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Abstract: To obtain an accurate count of wheat spikes, which is crucial for estimating yield, this paper
proposes a new algorithm that uses computer vision to achieve this goal from an image. First,
a home-built semi-autonomous multi-sensor field-based phenotype platform (FPP) is used to obtain
orthographic images of wheat plots at the filling stage. The data acquisition system of the FPP
provides high-definition RGB images and multispectral images of the corresponding quadrats.
Then, the high-definition panchromatic images are obtained by fusion of three channels of RGB.
The Gram–Schmidt fusion algorithm is then used to fuse these multispectral and panchromatic
images, thereby improving the color identification degree of the targets. Next, the maximum entropy
segmentation method is used to do the coarse-segmentation. The threshold of this method is
determined by a firefly algorithm based on chaos theory (FACT), and then a morphological filter is
used to de-noise the coarse-segmentation results. Finally, morphological reconstruction theory is
applied to segment the adhesive part of the de-noised image and realize the fine-segmentation of the
image. The computer-generated counting results for the wheat plots, using independent regional
statistical function in Matlab R2017b software, are then compared with field measurements which
indicate that the proposed method provides a more accurate count of wheat spikes when compared
with other traditional fusion and segmentation methods mentioned in this paper.

Keywords: ground phenotype platform; counting of wheat; Gram-Schmidt fusion algorithm; firefly
algorithm based on chaos theory

1. Introduction

Wheat yield is an important part of national food security [1], and spikes per unit area is
an important factor in wheat yield. Obtaining a rapid and accurate count of the number of spikes per
unit area is thus crucial for determining wheat yield.

With the continuous improvement in the mechanization and digitalization of agricultural
production, the methods of predicting crop production have gradually diversified, and many methods
are now available for small area production forecasting. These methods include field artificial
prediction, capacitance measurement, climate analysis and prediction, remote sensing prediction, and
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prediction of the year’s harvest [2]. However, these methods have the disadvantages of being highly
subjective and incurring high cost, and cannot provide accurate results for small areas. In contrast,
image processing techniques provide satisfactory results for small area production forecasting.

Compared with fruit and vegetable crop counting, wheat crop counting and yield estimation
based on image processing techniques are still in the relatively primitive stage. Few works have
focused on counting wheat spikes, which constitutes one of the most important components of wheat
yield. An automated method for predicting the yield of cereals, especially of wheat, is highly desirable
because its manual evaluation is excessively time consuming. To address this issue, we propose herein
to use image processing methods to count the number of wheat spikes per square meter, thereby
simplifying the work of agriculture technicians.

The image processing technology based on single data source cannot guarantee spectral resolution
and image resolution simultaneously because of the singleness of data sources. As a way to solve this
problem, image fusion keeps the spectral characteristics of low resolution multispectral images and
gives it high spatial resolution. Kong et al. proposed an infrared and visible image fusion method based
on non-subsampled shearlet transform and a spiking cortical model [3]. Li et al. [4] introduced a novelty
image fusion method based on a sparse feature matrix. Ma et al. [5] discussed an infrared and visible
image fusion method based on a visual saliency map. Zhang et al. [6] proposed a fusion algorithm
for Hyperspectral Remote Sensing Image Combined with Harmonic Analysis and Gram-Schmidt
Transform which shows a good performance during the fusion operation between different resolution
images. Since the Gram-Schmidt Transform has the above characteristic, it was used in our work.
The key to using image processing to count wheat spikes is image segmentation [7]. In recent years,
the segmentation of RGB images, or more generally multispectral images, has gained significant
research attention. For example, Ghamisi et al. [8] proposed a heuristic-based segmentation technique
for application to hyperspectral and color images, and Su and Hu discussed an image-quantization
technique that uses a self-adaptive differential evolution algorithm, with the technique being verified by
using standard test images [9]. Furthermore, Sarkar and Das [10] proposed a segmentation procedure
based on Tsallis entropy and differential evolution. In image segmentation based on multi-source data,
three different image features can be extracted according to different characteristics of target objects
as a basis for separation of soil background: color, texture, and sharp [11]. However, at the filling
stage, wheat ear and leaf have similar texture features, and cannot be identified accurately through the
difference of texture [12]. Meanwhile, the severe adhesion between wheat ears is so serious that it is
impossible to obtain accurate sharp information [13]. Based on these considerations, the color feature
is used as the basis for image segmentation.

At present, there are many methods of image segmentation based on color features. Chen et al. [14]
introduced a medical image segmentation by combining Minimum cut and Oriented Active
Appearance Models. Narkhede et al. [15] used an edge detection method for color image segmentation.
Gong et al. [16] proposed an efficient fuzzy clustering method in image segmentation. Pahariya et al. [17]
successfully used a snake model with a noise adaptive fuzzy switching median filter method in
image segmentation. Subudhi et al. [18] introduced a region growing method for Aerial Color Image
Segmentation. Tang et al. [19] proposed an improved Otsu Method for Image Segmentation based
gray level and gradient mapping function. Zhao et al. [20] introduced a maximum entropy method
to deal with 2D image segmentation. Compared with other methods, the maximum entropy method
shows robustness to the size of the interest region and is more adaptable to complex backgrounds so it
could be used in the coarse segmentation operation in this paper [21].

