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Abstract: The North China Plain (NCP) has been experiencing the most severe groundwater depletion
in China, leading to a broad region of vertical motions of the Earth’s surface. This paper explores the
seasonal and linear trend variations of surface vertical displacements caused by the groundwater
changes in NCP from 2009 to 2013 using Global Positioning System (GPS) and Gravity Recovery
and Climate Experiment (GRACE) techniques. Results show that the peak-to-peak amplitude of
GPS-derived annual variation is about 3.7~6.0 mm and is highly correlated (R > 0.6 for most selected
GPS stations) with results from GRACE, which would confirm that the vertical displacements of
continuous GPS (CGPS) stations are mainly caused by groundwater storage (GWS) changes in
NCP, since GWS is the dominant component of total water storage (TWS) anomalies in this area.
The linear trends of selected bedrock-located IGS CGPS stations reveal the distinct GWS changes
in period of 2009–2010 (decrease) and 2011–2013 (rebound), which are consistent with results from
GRACE-derived GWS anomalies and in situ GWS observations. This result implies that the rate
of groundwater depletion in NCP has slowed in recent years. The impacts of geological condition
(bedrock or sediment) of CGPS stations to their results are also investigated in this study. Contrasted
with the slight linear rates (−0.69~1.5 mm/a) of bedrock-located CGPS stations, the linear rates of
sediment-located CGPS stations are between −44 mm/a and −17 mm/a. It is due to the opposite
vertical displacements induced by the Earth surface’s porous and elastic response to groundwater
depletion. Besides, the distinct renewal characteristics of shallow and deep groundwater in NCP are
discussed. The GPS-based vertical displacement time series, to some extent, can reflect the quicker
recovery of shallow unconfined groundwater than the deep confined groundwater in NCP; through
one month earlier to attain the maximum height for CGPS stations nearby shallow groundwater
depression cones than those nearby deep groundwater depression cones.
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1. Introduction

Groundwater resources are essential to urban and agricultural needs in North China Plain (NCP),
where the precipitation is low, and more than 70–80% of fresh water comes from groundwater [1],
and agricultural irrigation almost consumes 70% of total water supply [2]. Historical exploitation of
groundwater has caused a remarkable decline in groundwater storage (GWS) in NCP, which is referred
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to as groundwater depletion and has been verified by many previous studies [3–6]. Large-scale GWS
changes exert loading and unloading of the Earth’s surface, inducing vertically downward and upward
displacements of the Earth’s crust and uppermost mantle [7–9]. It should be noted that the ground
surface subsidence induced by mining excavation is not discussed by this paper [10,11].

With the advances in space geodetic sensors, modern space geodetic measurements can quantify
both total water storage (TWS) variations with the Gravity Recovery and Climate Experiment (GRACE)
and Earth surface displacements with the Global Positioning System (GPS) [12–15]. Previous studies
have provided significant insights into the seasonal and long-term vertical displacements in NCP by
using GPS and GRACE data. For instance, Liu et al. (2014) [16] found that the GPS- and GRACE-derived
secular trends and seasonal signals are in good agreement, respectively, with an uplift magnitude of
1–2 mm/year and a correlation of 85.0–98.5%; Wang et al. (2017) [17] identified that the average
correlation and weighted root-mean-squares (WRMS) reduction between GPS and GRACE are
75.6% and 28.9%.These previous studies have focused on comparison, cross-validation of GPS, and
GRACE results.

