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Abstract: Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of
shortwave sensors on the same satellite platform. TIR resolution is often not suitable for monitoring
crop conditions of fragmented farming lands, e.g., the accurate estimates of evapotranspiration (ET)
based on surface energy balance from remote sensing for irrigation water management. Consequently,
thermal sharpening techniques have been developed to sharpen TIR imagery to a shortwave band
pixel resolution. However, most methods concentrate on the visual effects of the thermal sharpened
images, and they treat the pixels as independent samples without considering their spatial context,
which can give rise to adverse effects such as artifacts. In this work, a new thermal sharpening
method called TS2uRF is proposed. The potential of superpixels (SP) combined with regression
random forest (RRF) have been used to augment the spatial resolution of the Landsat 8 TIR (100 m)
imagery to their visible (VIS) spatial resolution (30 m). The SP has allowed the contextual information
on the land cover to be integrated, and RRF has allowed the relationship between five spectral indices
and TIR data to be integrated into a single model. The TIR sharpened images obtained using the
TS2uRF were compared with images obtained using the TsHARP, one of the most classic thermal
sharpening techniques, evaluating the root-mean-square error (RMSE) and structural similarity
index (SSIM) for measuring image quality. In all of the cases evaluated, the RMSE and SSIM of the
images sharpened using the TS2uRF method outperform those obtained using TsHARP. In particular,
the TS2uRF method has an average error of 1.14 ◦C (RMSE) lower than TsHARP, regarding SSIM,
TS2uRF outperforms TsHARP on average by 0.218. From the visual comparison, it has been shown
that the TS2uRF methodology avoids the artifacts that appear in the enhanced images using the
TsHARP method.

Keywords: brightness temperature; thermal sharpening; superpixels; regression random forest

1. Introduction

The pressure on agricultural land due to the limited resources of arable land and water scarcity,
is greater than ever. In this scenario, an improvement of agricultural productivity is required [1].
One of the most important factors in achieving this goal is suitable irrigation water management.
To this end, an accurate estimation of crop evapotranspiration (ET) is necessary. ET represents the
total loss of water due to transpiration and evaporation phenomena that take place in vegetation
cover and soil in a crop area. Nowadays it is possible to estimate ET for different crops, by providing
spatial and temporarily distributed information over a wide area, using information gathered from
aircraft or satellite platforms. One of the most commonly used methods for ET estimation from remote
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sensing are based on residual methods using the surface energy balance (e.g., SEBAL, METRIC, SEBI,
ETMA) [2–5]. The most critical input in the surface energy balance are visible (VIS), near infrared
(NIR), and thermal infrared TIR remote sensed imagery. TIR imagery has been expanding rapidly,
playing an important role in numerous agricultural environments: nursery monitoring, soil salinity
stress detection, plant disease detection, yield estimation and irrigation scheduling, among others [6].

TIR imagery is normally acquired at a coarser pixel resolution than that of shortwave sensors
on the same satellite platform, and the TIR resolution is often not suitable for monitoring the crop
conditions of individual fields or the impacts of land cover changes that are at significantly finer
spatial scales [7]. Consequently, techniques for improving the spatial resolution of the thermal band
to shortwave band pixel resolutions have been developed; this resolution often being fine enough
for field-scale applications [8–10]. Zhan et al. [10] classified these techniques into two groups based
on a robust bibliography: Temperature Unmixing (TUM) and Thermal Sharpening (TSP). TUM is
characterized as a generic process by which component temperatures within a pixel are broken down
based on multi-temporal, spatial, spectral and/or angular observations. TSP refers to any procedure
through which thermal images are enhanced for interpretation purpose, i.e., enhancement of low
resolution TIR using spatially-distributed auxiliary data that are statistically correlated to the TIR
pixel by pixel or region by region. Whilst the differences between the TSP and TUM are subtle, in [10]
the authors point out that the TSP is used to obtain the land surface temperature (LST) of smaller
resolution cells while the TUM is used to obtain the LST of elements within large resolution cells.
This work focuses on TSP methods for improving the spatial resolution of TIR images.