In addition, observation methods are crucial for data acquisition, and such methods differ greatly
in accuracy, stability, and duration. Establishing a rapid, accurate, high-throughput, non-invasive,
and multi-phenotypic analysis capability for field crops is one of the great challenges of precision
agriculture in the twenty-first century [22]. Modern agriculture demands the development of
a high-throughput platform to analyze the phenotypic platforms [23]. Table 1 compares several
current propositions to obtain crop phenotype (Table 1).
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Table 1. Advantages and disadvantages of current methods to obtain crop phenotype.

Methods Advantages Disadvantages

Artificial investigation Accurate and reliable Low efficiency
Large-scale ground phenotypic platform High accuracy and high load High cost and poor mobility

Unmanned Aerial Vehicle (UAV)
phenotype platform

Large coverage area and good
real-time performance

Weather restrictions and cruise
capability limit

In view of the drawbacks with current segmentation algorithms and observation methods, we
propose herein a new method to obtain wheat spike number statistics. The method exploits the
field-based phenotype platform (FPP): First, high-definition digital images and the corresponding
multispectral images of plots are obtained by using a home-built ground-moving phenotype platform
vehicle which could overcome the limitation of bad weather conditions and high-cost. After two
images are ortho corrected and registered, this paper introduces an algorithm to identify wheat ears
in the filling stage. This paper also presents a novel direction to count the number of wheat ears.
The analysis shown in this paper, however, can be extended for any component phenotype.

The paper has the following novel research contributions: (a) it introduces a method for optimizing
threshold selection in the maximum entropy segmentation method; (b) it presents a better way for
noise reduction based on morphological filters which can provides more accurate coarse-segmentation
results; (c) it introduces a new direction of fine-segmentation of adhesive parts of wheat ears based on
morphological reconstruction.

2. Study Site and Data Collection

2.1. Study Site

The experimental site was at the Xiaotangshan National Precision Agriculture Research and
Demonstration Base, located in Changping District, Beijing, Latitude of 40◦00′N–40◦21′N, longitude of
116◦34′E–117◦00′E, altitude of 36 m. The site measured 84 m east-west, 32 m north-south, and contained
48 (6 m × 8 m) plots (Figure 1).
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Figure 1. Sketch map of experimental area. The image was taken on 1 May 2017 using Dajiang’s S1000
unmanned aerial vehicle. The camera model is SONY QX-100, and the UAV flying height is 50 m.
The green markings represent selected areas and red markings represent other areas.

According to the planting area map, we selected three representative plots: T1 (located on the
edge of the protective line), T3 (located in the middle of the wheat field), and T4 (located on the side
of the wheat field). This selection minimizes the influence of the marginal effect and ensures that the
quadrats are representative.
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2.2. Self-Developed Semi-Autonomous Multi-Sensor Field-Based Phenotype Platform

Figure 2 shows the platform, which consists of a three-wheeled double-deck steel-frame structure.
The length, width, and height of the platform are respectively 3 m, 3 m, and 3.5 m. The payload of
the platform is 20 kg. The diameter of the Cloud Terrace is 0.5 m. The height control range of the
sensor cantilever is 0.5 m–4 m. The speed of the platform is 1 m/s and the endurance time of the
platform is 2 h. The sensor is hung from the cloud terrace, which is below the cantilever at the front
end of the platform. The platform is powered by an on-board accumulator located in the middle
of the platform, which supplies power to two brushless motors located at the front wheels, thereby
driving the platform. The two front wheels of the platform are fixed power wheels, and the rear
wheel provides steering. The minimum turning radius of the vehicle is 3 m. Both the front and rear
wheels of the platform are equipped with wide rubber tires and anti-skid chains, and can handle
undulating gaps of no more than 10 cm. The cloud terrace has multiple holes for hanging equipment
and can simultaneously accommodate two high-definition digital cameras, a multispectral camera,
a hyperspectral camera, a thermal imager, and a lidar camera for simultaneous data acquisition.
The rear column of the platform contains a console to hold two laptops for data storing and real-time
processing. The tail of the platform houses the operator control mechanism, which controls the speed
and steering of the system. In this experiment, this platform is equipped with a multispectral camera
(Parrot, Paris, France) with a resolution of 1280 × 960 and field of view of 47.2◦. The spectral range of
the multispectral camera is 550 nm–790 nm with a ground resolution of 1.13 mm/pix. The focal length
of the multispectral camera is 35 mm. It is equipped with another high-definition digital camera (Sony
DSC-QX100, Tokyo, Japan) with a ground resolution of 0.56 mm/pix and field of view of 60◦.
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Figure 2. Field operating diagram and photograph of field-based phenotype platform (FPP) (a) and of
vehicle-mounted cloud terrace (b).

2.3. Data-Acquisition and Pre-Processing

2.3.1. Data-Acquisition

1. Lighting conditions: The luminosity of the scene, especially the shadows, makes it quite difficult
to visually detect wheat spikes (the same applies for our algorithms). We thus treat only
well-illuminated images. The images for this work were acquired between 1 and 2 p.m. on
7 June 2017, and the intensity of the sun was about 65,000–80,000 lx at the time in order to avoid
over exposure and reduce the effect of shadow.