According to the distinct hydrogeological settings within the quaternary sediments [18,19],
the plain area of NCP can be divided into the piedmont plain (PP) and the east central plain (ECP, alluvial
and coastal plains) (Figure 1), where water supply mainly depends on shallow fresh groundwater stored
in the shallow unconfined aquifers and deep confined aquifers, respectively. However, the shallow
groundwater in PP and deep groundwater in ECP with different characteristics over the heterogeneous
aquifer systems have not been studied either from the perspective of GPS displacement monitoring
field or from the view of GRACE hydrological applications; this study attempts to explore the different
influences of shallow groundwater and deep groundwater on GPS results.
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Figure 1. Study region of NCP with two sub-regions: the piedmont plain and the east central plain. 
The distribution of CGPS stations (black and magenta diamonds for bedrock and sediment CGPS 
stations, respectively) and groundwater level monitoring well stations of different types (blue and 
yellow dots for shallow unconfined and deep confined well, respectively) in the NCP are shown 
here. 1° × 1° GRACE grids are drawn with oblique lines, following the regional boundary. All the 
calculations (e.g., GRACE-derived TWS and GWS, GLDAS-modeled SWS, and precipitation) related 
to the region are based on the extents of GRACE grids. The background is the region’s digital 
elevation model (DEM) information. 

Figure 1. Study region of NCP with two sub-regions: the piedmont plain and the east central plain.
The distribution of CGPS stations (black and magenta diamonds for bedrock and sediment CGPS
stations, respectively) and groundwater level monitoring well stations of different types (blue and
yellow dots for shallow unconfined and deep confined well, respectively) in the NCP are shown
here. 1◦ × 1◦ GRACE grids are drawn with oblique lines, following the regional boundary. All the
calculations (e.g., GRACE-derived TWS and GWS, GLDAS-modeled SWS, and precipitation) related to
the region are based on the extents of GRACE grids. The background is the region’s digital elevation
model (DEM) information.
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In this paper, in contrast to previous studies, except for seasonal and long-term vertical
displacement due to dynamic hydrological processes and groundwater depletion, the capability of
GPS to detect the different impacts of shallow and deep groundwater in NCP, as well as the influence
of distinct the geological conditions (bedrock or sediment) of continuous GPS (CGPS) stations, are also
deeply investigated and discussed. In this study, the assessment will be based on GPS data from the
Crustal Movement Observation Network of China (CMONOC, Figure 1 shows the locations of selected
CGPS stations), level-2 Release-05 (RL05) GRACE data from the University of Texas Center for Space
Research (UTCSR), Global Land Data Assimilation System (GLDAS) hydrologic model simulations,
and in situ groundwater-level observations of both shallow unconfined and deep confined aquifers.

2. Data and Methods

2.1. GPS Data

GPS can measure the crustal deformation at millimeter-level accuracy, due to the recent
improvements of GPS processing strategies [20,21]. Ten former and current CGPS stations in NCP
(Figure 1) are analyzed in this study. Three of them (BJFS, BJSH, JIXN) are from the International
GNSS Service (IGS), and others are from CMONOC [22]. All the CGPS stations are equipped with
multi-frequency receivers, with a sampling rate of 30 s. The specific information of selected CGPS
stations are listed in Table 1, including their topographic features (PP or ECP) and basement type
(bedrock or sediment). In this study, the rinex files of the three IGS stations, from 2009 to 2013, are used,
and that of other CGPS stations are from 2010 to 2013, since these stations began to collect data from
2010. GAMIT software 10.4 is employed in “baseline mode” to process the GPS data [23], to obtain GPS
daily, loosely constrained coordinates, and covariance. In this procedure, Solid-Earth tides and pole
tides are corrected by models recommended by the International Earth Rotation Service (IERS) [24].
In addition, Finite Element Solutions 2004 (FES2004) ocean tidal loading corrections and absolute
phase-center corrections for satellites and antenna, as issued by International GNSS Service (IGS) [25],
are used to correct corresponding errors. The tropospheric delays are modeled using the Global
Mapping Function (GMF) [26] every two hours and the first order ionospheric delays are eliminated
by means of the ionosphere-free linear combination. Gross error rejection is implemented to the
baseline resolutions, and a sequential Kalman filter method is employed to combine regional, loosely
constrained solutions with global solutions obtained from SOPAC (http://sopac.ucsd.edu) using
GLOBK software 10.4. Finally, the datum transformation is performed to obtain a station coordinate
time series with respect to the ITRF2008 using 45 global distributed IGS stations [27]. According to
the above GPS data processing strategy, the daily vertical coordinate time series of the selected CGPS
stations is obtained.