Most of methods in the TSP group concentrate on the visual effects of the thermal sharpened
images, which may not always be useful for quantitative remote sensing applications [11]. One of
the most classic thermal sharpening techniques is TsHARP [12,13]. TsHARP exploits the inverse
relationship between land surface temperature (LST) and the normalized vegetation index (NDVI).
Through TsHARP it is possible to obtain TIR images at NDVI spatial resolution. The TsHARP
technique assumes that fractional vegetation cover, which is related to NDVI, is one of the primary
factors affecting land surface temperature variations over a given area [14]. The implementation and
operation of TsHARP is accessible and easy, and has a low computational cost. However, in [15]
some disadvantages of the methodology were presented. In particular, the scale effect of the LTS and
NDVI relationship is not considered, which could lead to significant errors in homogeneous areas
(e.g., natural vegetation areas). Furthermore, there are several studies providing a single relationship
between LST and NDVI which are not well defined for complex land covers (e.g., soils with moisture
or bare soils that experience cooling due to evaporation or the presence of water) [16,17].

Other thermal sharpening techniques use Data Mining (DM) [18]. In [18], the authors proposed
an approach based on Regression Trees (RT) built using TIR and shortwave spectral reflectances.
The authors demonstrate that the DM approach reduces the artificial like-box pattern in land surface
temperature generated by TsHARP. The DM framework is more flexible and adaptable for automated
operational data production, allowing auxiliary data (e.g., digital terrain model, soil texture or moisture)
to be included to improve the spatial resolution of the TIR images. In Bai et al. [11], a novel data
fusion method, based on a learning machine algorithm [19] for a neural network regression model
is proposed to enhance the 60 m Landsat 7 ETM + TIR band imagery to a 30 m resolution. MODIS
LST and enhanced Landsat 7 ETM + TIR data, are also combined to improve their temporal resolution.
The authors concluded that the synthetic LST imagery obtained through this methodology can be
used for monitoring the variation of land surface temperature (e.g., in urban heat-island studies).
The main shortcoming of the aforementioned methods is that they treat pixels as independent samples
without considering their spatial context, which can give rise to adverse effects such as a lack of
precision of the estimates [20]. In this regard, Zhan et al. [21] presented a study for downscaling
land surface temperature based on multi-spectral and multi-resolution images and the methodology
proposed in [8] in which they included spatial context features through different mobile window
sizes. The results obtained showed that the sharpened images increase in quality as the spatial
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context information considered during processing increases. The use of square windows is a common
practice in image processing applications, however this procedure constrains the context to an artificial
structure, i.e., a square, without considering that they could belong to different land covers. Recently,
some studies [22–27] have demonstrated that the use of superpixels (SP) (i.e., perceptually-uniform
regions in the image of a similar-size) can solve the aforementioned problems. Our working hypothesis
states that it is possible to improve the spatial resolution of the TIR images by modeling a relationship
between various spectral indices of vegetation and soil and TIR images, but unlike the methods
mentioned above, our method incorporates information from the pixel context without the restrictions
of artificial structures such as square windows. In this work, the potential of SP combined with
Regression Random Forest (RRF) is used to augment the spatial resolution of the Landsat 8 TIR (TIR1

and TIR2) imagery to their VIS spatial resolution. The use of SP allows the authors to consider the
contextual information on the land cover with respect to a pixel, while RRF allows the relationship
between five spectral indices and TIR data to be integrated into a single model.

2. Materials and Methods

2.1. Study Site

The study site is located in the region of Biobío, Chile. The area is made up of rivers,
different annual crops and orchards, and alluvial soils, which allows high production levels for different
crops. The climate is warm temperate, with an annual mean temperature of 14 ◦C. Four different land
covers are included in the area: urban, agricultural vegetation, forest and bare soil. An image was
acquired by the ETM+ sensor on board of the Landsat-8 satellite (path 233, row 85), and downloaded
from the USGS Glovis official site (http://glovis.usgs.gov), with an L1T preprocessing level of standard
field correction. A color composite of the multispectral image registered on 16 February 2016 (summer
season) is displayed in Figure 1. The size of the scene is 674 × 470 pixels. Each pixel represents an area
of 30 m × 30 m for all spectral bands, except for the TIR band. The TIR sensors contain two thermal
bands, which measure land surface temperature at 100 m resolution (Figure 2). However, the product
provided by USGS Glovis is resampled and delivered as 30 m (Table 1).