2. Growth period selection: For this study, we observed winter wheat in the filling stage because,
during this period, starch produced by photosynthesis in wheat is transformed into proteins
stored in the wheat seeds by assimilation. A strong correlation exists between the spike numbers
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and yield of mu. Obtaining an accurate count of wheat in this time period provides guidance for
estimating the final yield. Moreover, during this period, the color characteristic of wheat was
more prominent, which facilitates computer identification.

3. Determination of observation area: A quadrat size of 50 cm × 50 cm was used in this work
to match the sensor field of view of the phenotypic platform sensor. This field of view allows
geometrical distortion to be effectively controlled.

4. Manual statistics: While collecting data from the ground platform, we made manual statistics
on the number of wheat grains in the corresponding area, and recorded the statistical results
according to the number of the plots. In this way, we could synchronize the exact number of ears
at the time of image shooting.

2.3.2. Data-Acquisition

1. RGB three channel fusion

In G-S fusion, we need to use multi spectral images of low spatial resolution to simulate high
resolution images. Here, the high resolution image is defined as a panchromatic image. In this
paper, the high resolution images we obtained are RGB images. So we use the following formula
depending on the illumination characteristics to fuse the three bands of red, green, and blue, and get
the corresponding high resolution panchromatic images [24].

Gray value = 0.587 × R + 0.114 × G + 0.299 × B. (1)

2. Ortho-photo correction and image registration

By using the ortho-rectification tool from the Environment for Visualizing Images (ENVI) software,
the multispectral and panchromatic images are ortho-photo corrected. The center of the corrected
region is used as the projection-center point and a 50-cm-long quadrat is divided as the target region.
After that, the two types of images are registered with each other. Because the two pictures have
different resolutions, the panchromatic images are used as reference images and the multispectral
image as the images to be registered. The images are registered by using the image registration tools in
ENVI 5.3.

3. Methodology

Figure 3 shows a flow chart of the proposed method. The basic steps are the Gram–Schmidt
(GS) fusion of panchromatic images and multispectral images, the determination of the maximum
entropy segmentation threshold by FACT, removal of the threshold segmentation results based
on morphological filters, and segmentation of the wheat adhesion region based on morphological
reconstruction (MR). First, the GS algorithm is used to improve information quality of the image,
following which FACT is used to determine the segmentation threshold, and then the maximum
entropy method segmentation method is applied for threshold segmentation. Next, the segmentation
results are de-noised based on the clustering method and, finally, the adhesive parts of the target are
treated by MR. These components are described in detail in the following subsections (Figure 3).
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3.1. Fusion of Panchromatic Images and Multispectral Images Based on Gram-Schmidt Spectral Sharpening

The spatial resolution of multispectral images is improved by the fusion of high spatial resolution
panchromatic images and corresponding low resolution multispectral images. Here, the Gram-Schmidt
spectral sharpening method is used to achieve this goal.

1. Using the gray value Bi of the i band of the multispectral image, the gray value of the whole color
band P is simulated according to the weight of the Wi, that is:

P =
k

∑
i=1

Wi×Bi (2)

2. The panchromatic image is used as the first component for the GS transform of the simulated
multispectral image;

3. The statistical value of the panchromatic image is adjusted to match the first component G-S1

after the G-S transform to produce a modified image;
4. A new data set is generated by replacing the first component of the G-S transform with a modified

high resolution band image;
5. A multispectral image enhanced by spatial resolution can be obtained by inverse G-S transform

to the new data set.

3.2. Maximum Entropy Threshold Segmentation for Threshold Selection of Firefly Algorithm Based on
Chaos Theory

The traditional maximum entropy method is not sensitive to target size and can only be used
for image segmentation of small targets. In addition, it provides better segmentation results for
images of different target sizes and signal-to-noise ratios. The maximum-entropy method segments
the image by maximizing the entropy of the segmented image. Therefore, the choice of the optimal
threshold plays a decisive role in the segmentation effect. The global ergodic method, which is
a conventional threshold-determination method, traverses all the gray levels to find the optimal
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threshold. However, this method is time consuming and computationally complex, especially for
complex image multi-threshold segmentation, making it unsuitable for real-time processing.

To solve these problems, we improve the standard Firefly Algorithm (FA) and propose a new
method called FACT. Here, the firefly represents the pixel of the image. For FACT, the movement
of fireflies is very important because it determines the optimization ability of the algorithm.
The movement of a common firefly is manifested as follows:

When fireflies Xi and Xj attract each other, Xi moves toward Xj if I(xj) >I(xi) and its new location
is determined by

Xi(t + 1) = Xi(t) + β
[
Xj(t)− Xi(t)

]
+ α(r1 − 0.5)Xm (3)

where t stands for evolutionary algebra, β indicates the degree of attraction, α∈[0,1] represents the
step length factor, and r1 is a random number whose distribution is uniform over [0,1]. When r1 < 0.5
(r1 > 0.5), Xm is set to UB − Xi (T) [Xi(T) − LB], where UB and LB denote the upper and lower bounds
of the defined domain, respectively.