Table 1. Specific information of selected CGPS stations.

Station Code Topography and Geomorphology Station Geologic Characteristic (Basement Type)

BJFS Taihang Mt. 1 (PP) Shale, dry rock, and little slate (Bedrock)
BJSH Taihang Mt. (PP) Limestone (Bedrock)

HAHB Huang-Huai-Hai Plain (PP&ECP) 2 Subclay, and sandy soil (Sediment)
HECX Huang-Huai-Hai Plain (ECP) Sand, gravel, and clay (Sediment)
HELQ Taihang Mt.’ alluvial plain (PP) Sand, gravel, and clay (Bedrock)
HELY Taihang Mt.’ alluvial plain (PP) Sand, gravel, and clay (Bedrock)
HETS Yanshan Mt. (ECP) Ordovician/breccia limestone (Bedrock)
JIXN Yanshan Mt. (ECP) Sinian limestone (Bedrock)
TJBH Bohai sea plain (ECP) Sand, gravel, and sandy clay (Sediment)
TJWQ Huang-Huai-Hai Plain (ECP) Sand, gravel, and sandy clay (Sediment)

1 Mt. is the abbreviation of Mountains. 2 HAHB is located on the boundary between PP and ECP.

http://sopac.ucsd.edu


Remote Sens. 2018, 10, 259 4 of 13

2.2. TWS and GWS Variations Derived from GRACE

Spherical harmonic coefficients of the Earth’s gravity field estimated from GRACE data [28,29]
and load Love numbers can be used to model the TWS variations [30] and vertical surface
displacements [31] caused by changing water mass loading. The monthly GRACE Level-2 RL05
solution GSM gravity data product, in the form of spherical harmonic coefficients (SHCs) provided
from the UTCSR, whose period is from January 2009 to December 2013, up to degree 96, are used.
C20 terms are replaced with the results from observations of Satellite Laser Ranging [32]. Due to the
fact that the reference frame origin used in the GRACE gravity field determination is the Earth’s center
of mass, GRACE gravity field cannot determine the degree-1 terms variations (geocenter motion),
whereas GPS data contain degree-1 terms; therefore, in order to be consistently comparable to the GPS
time series, we replace the degree-1 components in GRACE with the results derived by Swenson et al.
(2008) [33].

First, the average mean gravity field model between 2009 and 2013 is removed from the data
product. Then, the destriping method P3M6 of Chen et al. (2007) [34] and Gaussian smoothing with
averaging radius of 300 KM are employed to the SHCs of the gravity fields, in the purpose of reducing
the north-south stripes and errors at high degrees. Finally, the TWS variations, in the form of equivalent
water height, and vertical surface displacements due to changes in mass loading, can be, respectively,
expressed in terms of residual SHCs of gravity field and load Love numbers as follows [30,31]:

∆H(θ, λ) =
R0ρE
3ρw

lmax

∑
l=0

l

∑
m=0

Plm(cosθ)
2l + 1
1 + kl

(∆Clmcosmλ + ∆Slmsinmλ)

dr(θ, λ) = R0

lmax

∑
l=0

l

∑
m=0

Plm(cosθ)
hl

1 + kl
(∆Clmcosmλ + ∆Slmsinmλ)

in which ∆H(θ, λ) and dr(θ, λ) are the variation of equivalent water height and surface displacement
in the radial direction at geocentric colatitude θ and geocentric longitude λ, respectively; R0 and ρE are
the mean radius and density of the Earth, respectively; ρw is water density; Plm is fully normalized
Legendre function of degree l and order m; ∆Clm and ∆Slm represent the residual spherical harmonic
coefficients of the destriped and smoothed gravity field from which the average gravity field between
2009 and 2013 have been removed; kl and hl are Load Love numbers at degree l. Here, the load Love
numbers from Farrell [7] are adopted.