Figure 1. A location map and a false color composite (NIR, Green, and Blue bands) from Operational Land
Imager (OLI) of the study site, located in the region of Biobío (Chile) and acquired on 16 February 2016.

http://glovis.usgs.gov
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Figure 2. Thermal Infrared bands (TIR) of the study site, located in the region of Biobío (Chile) and
registered on 16 February 2016.

Table 1. Landsat-8 OLI and TIRs spatial and spectral characteristics.

# Band Name Band Bandwidth (µm) Spatial Res. (m)

Band 1 Coastal/Aerosol 0.435–0.451 30
Band 2 Blue 0.452–0.512 30
Band 3 Green 0.533–0.590 30
Band 4 Red 0.636–0.673 30
Band 5 NIR 0.851–0.879 30
Band 6 SWIR1 1.566–1.651 30
Band 7 SWIR2 2.107–2.294 30
Band 8 PAN 0.503–0.676 15
Band 9 Cirrus 1.363–1.384 30
Band10 TIR1 10.60–11.90 100
Band11 TIR2 11.50–12.51 100

2.2. Methodology

The objective of the proposed methodology is to improve the spatial resolution of the TIR bands
of the Landsat 8 dataset by finding a relationship between spectral features and brightness temperature
(BT) of the TIR values. These spectral features include vegetation and soil spectral indices, widely used
in remote sensing monitoring of agriculture, as well as information on the spatial context of the pixels.
This methodology exploits the SP to provide perceptibly uniform regions in the TIR images, which are
useful for obtaining image features at different scales, as well as providing contextual information of
pixels. While an RRF model is trained from characteristics calculated using the context provided by
SP to find a relationship between them and the BT values of the TIR images. The trained model is
able to provide a pixel-level estimation of the TIR value in response to new input values (which must
come from the same distribution as those used to generate the model). Thus, the model can be used to
improve the resolution of the TIR image using a set of similar characteristics but with a higher spatial
resolution as input.

Figure 3 illustrates the workflow of the proposed methodology called TIR Sharpening imagery
using Superpixels and Random Forest (TS2uRF). Its main steps are described in the next sections.
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Figure 3. Flowchart of the methodology used to sharpen TIR satellite imagery by TS2uRF.

2.2.1. Preprocessing

The first step consists of converting digital numbers (DNs) of the Landsat 8 bands in the visible
range to the top of atmosphere (TOA) reflectance, followed by a simple atmospheric correction using
the Dark Object Subtraction 1 (DOS1) method [28]. Once this is carried out, the reflectance of the
thermal bands (TIR1 and TIR2) are converted to at-satellite brightness temperature in Celsius. All of
these processes are carried out using the Semi-automatic Classification Plugin [29] for Quantum GIS
software [30]. This step assumes that the TIR imagery have been previously resampled to the pixel
size of the VIS.

2.2.2. Superpixel Generation

As mentioned above, SP are used to provide contextual information at multiple scales.
Unlike window-based approaches that have a predetermined environment, i.e., a square, SP are
capable of providing an adjustable-size environment that is adapted to the characteristics of the image,
particularly to the shapes of objects (Figure 4). An SP is a small, local, and coherent cluster that contains
a statistically homogeneous image region in accordance with certain criteria such as color and texture,
among others [31].

(a)Superpixels at fine scale (b)Superpixels at coarse scale

Figure 4. Segment obtained by SP strategy at: (a) fine scale (k = 5) and (b) coarse scale (k = 8) for the
TIR1 image.