Equation (1) consists of three terms: The first term, Xi(T), indicates the current position of the
firefly. The second term, β[Xj(T) − Xi(T)], represents the change in Xi caused by the attraction between
Xj and Xm; this leads to global optimization. The third term, α(r1 − 0.5)Xm, is the local random
fluctuation and provides local optimization.

Because the brightest firefly XB cannot be attracted by other fireflies, its motion cannot be described
by Equation (1), so we propose the following:

XB(t + 1) = XB(t) + α(r2 − 0.5)Xm (4)

where t represents evolutionary algebra and r2 is a random number uniformly distributed over [0,1].
If r2 < 0.5 (r2 > 0.5), Xm is set to UB − Xi (T) [Xi(T) − LB].

We see from the discussion of the firefly motion (Equation (1)) that the local search term is only
a random search. Therefore, the local mining capacity of the algorithm is weak. To overcome this
shortcoming, we use a local search operator based on chaotic sequences.

The basic idea of the new operator is to use the randomness, ergodicity, and regularity of chaotic
sequences to perform a local search. This operator consists of five specific steps:

(a) In the firefly population, {Xi; i = 1, . . . , NP}, a firefly vector XB is selected at random from the first
p individuals with the best quality. The threshold of p is chosen to be 5%.

(b) The chaotic variable chi is generated by using logistic chaotic formula

chi = 4chi−1(1− cmi−1) (5)

where chi ∈ (0, 1), chi 6= 0.25, 0.5, 0.75, and chi is a random number evenly distributed over the
range (0, 1). The length of the chaotic sequence is expressed by K.

(c) The following equation is used to map the chaotic variable chi into the chaotic vector CHi defined
over the domain (LB, UB)

CHi = LB + chi(UB− LB) (6)

(d) The chaotic vector CHi and XB are linearly combined to generate candidate firefly vectors Xc

by using
Xc = (1− λ)XB + λCHi (7)

where λ represents the contraction factor and is defined by

λ =
maxIter− t + 1

maxIter
(8)

where maxIter represents the maximum number of iterations of the algorithm, and t indicates the
current iteration number.
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(e) We now select between the candidate firefly vector Xc and the current optimal firefly vector Xb.
If Xc replaces Xb or the length of the chaotic sequence reaches K, the local search ends. If neither
of these criteria is met, we go to step (b) and begin a new iteration.

The pseudocode of the chaotic FA based on the basic FA is as follows:

Pseudocode for chaotic firefly algorithm

(i) Random initialization of firefly populations{Xi(0)|i = 1, . . . NP}
(ii) Calculate brightness I according to the target function f
(iii) for t = 1:maxIter
(iv) for i = 1:n
(v) for j = 1:n
(vi) if [I(Xj(t)] > I(Xi(t)
(vii) Move to the firefly Xi(t) according to (iv)
(viii) end if
(ix) end for j
(x) end for i
(xi) Local search using chaotic local operators
(xii) Move to the best firefly Xb(T) according to (v)
(xiii) end while

3.3. De-Noise Operation Based on Morphological Filters

After coarse segmentation is complete, a large number of unclassified noise points still exist in the
coarse segmentation results which will affect the accuracy of computer identification. To remove these
points without affecting the segmentation results, we use a de-noising method based on morphological
filters. Compared with other de-noising methods like the spherical coordinates system [25], the noise
standard deviation (SD) estimation method [26], and the multi-wavelet transform method [27],
the morphological filters have a better performance in dealing with details [28]. We now introduce the
principle of this method.

Let f be the result of threshold segmentation. CB (morphology based on contour structure
elements) morphological dilation DB(f ) and erosion-operation results EB(f ) with f based on structural
element B are given as

DB( f ) = f ⊕ ∂B (9)

EB( f ) = f � ∂B (10)

where B stands for a structural element,⊕ is the dilation operation operator, and� is the erosion operator.
CB morphological open and closed operations and operators CBOB(f ) and CBCB(f ) with f based

on structural element B is expressed as

OB( f ) = ( f � ∂B)⊕ B (11)

CB( f ) = ( f ⊕ ∂B)� B (12)

Compared with the classical morphological open and closed operators, the CB morphological open
and closed operations defined by Equations (9) and (10) have more filtering power. These algorithms,
however, filter out more details. Therefore, in this work, we propose the following filter definitions:

NOi,j( f ) = CBOBi
{

CBCBi[OBj( f )]
}

(13)

FOi,j( f ) = OBj[CBCBi( f )] (14)

NCi,j( f ) = CBOBi
{

CBOBi[CBj( f )]
}

(15)
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FCi,j( f ) = CB,j[CBOBi( f )] (16)

where Bi and Bj indicate different or identical structural elements.
The algorithm proceeds as follows:

(a) After the original images are segmented by the threshold, two parts are obtained, called
foreground target O and background target B. The target O is filtered with the filters FOij(f )
and FCij(f ), and the results are labeled O1 and O2, respectively. The background B is filtered
with the filters NOij(f ) and NCij(f ), and the results are labeled B1 and B2, respectively. Next,
the weighted mergings of O1 and O2 and B1 and B2 are called the merged foreground and
background O′ and B′, respectively: 

O1 = FOi,j(O)

O2 = FCi,j(O)

O′ = αO1 + βO2

(17)


B1 = NOi,j(B)
B2 = NCi,j(B)
B′ = λB1 + θB2

(18)

where α, β, λ, and θ are weights. The coefficients of λ and θ control the brightness of the target
and background (detail clarity), and the coefficients of α and β control the dim degree of the two
objects above (smoothness).