Since GRACE observations at small scale regions tend to be attenuated in the post-processing
of smoothing, the modeled TWS should be adjusted by scaling factors. Four land surface models
(LSMs: Community Land Model, Mosaic, Noah, and Variable Infiltration Capacity model) in GLDAS
version 1 [35] are used to calculate scaling factors, by calculating the ratio between the original true TWS
and the truncated and filtered TWS [36]. In this study, the average scaling factor in NCP is about 1.22.

At monthly or longer time scales, soil water storage (SWS) and GWS changes account for
the majority of TWS changes in NCP; other components such as the snow water equivalent are
negligible [4]. Therefore, GWS anomalies are obtained by subtracting the SWS anomalies simulated by
hydrologic models from the adjusted GRACE TWS anomalies. The SWS anomalies are also estimated
by using the average of simulated soil moisture data (2009–2013) from the four LSMs in GLDAS.

2.3. In Situ Groundwater LEVEL MEASUREMENTS

The in situ monthly groundwater level measurements are obtained from daily observations
from 107 monitoring well stations in NCP from 2009 to 2013, including 47 shallow unconfined wells
and 60 deep confined wells (provided by Institute of China Geological Environment Monitoring).
The groundwater data adopted in this study can provide more spatial details of shallow and deep
GWS variations compared with that used in previous similar study of Wang et al. (2017) [17], which
contained the monthly groundwater table depth of 20 cities, most of them from a shallow unconfined
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well. As shown in Figure 1, shallow unconfined wells are mainly distributed in PP, while deep
confined wells are mainly located in ECP. We obtain in situ GWS variations by multiplying in
situ-measured groundwater level anomalies with the specific yield of each well as obtained from the
spatial distribution map of specific yields in NCP provided by the China Geological Survey Bureau [37].
The distribution of the specific yield in NCP ranges widely from <0.05 in the coastal plain around the
margin of the Bohai Sea to >0.2 in the piedmont region of the Taihang Mountains. Based on the isopleth
map of specific yields in the NCP and the locations of monitoring well, we conclude that a reasonable
range of average values for specific yields was 0.05~0.07, which we use to estimate GWS variations.

3. Results and Discussion

3.1. Seasonal and Secular Signals Revealed by GPS and GRACE

The GPS-measured and GRACE-modeled [31] vertical displacements are fitted with an empirical
model including epoch position, speed, and the amplitude and phase of annual and semiannual
harmonic components (to model seasonal effects) using least-squares method [38] over the time span
from 2009 to 2013. Moreover, the offsets caused by identified equipment changes and earthquakes are
removed in GPS analysis, and only stations with, at least, two-and-a-half years of data are included.
As shown in Figure 2, both GPS and GRACE results show apparent seasonal variations. GPS and
GRACE record coherent vertical crustal seasonal variations from 2009 to 2013 with a high correlation
for most selected CGPS stations (R > 0.6, except for BJSH and TJBH) (Table 2). For BJSH and TJBH
stations, it can be inferred from Figure 2 (left) that the low correlations are mainly caused by the
disagreements in the phases of GPS- and GRACE-derived results. These inconsistences of phases
reflect the different local sensitivity of the two techniques. The good correlation between these two
geodetic measurements confirms that the seasonal crustal deformation in NCP is mainly caused by the
seasonal hydrological mass loading variations, which can be resolved by geodetic measurements of
both GPS and GRACE. For all the selected CGPS stations, the annual component is more dominant
than the semi-annual one (Figure 2). The peak-to-peak amplitude of GPS- and GRACE-derived annual
variation is about 3.7~6.0 mm and 2.5~3.3 mm, respectively (Table 2), which is about two and three
times of semi-annual amplitude. Therefore, the following discussions are focused on annual variations.
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GPS and modeled by GRACE in NCP.

