapped in local
minima (i.e., over-fitting), especially when the labelled samples are limited. Meanwhile, the proposed
unsupervised deep feature learning scheme has sufficient unlabelled samples for training.

On the other hand, all of the methods compared herein establish their classifiers based only
on the supervision provided by the labelled samples, while the proposed method incorporates the
supervision as well as the crucial unsupervision (i.e., inter-class similarity and inter-class dissimilarity)
provided by unlabelled samples into a robust classifier.

In addition, the proposed method obviously outperformed two sets of variants—one set with
different features as in Table 8, and the other with different classifiers as in Table 7. This demonstrates
that both the proposed deep unsupervised feature learning scheme and the robust classification are
crucial for HSIs classification. Finally, with a variable number of labelled samples, the stable superiority
of the proposed method over the compared methods demonstrates the effectiveness of the proposed
method in addressing HSIs classification with limited labelled samples.

Table 8. Classification accuracy (%) of the proposed method and its three variants with different
features on two datasets.

Method Pavia University Indian Pines
AA OA KAPPA AA OA KAPPA

Hu’s CNN-LRR 93.57± 0.34 93.87± 0.61 90.26± 1.12 92.81± 0.56 90.17± 0.59 87.95± 0.43
SDAE-LRR 96.39± 0.15 95.39± 0.12 95.28± 0.14 92.21± 0.68 87.63± 1.38 87.43± 1.40

SSDAE-LRR 96.81± 0.21 95.91± 0.32 96.01± 0.18 92.78± 0.73 88.19± 1.15 88.01± 0.87
the proposed method 99.32± 0.45 98.84± 0.44 98.81± 0.45 95.20± 0.12 92.16± 0.15 92.03± 0.16

6. Conclusions

In this study, we present a novel low-rank representation based HSI classification framework
which obviously improves the classification accuracy—especially when the number of labelled samples
is limited. On one hand, to better characterize each pixel in the HSI, we propose the unsupervised
learning of the deep spatial-spectral feature for each pixel with the segmented SDAE. On the other
hand, we developed a robust classifier which simultaneously exploits the supervision provided by
labelled samples and the unsupervised correlation (i.e., intra-class similarity as well as inter-class
dissimilarity) among unlabelled samples. Both of these advantages benefit the proposed framework in
improving classification performance. Extensive experimental results demonstrate the superiority of
the proposed framework over several state-of-the-art methods.
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In this work, the unsupervised learning scheme and the robust classification are modelled
separately. In the future, we can integrate these two modules into a two-branch neural network.
With the joint end-to-end training, the feature learning and the classification can be refined by each
other, and thus further improvements in HSI classification can be expected.
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