(b) Repeat step (a) for each new foreground target O and background B. The number of repeated
operations is N.

(c) Reform the N iteration results with foreground targets O′′ and background B′′ to obtain the new
image g′.

(d) Repeat steps (a)–(c) for g′, with the number of repeating operation being M. This gives the filtered
image f ′.

Given that the time complexity of the algorithm increases with the growth of M, we need to select
M appropriately to make the filtering details more prominent. The larger N is, the more blurred is
the image f ′. However, if the value of N is too small, the filter’s ability to filter out noise weakens.
Therefore, the value of N for the image with serious noise pollution can be increased. Usually, M takes
on a value from the set {1, 2, 3, 4} and N from the set {1, 2, 3}. Here, to obtain an intuitive feel for the
effect of de-noising, we use an area of size 50 cm × 50 cm for the filtering experiments (Figure 4).
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Figure 4 shows that, after the original image is filtered by the proposed morphology filter,
the number of noise points in the selected region is reduced, and the curve of objects is more prominent.

3.4. Fine-Segmentation of the Wheat Adhesion Region Based on Morphological Reconstruction

After the threshold segmentation and de-noising process, the objects in the foreground region
remain stuck to each other and need to be further segmented. Each object has two boundaries:
one is the boundary between the foreground object and the background area, and the other is the
boundary between the objects that are stuck together. These are all located in the foreground area
where the threshold was segmented, and the segmentation results can be achieved by determining
these boundaries. In the foreground region where the threshold is segmented, the gray value of
the boundary region adjacent to the background region is greater than the gray value of the region
surrounding it [29]. Therefore, the boundaries of all the objects to be segmented in the pretreated
graph have locally higher gray values. The dome can be defined as a region with a larger gray value in
the local region, and the above boundary region is considered as a dome [30], so it can be extracted
by grayscale morphological reconstruction. To avoid missing boundary points, different domes are
extracted in different directions. In this work, we select six directions in equal intervals from 0◦ to 180◦.

3.5. Wheat Ear Detection and Statistics

After the above operation, we get several separate and disconnected bright areas, each of which
represents an unidentified wheat ear. Here, we use the regionprops function in Matlab R2017b to
count the independent regions in the image so as to count the number of wheat ears. Meanwhile,
we processed Ground Truth operation for each image, and manually labeled the wheat ears in the
image, so as to compare with the result of computer recognition.

4. Results

4.1. Multispectral and Panchromatic Image Fusion Results Based on the Gram–Schmidt Algorithm

After pre-processing with ortho-photo correction and image registration, the two types of images
are fused by using the GS transform. Figure 5 shows the original panchromatic images and the
corresponding fusion results, respectively (Figure 5).Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 25 
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image with T4 plot; (f) Fusion result in T4 plot.
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Based on the visual effects, we conclude that the edges of the images are clearer after fusing,
and that the contrast ratio between foreground and background is greater. After completing the manual
evaluation, we then judge the original RGB images and fusion results by several image indicators.
As shown in Table 2, six indicators for evaluation have been selected to evaluate the display effect of
the images before and after the fusion with different fusion methods, including mean value (MV), SD,
information entropy (IF), mean gradient (MG), spatial frequency (SF), and edge intensity (EI) [31–33]
(Table 2). The greater the value of the above six indicators, the better the image display effect is.

Table 2. Results of image display effect evaluation before and after fusion with different fusion methods.
Mean Value (MV); Standard Deviation (SD); Information Entropy (IF); Mean Gradient (MG); Spatial
Frequency (SF); Edge Intensity (EI).

T1 Plot T3 Plot T4 Plot

MV SD IE MG SF EI MV SD IE MG SF EI MV SD IE MG SF EI

Original RGB images 31.9 49.1 5.8 7.67 19.9 78.1 37.0 57.2 6.64 7.39 19.3 75.2 31.9 46.8 5.80 7.51 18.9 75.4
GS fusion 55.7 63.2 6.27 7.85 19.5 80.7 62.5 69.8 8.16 8.53 22.4 81.9 58.6 62.3 6.57 9.65 24.6 88.9

Shearlet transform 47.6 59.6 5.82 7.69 19.2 78.5 47.6 59.3 7.85 7.65 19.6 80.6 44.9 57.4 5.88 7.96 19.6 88.6
Sparse feature matrix 42.4 55.2 5.97 7.84 19.1 79.6 48.2 59.6 8.02 7.47 19.9 82.1 49.2 53.5 5.83 8.36 19.9 85.9
visual saliency map 39.8 50.7 5.93 7.91 19.4 78.3 55.9 61.5 8.13 7.21 21.6 79.8 56.3 59.8 6.31 8.96 21.9 87.8

From the contrast results of Table 2, we can draw the conclusion that the G-S transform could get
better fusion results in the display effect which could provide more abundant and clear details for the
subsequent recognition processing.