Table 2 shows the peak-to-peak amplitudes and initial phases of annual vertical displacements
derived by GPS and GRACE. The amplitude of annual variation derived from GPS (3.7~6.0 mm) is
slightly higher than that from GRACE (2.5~3.3 mm) for all the selected CGPS stations. This is because
GPS observes all the earth surface deformation induced by tectonic and non-tectonic (hydrology,
atmosphere, ocean et al.) factors, while GRACE just models the hydrological component. Compared to
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GPS solutions, the spatial coherence of phases from GRACE solutions is more apparent, which indicates
that GPS has a strong sensitivity for local surface loading, while the spatial resolution for GRACE is
several hundred kilometers. This is also the reason for the small difference of GRACE-derived vertical
displacements among selected stations. Besides, the fitting results in Table 2 show that the linear
trend rate of GRACE-derived vertical displacements for the whole region is 0.5~0.7 mm/a from 2009
to 2013, which reveals the TWS loss for the entire area of NCP in observation time span. However,
the rate of change direction is inconsistent for different GPS stations ranging from −44.0 mm/a to
1.5 mm/a, which should be mainly due to Earth surface’s elastic and porous response to hydrological
mass variations and is deeply discussed in Section 3.2.

Table 2. Annual amplitudes and phases, linear trend fit of vertical displacements derived by GPS and
GRACE for selected CGPS stations, and their correlation coefficients of annual components.

GPS
Station

Annual Amplitude
(mm)

Annual Phase
(Days)

Trend Rate (mm/Year)
2009/2010~2013 Correlation

Coefficients
GPS GRACE GPS GRACE GPS GRACE

BJFS 4.9 ± 0.2 2.9 ± 0.2 294.4 ± 6.4 66.3 ± 9.6 −0.69 ± 0.2 0.5 ± 0.1 0.87
BJSH 3.7 ± 0.2 2.8 ± 0.2 328.2 ± 4.2 64.3 ± 10.5 −0.22 ± 0.2 0.5 ± 0.1 0.43

HAHB 5.0 ± 0.3 3.2 ± 0.3 310.5 ± 6.8 74.5 ± 11.2 −1.1 ± 0.2 0.5 ± 0.1 0.78
HECX 4.3 ± 0.3 3.0 ± 0.2 326.0 ± 6.7 74.1 ± 9.8 −21.4 ± 0.3 0.6 ± 0.2 0.62
HELQ 4.2 ± 0.3 3.2 ± 0.2 298.3 ± 10.3 69.0 ± 9.5 1.0 ± 0.3 0.6 ± 0.1 0.86
HELY 5.7 ± 0.3 3.3 ± 0.3 297.1 ± 8.1 71.4 ± 10.8 0.3 ± 0.2 0.7 ± 0.1 0.89
HETS 6.0 ± 0.3 2.5 ± 0.2 279.6 ± 12.5 76.3 ± 10.1 1.5 ± 0.3 0.5 ± 0.1 0.99
JIXN 4.3 ± 0.2 2.6 ± 0.2 295.0 ± 4.8 71.1 ± 9.8 0.9 ± 0.3 0.5 ± 0.1 0.91
TJBH 6.0 ± 0.4 2.7 ± 0.2 357.8 ± 9.8 76.1 ± 10.4 −16.9 ± 0.4 0.6 ± 0.1 0.12
TJWQ 5.0 ± 0.4 2.8 ± 0.2 317.3 ± 8.1 72.0 ± 10.6 −44.0 ± 0.5 0.6 ± 0.1 0.71