There are different approaches to computing SP, one of the most popular is the SLIC algorithm [32],
which is based on the well-known k-means method which groups pixels into a conventional color
space. The SLIC method generates SP similar in size in accordance with two criteria: spectral similarity
(three channels) and spatial proximity. The SLIC has two parameters k and c, the first one is related to
the size of the SP, whilst the second one regulates their compactness. Thus, SLIC is able to provide
SP at different scales by fixing the value of the compactness parameter (c), but varying the size of the
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SP (k). In this work, a modified version of SLIC [33] is used which works with any number of channels.
Prior to segmentation, the image is filtered to reduce the noise and to preserve most of the image
edges. The filter chosen for this purpose is the Rolling Guidance Filter, proposed by Zhang et al. [34],
which is based on the bilateral filter. Because the objective of using SP in the proposed methodology is
to obtain homogeneous temperature areas to establish relationships with spectral indices, this step is
only applied to TIR bands sampled at the pixel size of the VIS image.

2.2.3. Integration Process

Since the idea of this work is to estimate the brightness temperature (BT) values of the TIR images
at a higher resolution than the original one by means of an RRF model, it is necessary to define a set of
features that allows better estimations to be obtained. In this regard, SP are used to provide a context
to pixels at different scales (Figure 5). Because SP are well suited to the edges of objects present in the
images (land covers), they are suitable for providing the context of pixels of TIR images. The BT value
associated to each SP is defined as the average value of its neighborhood (made up of pixels within the
same SP of all the given scales and a particular spectral characteristic TIR band (TIR1 or TIR2). Thus,

the brightness value associated with the ith pixel at scale jth will be denoted by BT
SPi

j
j , where SPi

j
represents the SP where ith pixel is contained at the scale jth (j = 1, . . . , n). In this way, the spatial
variability of each pixel in respect to their spatial context given by SPi

j is captured at different scales.

Pixel Scale1 Scale1-2 Scale1-3

Less context More context

Figure 5. Information about the context of a pixel at different scales.

Because this work is intended for agricultural purposes, spectral indices related to agricultural
applications have been used as features. The spectral indices used are summarized in Table 2 and
correspond to the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index
(EVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Moisture Index
(NDMI), and the Bare Soil Index (BSI).

To augment the spatial resolution of the Landsat 8 TIR (TIR1 and TIR2) imagery to their VIS

spatial resolution, the BT values at scale n (BTSPi
n

n ) have been related with five aforementioned spectral
indices. To accomplish this, each SPi

j is intersected with the corresponding pixels belonging to each
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spectral index images, then mean value of these pixels are calculated. Thus, for each spectral index a
n-components feature vector Feati

1−n is obtained. It is defined as in Equation (1)

Feati
1−n = [FeatSPi

1
1 , FeatSPi

2
2 , . . . , FeatSPi

n
n ] (1)

Then, at the end of the process, a dataset for scale n is obtained, which can be represented by the
features vector in Equation (2):

Features = [NDVIi
1−n, EVIi

1−n, NDWIi
1−n, NDMIi

1−n, BSIi
1−n] (2)

where NDVIi
1−n, EVIi

1−n, NDWIi
1−n, NDMIi

1−n, BSIi
1−n are the results of using the spectral indices

(Table 2) for characterizing the ith pixel at the n-scale.
As in the work of Gonzalo-Martín et al. [33], in this work the size of the SP has been selected to

follow a dyadic scale.

Table 2. Spectral indices equation.

Index Equation Using Landsat 8 OLI [35]

Normalized Difference Vegetation Index (NDVI) NIR−Red
NIR + Red

Enhanced Vegetation Index (EVI) 2.5 × NIR−Red
NIR + 6×Red−7.5×Blue + 1

Normalized Difference Water Index (NDWI) (SWIR1+ Red) + (NIR + Blue)
(SWIR1+ Red)−(NIR + Blue)

Normalized Difference Moisture Index (NDMI) NIR−SWIR1
NIR + SWIR1

Bare Soil Index (BSI) Green + NIR
Green−NIR

2.2.4. Regression Random Forest Model Generation

To generate the RRF model [36], each feature vector compounded by the aforementioned spectral
indices at the VIS spatial resolution (Equation (2)), is associated with its corresponding BT target value
obtained from TIR1 or TIR2 at scale n and sampled at the pixel size of the VIS image (Section 2.2.3).
An RRF model is trained to learn a function ( f ) representing the relationship between a feature vector
and BT values, considering the context pixels information provided by the SP approach, from TIR
band (Equation (3)).