In addition, we introduced other four indexes to evaluate the effect of fusion, including correlation
coefficient (CC), erreur relative globale adimensionnelle de synthese (ERGAS), root mean square error
(RMSE), and bias [34–36]. The physical meaning of the above evaluation indexes are: The ideal value
of bias and RMSE are 0 and the smaller the value, the more the fusion results can maintain spectral
information. The ideal value of CC is 1. The value of ERGAS is greater than 3, which shows the poor
quality of the fused image while less than 3 shows that the quality of the fused image is good (Table 3).

Table 3. Results of image fusion effect evaluation with different fusion methods. Correlation coefficient
(CC); Erreur relative globale adimensionnelle de synthese (ERGAS); Root mean square error (RMSE).

T1 PLOT T3 Plot T4 Plot

CC RMSE ERGAS Bias CC RMSE ERGAS Bias CC RMSE ERGAS Bias

GS fusion 0.67 3.63 1.59 0.01 0.72 5.41 1.55 −0.06 0.79 14.3 3.89 −0.06
Shearlet transform 0.6 4.67 2.23 0.76 0.67 6.85 1.82 1.6 0.69 18.9 2.82 0.07

Sparse feature matrix 0.62 4.16 3.1 0.06 0.64 6.36 3.1 0.05 0.61 17.4 4.69 0.01
Visual saliency map 0.61 4.87 1.8 0.58 0.61 8.99 9.8 0.7 0.72 21.4 11.5 0.7

From Table 3, we can see that compared with the image fusion in some other applications,
the value of the fusion indexes obtained in this paper show a poor fusion effect, especially in CC and
ERGAS [37–39]. Since all the methods were common used, this situation may be caused by the original
image data. In data acquisition at the near ground level, the disturbance of the instrument itself and
the influence of the shadow could reduce the quality of the acquired image. The lower quality of
the original image might affect the final fusion results [40]. In the evaluation of multiple indicators,
each fusion method had its own advantages and disadvantages. Among them, the CC shows the
degree of change of the image before and after the fusion which is crucial to the accuracy of subsequent
treatment [41]. In order to preserve the characteristics of the original image to the maximum extent,
we choose the G-S transform with the highest CC as the fusion method of this paper.

However, it is impossible to judge whether the use of image fusion could have a positive impact
on the accuracy of recognition from these indexes. Meanwhile, the above indexes could not estimate
the effect of different fusion methods on the recognition accuracy. In the following, we further analyze
the effect of image fusion on the accuracy of recognition and the effect of different fusion methods on
the recognition accuracy.
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4.2. Image-Segmentation Results

With the multispectral and panchromatic fusion images obtained above, we first use the method
proposed herein to segment the images and determine the number of wheat spikes. Following this,
several traditional methods are used to do the contrast tests (Figure 6). Because the number of
wheat spikes in the observation region T3 is small, we mark the results of ground truth and machine
identification results, so as to show the accuracy of this method more intuitively.
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Figure 6. Segmentation results in each plot. Red regions show where artificial and machine recognition
agree, blue regions show where artificial recognition and machine recognition do not agree, green
regions show where the machine gives erroneous recognition. (1) Segmentation results in T1 plot:
(a) Proposed method; (b) Edge detection method; (c) fuzzy clustering method; (d) Snake model;
(e) Minimum cut method; (f) region growth method; (2) Segmentation results in T2 plot: (g) Proposed
method; (h) Edge detection method; (i) fuzzy clustering method; (j) Snake model; (k) Minimum cut
method; (l) region growth method; (3) Segmentation results in T3 plot: (m) Proposed method; (n) Edge
detection method; (o) fuzzy clustering method; (p) Snake model; (q) Minimum cut method; (r) region
growth method.

The number of wheat grains obtained after the segmentation of different methods is calculated
statistically and compared with the values obtained from artificial measurement of the plots (Table 4,
Figure 7).

Table 4. Wheat ear recognition results with different coarse segmentation methods and manual
counting results.

Method T1 Plot T3 Plot T4 Plot

Manual counting 126 130 114 85 82 75 145 148 121
Proposed method 127 129 117 83 79 74 148 145 118

Edge detection method 139 148 105 78 69 78 138 154 113
Fuzzy clustering method 119 120 123 90 92 84 132 139 117

Snake model 144 124 126 92 63 68 134 135 134
Minimum cut method 113 128 100 75 94 89 151 158 125
Region growth method 135 141 135 60 92 83 153 152 128

From Table 4 and Figure 7, we can see that after comparing with other coarse-segmentation
methods, the R2 between the proposed segmentation results and manual counting results is closer
to 1 which means this method could provide a statistic value much closer to the real value and has
a higher accuracy. However, the R2 is not a very precise measure of the index, so we will provide
more appropriate indicators to confirm this conclusion below. (a) R2 between proposed method and
manual counting; (b) R2 between Minimum cut method and manual counting; (c) R2 between Edge
detection method and manual counting; (d) R2 between fuzzy clustering method and manual counting;
(e) R2 between snake model method and manual counting; (f) R2 between region growth method and
manual counting.
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5. Discussion

5.1. Analysis of Effect of Coarse-Segmentation Method on Recognition Accuracy

Image segmentation is a fundamental technique in image processing [42] and is the premise
of object recognition and image interpretation. An image-segmentation problem typically involves
extracting the consistent region and objects of interest from an image-processing process [43].