As mentioned above, the good seasonal correlation between GPS and GRACE signals indicates
that the long-term uplifts revealed by GRACE solutions are probably true and mixed in the GPS
measurements. Figure 3 shows the daily observations of three bedrock-located IGS CGPS stations
(BJFS, BJSH, JIXN), since other CGPS stations’ data are only available after July 2010. The long-term
linear trends of crustal uplift or subsidence are mainly dominated by surface mass loading and tectonic
processes. The analysis of the three IGS CGPS stations (BJFS, BJSH, JIXN) suggests the slight change
of linear trend around 2010. From 2009 to 2010, the linear trend of vertical displacements is uplift,
which is consistent with the reported results of Wang et al. (2017) [17] and might imply the unloading
of hydrological mass in NCP. However, the trend changes to lightly downward or relatively stable
after the end of 2010, indicating the increase of hydrological mass loading in this area. These facts
reveal that the severe water condition in NCP might has been alleviated in recent years.
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In order to verify and explain the linear trend change of three IGS CGPS results,
the GRACE-derived and in situ GWS measurements are also explored. Focusing on Figure 4a,
compared to GWS variation, SWS component contributes quite insignificantly to GRACE-derived
TWS changes, proving that the total hydrological mass loss in NCP is mainly caused by depletion of
GWS. The GRACE-derived GWS monthly anomalies in NCP are correlated with in situ-measured
GWS anomalies at a coefficient of R ≈ 63 from 2009 to 2013. However, the relatively high correlation
is mainly due to the agreement in the phase of variation. As presented in Figure 4a, from 2009 to
2013, both the GRACE and in situ results show a distinct feature with two distinguishable stages:
Stage 1: from 2009 to 2010, with continuously decreasing trend at a rate of about −45 mm/a for both
GRACE-derived GWS results and in situ-GWS observations, leading to upward vertical movement
of CGPS stations (bedrock); Stage 2, from 2011 to 2013, with slightly rebounded and relatively stable
for both GRACE-derived and in situ results, resulting in downward or stable vertical movement of
CGPS stations (bedrock). This difference between the two sub-periods (2009–2010 and 2011–2013)
could be mainly induced by climate-driven precipitation annual variations in NCP (Figure 4c) and
partially owing to the impacts of the implementation of the South-to-North Water Diversion (SNWD)
project since 2003, which reflect the influence of the SNWD project on reducing GWS depletion in NCP.
Some previous literatures also reported positive impacts on GWS recovery in NCP [39].
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Figure 4. (a) The monthly time series of modeled SMS (magenta line) and GRACE-derived TWS
(black line) and GWS (blue line) anomalies in NCP from 2009 to 2013. The GRACE-derived GWS
anomalies are compared with that from the in situ measurements (red line); (b) observations of
groundwater level (GWL) monthly anomalies of deep confined well (blue line) and shallow unconfined
well (red line) during 2009 to 2013, and the blue and red dashed line are the linear trend of in situ shallow
and deep GWL observations, respectively, with trend rates shown above. (c) Precipitation is shown as
the annual total (Figure 4c above) and the monthly observations (Figure 4c below). The precipitation
data are provided by the China Meteorological Administration (http://cdc.cma.gov.cn/).
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3.2. Impacts of Bedrock and Sediment Basement to GPS Results