BTi
n = f ([NDVIi

1−n, EVIi
1−n, NDWIi

1−n, NDMIi
1−n, BSIi

1−n]) (3)

Thus, an RRF model for each TIR band and for each specific scale n is obtained after training.
The optimal number of trees used to build the model is selected by means of the out of bag (OOB).
The model has been implemented using the TreeBagger package of Matlab R©. TreeBagger function
allows for the growth of decision trees in the ensemble using bootstrap samples of the data, thus
reducing the effects of overfitting and improving the generalization [37]. The main TreeBagger function
parameters used in this work were: regression method, 50 trees and surrogate splits. To generate a TIR
image, the trained model is fed using as input a features vector at the VIS spatial resolution, as defined
in Equation (3). In this way, it is possible to obtain BT values to generate a thermal-sharpened image at
the same resolution of the input vector.

3. Results

To evaluate the quality of the BT from TIR sharpened images generated by the TS2uRF,
we simulated multi-resolution thermal data by degrading the Landsat 8 channel TIR1 and TIR2

from the original 100 m spatial resolutions (Table 1) to 200, 300, 400, 500, 600, 700, 800, 900, and 1000 m,
using Lanczos 2D filter, implemented in Matlab R©. This data set allows the authors to apply the
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proposed method to sharpen the degraded TIR images back to a resolution of 100 m; they images are
then compared against the original thermal image (100 m). Following the methodology proposed and
illustrated in Figure 3, to obtain the TIR images at 100 m resolution, VIS data from the target resolution
is required, therefore, the VIS image is also re-sampled at 100 m. It is important to note that each
degraded TIR image is segmented once it is resampled at 100 m. In Figure 6, heatmaps representing
the SSIM and RMSE indices for TIR1 (Figure 6a,b) and TIR2 (Figure 6c,d) are shown. The SSIM index
takes decimal values in the range [−1, 1], where 1 is the ideal value, when the two compared images
are equal, while RMSE is a prediction error. These quality indices are calculated for sharpened TIR
images (100 m) obtained from nine degraded images; spatial resolutions are represented in the y-axis
while on the x-axis the effect of different spatial context information was considered for the sharpened
TIR images (Scale). The minimal spatial context information is considered when generating the images
at a pixel level. On the other hand, a maximum spatial context is considered when information from
Scale1 to Scale5 is integrated into the sharpened process (Scale1−5).

(a)SSIM–TIR1 (b)RMSE–TIR1

(c)SSIM–TIR2 (d)RMSE–TIR2

Figure 6. Heatmaps of SSIM (a,c) and RMSE (b,d) indices comparing the original TIR images (100 m)
and the sharpened TIR, obtained by TS2uRF, from degraded images and considering different spatial
context information.

A visual comparison of the best results obtained by sharpening the degraded images at 200,
600 and 1000 m is shown in Figure 7. As can be seen, TS2uRF is able to preserve the quality of the
brightness temperature at degraded spatial resolutions (200, 600 and 1000 m). Since similar results
were obtained for TIR2, from here the analysis will focus on the results of sharpening the TIR1 image.
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(a)Degraded to 200 m (b)Sharpened from 200 to 100 m

(c)Degraded to 600 m (d)Sharpened from 600 to 100 m

(e)Degraded to 1000 m (f)Sharpened from 1000 to 100 m

Figure 7. Visual comparison between degraded TIR1 images and their corresponding sharpened
images (100 m). The images in the left column correspond to the degraded versions at 200 (a); 600 (c)
and 1000 m (e) respectively. Whereas in the right column, the images correspond their respective
sharpened versions using the following contextual features: Scale1−5 (b); Scale1−4 (d); and Scale1−3 (f).

To compare the TS2uRF method with one of the most classic methodologies of TsHARP, described in
Section 1, thermal sharpened images were generated by TsHARP, applying the same degradation levels
(200 m, . . . , 1000 m) and considering a minimal spatial context, i.e., the pixel level. In Table 3, it is
possible to compare the quality evaluation indices (SSIM and RMSE). In all cases, the RMSE and SSIM
values of the images sharpened using the TS2uRF method were better than for TsHARP. The greatest
RMSE difference appears in the 200 m degraded TIR1 image, obtaining a RMSETS2uRF = 0.490 ◦C and
RMSETsHARP = 1.906 ◦C. The same applies to the structural index; the SSIMTS2uRF = 0.824 and the
SSIMTsHARP = 0.412.