Based on the results presented in Table 4 and Figure 7, we conclude that the segmentation results
obtained by the algorithm proposed herein are closer to the actual measured values in different regions
and for different vegetation coverage conditions, which means that this method has the advantages of
high accuracy and good robustness in different areas.
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After comparing numerical accuracy, the segmentation results are quantitatively analyzed
by using successive inter-regional contrast (Table 5), intra-regional uniform measure (Table 6),
and segmentation accuracy (Table 7) [44,45]. The inter-region contrast index is a measurement of
image segmentation quality based on inter-regional contrast where the smaller value represents the
better segmentation effect. The uniform measurement value judges the internal uniformity of the
segmentation results and a bigger value means a better effect. After that, the segmentation results
obtained by computer recognition were compared with the results of artificial ground truth to get the
segmentation accuracy (Tables 5–7).

Table 5. Inter-region contrast values for different segmentation methods.

Method T1 Plot T3 Plot T4 Plot

Minimum cut method 0.881 0.915 0.842
Edge detection method 0.670 0.731 0.763

Fuzzy clustering method 0.594 0.706 0.778
Snake model 0.505 0.678 0.702

Region growth method 0.577 0.704 0.815
Proposed method 0.493 0.633 0.697

Table 6. Uniform measurement values of regions for different segmentation methods.

Methods T1 Plot T3 Plot T4 Plot

Minimum cut method 0.224 0.191 0.255
Edge detection method 0.415 0.454 0.419

Fuzzy clustering method 0.383 0.442 0.371
Snake model 0.894 0.887 0.894

Region growth method 0.881 0.783 0.754
Proposed method 0.909 0.925 0.899

Table 7. Segmentation accuracy of different segmentation methods.

Method Segmentation Accuracy Over Segmentation Rate Under Segmentation Rate

Minimum cut method 0.536 0.002 0.462
Edge detection method 0.885 0.003 0.112

Fuzzy clustering method 0.906 0.085 0.009
Snake model 0.676 0.001 0.323

Region growth method 0.795 0.021 0.184
Proposed method 0.947 0.025 0.028

From all of the above tables, we can draw the conclusion that compared with the other segmentation
methods, the method proposed in this paper could achieve more accurate image segmentation.
Moreover, it can effectively control the occurrence of over segmentation and under segmentation.

5.2. Analysis of Effect of Fusion Method on Recognition Accuracy

Several different fusion methods have been used before to fuse the two different resolution images.
After that, several indexes were introduced to evaluate the fusion process and fusion results. However,
it is not clear whether image fusion has a positive impact on recognition accuracy. Meanwhile, the effect
of different image fusion methods on recognition accuracy has not been discussed. Here, the accuracy
of wheat ear recognition is compared in the following five cases: Without image fusion, image fusion
based on the G-S method, image fusion based on non-sub sampled shearlet transform, image fusion
based on the sparse feature matrix, and image fusion based on the visual saliency map.

From Figure 8, we obtain the following conclusions that compared with other fusion algorithms,
the G-S method has the most obvious improvement in final recognition accuracy. Meanwhile, in the
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repeated experiments of three plots, the recognition accuracy obtained by image fusion was improved
by 3–12% compared to the result without image fusion which shows that image fusion operation had
a positive impact on recognition accuracy.
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5.3. Analysis of the Effect of Illumination Intensity on Recognition Accuracy

In previous contrast experiments, the images used were captured under the same illumination
conditions. The experimental results indicate that, when the light intensity is stable at 30,000–50,000 lx,
after the image is transformed into a two-valued image, the gray values of the foreground and
background objects vary greatly [46]. These satisfactory results can be obtained by means of computer
segmentation and recognition. However, in actual field applications, it is impossible to ensure that the
intensity of illumination remains within this range [47]. To further analyze the effect of illumination
intensity on the segmentation algorithm, we designed the following experiment: The control variables
for this experiment are listed in Table 8.

Table 8. Control variables for experiment on effect of illumination intensity.

Control Variable Parameter Value

Sampling start time 8 a.m.
Sampling time interval (h) 4

Weather condition Sunny
Relative humidity (%) 18

Initial illumination intensity (lx) 5000
Gradient of brightness adjustment (lx) 7500

In clear weather, data were collected at different times of a given day for each plot of crops.
The acquisition times were at 8 a.m., 12 a.m., and 4 p.m. At the same time, the shutter was used to
control the light input into the sensor by partially blocking the incident light outside the field of view
of the sensor, and the illumination intensity at the center of the lens was measured precisely by the
luminometer. In this experiment, two sensors were placed at a height of 1.5 m above the ground.
The illumination intensity was maintained within the range of 5000–80,000 lx. A total of 11 gradients
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were selected, and the change in illumination intensity between the adjacent gradient was 7500 lx
(Figure 9).
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Figure 9 shows that, when the illumination intensity is within the range of 35,000–55,000
lx, the precision of the segmentation method is satisfactory. In the interval 5000–35,000 lx and
35,000–80,000 lx, the segmentation precision decreases significantly, which indicates that the proposed
method is very sensitive to illumination intensity [48].