As presented in Table 1, except for HAHB, HECX, TJBH, and TJWQ stations, which are located
on soft sediment and mainly distributed over the ECP area, the other CGPS stations are located
on bedrock throughout the PP area and north part of ECP. Their monthly vertical displacement
variations are displayed in Figure 5. For most bedrock-located CGPS stations (red bars, except for
BJSH), whose vertical displacements mainly reflect elastic response of solid Earth’s surface to the
loading of hydrological masses in this area, the maximum height occurs around early summer (June),
and a minimum height takes place around early winter(December). This temporal pattern of vertical
displacement should be mainly determined by the composite impact from agricultural groundwater
extraction and climate factors. On one hand, over the whole region of NCP, especially the PP area,
water-consumptive winter wheat is widely cultivated and agriculture is highly supported by artificial
irrigation, which contribute greatly to groundwater depletion, as Hu et al. (2016) [40] reported that the
correlation coefficients between irrigation amount and groundwater level anomalies is about −0.7.
In addition, Tan et al. (2012) [41] showed that the maximum agricultural irrigation is concentrated in
February to May in this region. On the other hand, precipitation is mainly focused on July and August
(Figure 4c), which is stored in aquifers for next spring due to the lower irrigation requirement in those
months. Hence, the vertical displacement due to groundwater loading displays a clear seasonal pattern
of upward trend from January to June, when the groundwater is continuously extracted for irrigation,
and downward trend from July to December, when the groundwater is recharged and accumulated
from precipitation.
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By contrast, sediment-located CGPS stations (blue bars) respond differently. Those stations attain
their maximum height from April to May and minimum height from October to November, about one
to two months earlier compared to bedrock-located CGPS stations, which are likely to be attributed to
the conjunctive impacts of elastic and porous response of Earth’s surface to groundwater variation.
Except for elastic response to groundwater loading and unloading, due to soil pore compression, the
Earth’s surface rises when the aquifer is recharged with water and subsides when the groundwater
is withdrawn from the aquifer [42], which is opposite to Earth’s elastic response to the loading of
groundwater and could obfuscate the effects of hydrological mass variation on position [43,44]. For the
CGPS stations located on soft sediment, their vertical positions record not only the Earth’s elastic
deformation to groundwater mass loading and unloading, but also the porous response associated with
groundwater filling and emptying the aquifers. Thus, for these stations, their vertical displacement
variations reflect both elastic and porous responses of Earth’s surface to groundwater changes,
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while bedrock-located CGPS stations mainly reveal the elastic response. In our study, the five of
six bedrock-located CGPS stations in NCP attain their maximum heights at the time of early summer
when groundwater is minimum due to large pumping for agricultural usage and low recharge from
rainfall, while all the sediment-located CGPS stations attain their maximum heights in late spring,
due to opposite influence from Earth’s surface elastic and porous response to groundwater changes.

Figure 6 shows distribution of groundwater depression cones across NCP. Shallow groundwater
depression cones are mostly distributed in the PP area near Shijiazhuang, while the deep groundwater
depression cones are primarily located in ECP, near Cangzhou, Hengshui, and Tianjin. The linear
trend of vertical displacements at individual CGPS stations is also shown in Figure 6, the uplift or
subsidence of which is distinct in different areas. Most selected bedrock-located CGPS stations in PP
and north part of ECP show slight secular trend of −0.69~1.5 mm/a from 2009/2010 to 2013. However,
sediment-located CGPS stations in ECP (HECX, TJBH, and TJWQ) show significant subsidence
vertical rate at −44~−17 mm/a. The three CGPS stations are located on soft sediments and along
the margins of deep groundwater depression cones, near Tianjin or Cangzhou, which have been
suffering the most severe groundwater depletion in these areas [45] (Hu et al., 2004). For these stations,
as discussed above, their GPS vertical position record both earth’s elastic deformation associated
with changes in GWS and pore compaction of groundwater depletion. Hence, it could be concluded
that, for the sediment-located stations nearby deep groundwater depression cones, the subsidence
caused by pore compaction are much larger than the elastic uplift induced by groundwater depletion.
This indicates that the groundwater depletion in deep confined aquifers is the major triggering factor
for inducing land subsidence in middle-east plain of NCP, which is consistent with the reported results
of Guo et al. 2015 [46].
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Figure 6. Long-term uplift or decrease rates of selected CGPS stations; note that the length of arrow is
only serves as an index. The background is long-term rate of groundwater level anomalies throughout
NCP, which is inferred by fitting a continuous, curved surface to the in situ groundwater level
observations using GMT program Surface.