Remote Sens. 2018, 10, 249 10 of 14

Table 3. Quality evaluation between reference image TIR1 (100 m) and sharpened TIR1 image obtained
by TS2uRF and TsHARP using images degraded at different levels.

TIR1 TS2uRF ( TIR1 at 100 m) TsHARP (TIR1 at 100 m)

Degraded Spatial Context SSIM RMSE (◦C) Spatial Context SSIM RMSE (◦C)

200 m Scale1−5 0.824 0.490

Pixel Level

0.412 1.906
300 m Scale1−5 0.784 0.540 0.414 1.907
400 m Scale1−5 0.730 0.592 0.415 1.910
500 m Scale1−5 0.660 0.670 0.417 1.915
600 m Scale1−4 0.654 0.765 0.419 1.924
700 m Scale1−3 0.601 0.871 0.419 1.933
800 m Scale1−3 0.550 0.960 0.420 1.945
900 m Scale1−3 0.500 1.034 0.419 1.960
1000 m Scale1−3 0.421 1.110 0.419 1.972

This outcome was confirmed by a comparison between the TIR1 reference image and sharpened
TIR1 image using TS2uRF and TsHARP methods. Figure 8 shows the comparison for sharpening
an image degraded to 200 m. The reference image (Figure 8a) and the image sharpened by TS2uRF
(Figure 8b), the brightness temperature varies over a similar range of values. However, the TIR1 image
sharpened using TsHARP (Figure 8c) is no longer able to estimate the original values for a brightness
temperature of more than 30 ◦C and lower than 20 ◦C. This behavior is also reflected in the scatter plot
between reference and sharpened images using TS2uRF (Figure 8d), where their goodness of fit index
(r2) is 0.87; while for TsHARP (Figure 8e) it is 0.48.

(b) Sharpened by TS2uRF (200 m)

(c) Sharpened by TsHARP (200 m)

20 22 24 26 28 30 32 34 36
° C

(a) Reference Image (100 m)

(d) Scatter plot (b) vs (a)

(e) Scatter plot (c) vs (a)

Figure 8. Comparison between (a) the reference image TIR1; (b) TIR1 sharpened by TS2uRF and
(c) TIR1 sharpened by TsHARP; (d) Scatter plot between reference image (a,b) sharpened image by
TS2uRF; (e) Scatter plot between reference image (a,c) sharpened image by TsHARP.

Due to the lack of actual 30 m data from the TIR images, it is not possible to quantitatively compare
the results of carrying the TIR image from 100 m to 30 m by using the VIS Landsat data. However,
the result of this experiment can be seen in Figure 9. It shows a visual comparison between the reference
TIR images of 30 m (TIR1 Figure 9a and TIR2 Figure 9b) and the sharpened TIR images at 30 m, obtained
using TS2uRF (Figure 9c,e) and TsHARP (Figure 9d,e). As can be seen, images sharpened with TS2uRF
have a better spatial and brightness temperature than those obtained with TsHARP.
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The influence of spatial context information on the sharpened images using TS2uRF is shown
in Figure 10. The original TIR1 image at 100 m spatial resolution (resampled at 30 m) is shown in
Figure 10a. Whereas the TIR1 images sharpened at 30 m spatial resolution using TS2uRF at a pixel
level, Scale1−3 and Scale1−5 are shown in Figure 10b–d.

(b) TIR2 Original Image (100 m)

(d) TIR2 Sharpened by TS2uRF (30 m)

(f) TIR2 Sharpened by TsHARP (30 m)

(a) TIR1 Original Image (100 m)

(c) TIR1 Sharpened by TS2uRF (30 m)

(e) TIR1 Sharpened by TsHARP (30 m)

Figure 9. Visual comparison between (a) the original image TIR1 and (b) TIR2 at 100 m spatial
resolution and sharpened TIR1 (c) and TIR2 (d) at 30 m by TS2uRF and sharpened TIR1 (e) and TIR2 (f)
at 30 m by TsHARP, and considering a Scale1−3 as a spatial context information.