3.3. Characteristics of Shallow and Deep Groundwater Changes in NCP

Figure 4b shows the monthly variation of deep confined groundwater level and shallow
unconfined groundwater level. The rate of shallow groundwater decreases at a rate of −0.48 m/a till
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the end of 2010 and then rebounds, while deep groundwater declines at a rate of −0.73 m/a up to
the end of 2012, indicating that deep groundwater suffers more severe groundwater depletion than
shallow groundwater in NCP, which is in agreement with reported results of Hu et al. (2016) [40].
For a better investigation of the shallow and deep groundwater variability, we further compare the
in situ groundwater level observations with precipitation. As shown in Figure 4c, the long-term
mean precipitation in NCP is 578 mm. The shallow groundwater level decreases when the annual
precipitation in NCP is less than the long-term mean (e.g., 2009–2010), whereas it increases when
precipitation exceeds the long-term mean (e.g., 2011–2012). The fluctuation of shallow groundwater
level consists with the variation of precipitation. For deep groundwater, the situation is quite different;
the deep groundwater level continued declining from 2009 to 2012. Overall, it implies that the shallow
GWS variability is largely regulated by precipitation, while the deep GWS variability in NCP is
less influenced.

The corresponding response of GPS results is the difference between the times when their
displacements reach peak value. In order to avoid the influence of geological condition (bedrock
or sediment) of CGPS stations, here the discussion is only focused on the bedrock-located CGPS
stations. As shown in Figure 5, some CGPS (e.g., BJSH) stations located in PP attain their peaks
about one month earlier than the ones (e.g., HETS) located in ECP, which is most likely due to the
different depletion situation and renewal characteristics over the heterogeneous aquifers in PP and
ECP. For piedmont plain, which is at the feet of Taihang Mountains, the water supply is mainly from
the shallow fresh groundwater stored in the upper unconfined aquifers and is largely influenced by
precipitation, as discussed before. Besides, the stations in this area can receive more lateral recharge
from the Taihang Mountains than the stations in east central plain due to the decrease of hydraulic
gradients and transmissivity from the west to east in NCP [39]. We can conclude that, compared
with ECP areas, the PP areas are easier to recover from the groundwater extraction because they are
more regulated by precipitation and receive more lateral recharge from Taihang Mountains. Therefore,
the minimum and maximum of hydrologic mass loading in PP occur earlier than those of ECP, leading
to the peak values of some CGPS stations in PP arriving earlier than the ones in ECP.

4. Conclusions

This study demonstrates the potential of GPS to detect vertical displacements induced by
groundwater depletion over the heterogeneous aquifers in North China Plain (NCP). Comparisons
between GPS-measured and GRACE-modeled seasonal vertical deformation show good correlation
after correcting the bias error of GRACE data using the multiplicative factor, which confirms that the
seasonal vertical displacements in NCP are mainly caused by groundwater mass loading variation,
since the TWS anomalies are mainly caused by GWS variations in this area.

The seasonal vertical displacements of individual CGPS stations reflect the groundwater pumping
activities for agriculture irrigation in spring, leading to less water storage in summer than in winter.
The extraction of groundwater causes two processes: one is the land subsidence due to compaction of
sediments in the aquifer, while the other is the uplift due to the reduction of the surface loading. In our
study, the first process probably affects sediment stations rather than bedrock stations. Thus, the linear
trend rate of the sediment-located CGPS stations is decreasing and mostly higher (−44~−17 mm/a)
than the slight uplift or subsidence rate (−0.69~1.5 mm/a) of the other bedrock-located CGPS stations.
Besides, the geological condition (bedrock or sediment) in CGPS stations, as well as their geographical
location (PP or ECP) with distinct characteristics of shallow and deep groundwater renewal, differ
with regard to the time when CGPS stations attain their maximum height, which has been discussed
in Section 3. Both of the GRACE-derived and in situ-observed GWS anomalies show apparent
variation from “obviously declining” (2009–2010) to “relatively stable” (2011–2013) in NCP, which
also could be inferred from the linear trend changes of vertical displacements of three IGS CGPS
stations. These results imply the slowdown of groundwater depletion rate in recent years. Overall,
GPS-derived vertical displacements have the ability to detect groundwater variations in NCP. Moreover,
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to some extent, their result can reveal the distinguished characteristics of groundwater changes in
different sub-regions.
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