(a)TIR1 Original (b)Pixel level

(c)Scale1−3 (d)Scale1−5

Figure 10. Influence of spatial context information on the sharpened images by TS2uRF. (a) Original
image TIR1 at 100 m spatial resolution (resampled at 30 m) and sharpened TIR1 at 30 m spatial resolution
by TS2uRF considering: (b) Pixel level; (c) Scale1−3 and (d) Scale1−5 as a spatial context information.
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By making a visual comparison between the TIR1 image of 30 m (Figure 10a) and sharpened image
(Figure 10b–d), it is possible to state that the sharpened image obtained at Scale1−5 and the original
images have a similar brightness temperature behavior. Moreover, the model using information at
Scale1−5 does not exhaustively capture the edge (spatial information) from the source images. This is
due to the Scale1−5 integrating a lot of spatial information, working as a low-pass filter, and thus
smoothing the edges. As a result, the quality of the brightness temperature is high (compared to the
original images), at the expense of reducing the spatial resolution of the sharpened images. From the
results obtained both in the first experiment (Table 3) and this experiment (Figure 10), the authors
recommend using Scale1−3 to sharpen Landsat 8 TIR images from 100 m to 30 m.

4. Discussion

The results obtained in this research allow the authors to make considerable improvements in the
sharpening thermal infrared satellite imagery, with respect to the state-of-the-art methods, proving
the hypothesis established in this work. The most important contribution of this work was the use
of the SP, which allowed the authors to consider the contextual information on the BT values from
TIR images.

The results shown in Figure 6, for both the TIR1 and TIR2 images, demonstrate the same behavior
for all degraded images under analysis. The best SSIM values are obtained with Scale1−5. For degraded
images of more than 500 m, less spatial context is required. The RMSE has a similar behavior for
both TIR1 and TIR2 sharpened images. These results are similar to that set out by [21], in which it is
shown that the RMSE values of the TIR sharpened images decrease as the spatial context information
(windows size) considered in the sharpening process increases.

In Table 3, the results show that the TS2uRF methodology provides a better reconstruction of the
original image than TsHARP.

It can be seen in Table 3 that the SSIM and RMSE values obtained using TsHARP are almost
unchanged when changing the level of degradation. Whereas the quality of the results obtained by
TS2uRF vary according to contextual information, the results shown in Figure 9 indicate that the
TsHARP method offers good spatial details, but a poor BT estimation. This is consistent with the work
of Bai et al. [11], which states that most of the TSP methods focus on the visual effects of thermal
sharpened images which may not always be useful for quantitative remote sensing applications.

Future research should aim to evaluate their usefulness for ET estimation. Moreover, this research
focused solely on the agricultural landscape. Therefore, it may be interesting to evaluate the TS2uRF in
urban applications (e.g., urban-heat-island).

5. Conclusions

In this work, a new method for thermal sharpening called TS2uRF has been proposed to overcome
the shortcomings of the methods found in literature. The set of sharpening experiments and their
results confirm that it is possible to improve the spatial resolution of TIR images by modeling a
relationship between vegetation and soil spectral indices and TIR values, as well as spatial context
information given by SP. Based on the evaluation of the results obtained by sampling the TIR images
at different resolutions, it can be concluded that the TS2uRF method improves the results obtained
by the TsHARP method. The results obtained from sharpening nine images of different resolutions
(from 200 m to 1000 m) to a resolution of 100 m show that the TS2uRF method has an average error of
1.14 ◦C (RMSE) lower than TsHARP. Unlike TsHARP, the TS2uRF sharpened image has a brightness
temperature that varies in a range similar to that of the original images. In addition, the TS2uRF
methodology avoids artifacts that are visually perceived in improved images using the TsHARP
method, which results in better spatial (edges) and spectral (brightness temperature) quality. In this
regard, the TIR images sharpened using TS2uRF can be useful to improve the spatial resolution of
agricultural applications, such as estimating ET maps, which will be a research motive in future works.
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