The fluctuation of segmentation accuracy caused by light intensity is mainly caused by the
projection and reflection from the wheat. These two factors may lead to changes in the distribution of R,
G, and B components in the captured panchromatic image. Figure 9 shows that, when the illumination
intensity is less than 35,000 lx, the segmentation precision fluctuates less. This shows that wheat
leaves do not cast shadows or reflect light under low-light conditions. However, because of the low
reflectivity, the background soil and foreground crops cannot be accurately judged from the acquired
images. When the illumination intensity is 35,000–50,000 lx, the segmentation accuracy is improved
due to the improvement of illumination conditions. When the light intensity is greater than 50,000 lx,
the shadow of the projection of the wheat itself is very obvious, and the reflection of the target itself
begins to appear, which leads to a change in the distribution of the RGB components in the resulting
panchromatic image, resulting in an increase in segmentation error.

5.4. Analysis of Sample Size

For this work, three experimental plots with three randomly selected quadrats were used for
repeated tests. The data redundancy basically meets the requirement. However, because of the
particularity of field experiments, these data cannot fully represent the segmentation results of all areas
of the field. Moreover, the growth stage of the wheat varies from place to place and the phenotypic
type differs significantly between plots. The comparative experiments on different growth stages
represent a deficiency of the experimental design.



Remote Sens. 2018, 10, 246 18 of 24

5.5. Analysis of Observation Range on Recognition Accuracy

To determine the area in which the algorithm is applicable, we extend the shooting range by
increasing the height of the cantilever. After determining the central projection point, we take the
point as the center and divide the research area into circles of different radii. The radius of the study
area ranges from 0.25 to 0.75 m. The proposed method is used to process the image from this region,
and the results are compared with the results of manual statistics. Similarly, the red dots indicate
part of the artificial and machine recognition agreement, purple points represent points of artificial
recognition and where machine identification is not possible. The orange dots indicate where machine
identification is erroneous (Figure 10).
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Figure 10. Segmentation accuracy within different radii upon using proposed method. The yellow,
green, and blue areas indicate an observation radius of 0–0.25 m, 0.25–0.5 m, and 0.5–0.75 m. The point
A is the ortho center of the image. (a) Observation range analysis in T1 plot; (b) Observation range
analysis in T3 plot; (c) Observation range analysis in T4 plot.

Figure 10 shows that, when the observation radius reaches 0.5 m, using the proposed method
of segmentation and recognition can achieve results with good statistics. Extending the radius to
0.5–0.75 m results in a rapid decrease in the accuracy of the algorithm (Figure 11).Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 25 

 

 

Figure 11. Segmentation accuracy as a function of observation radius. 

In view of these experimental results, we make the following analysis: 

1. Influence of sensor resolution and pattern noise 

For a small observation area, the camera is close to the target. In contrast, when viewing a large 
area, the camera is higher above the target, thereby reducing the sharpness of the target. When the 
observation radius reaches 0.5–0.75 m, the edge details of the target begin to blur in the image due to 
the resolution limit of the camera. This effect hinders the segmentation of adhesions [49]. In addition, 
because of the increased observation area, the amount of noise and information in the image both 
increase [50]. When the noise exceeds the tolerance of the filter, the residual noise point begins to 
affect the statistical results [51]. Moreover, the change in image resolution with the new acquisition 
system may also impact the parameter values. At present, we have not obtained images of the same 
plot with the two different digital cameras, so we cannot deduce which effect is dominant [52]. 

2. Influence of image-edge distortion 

Due to the plateau height of the ground phenotype constraints, sensors can only capture images 
of a certain area [53]. The nearer the wheat spike is to the edge of the image, the more obvious is the 
morphological aberration [54]. In addition, the excessive deformation affects computer-vision target 
recognition. Two main types of edge distortion exist: barrel and pincushion distortion. 

Here, we use Matlab R2017b to correct barrel and pincushion distortion, following which we 
segment the corrected image in succession (Figure 12). 

Figure 11. Segmentation accuracy as a function of observation radius.

In view of these experimental results, we make the following analysis:



Remote Sens. 2018, 10, 246 19 of 24

1. Influence of sensor resolution and pattern noise

For a small observation area, the camera is close to the target. In contrast, when viewing a large
area, the camera is higher above the target, thereby reducing the sharpness of the target. When the
observation radius reaches 0.5–0.75 m, the edge details of the target begin to blur in the image due to
the resolution limit of the camera. This effect hinders the segmentation of adhesions [49]. In addition,
because of the increased observation area, the amount of noise and information in the image both
increase [50]. When the noise exceeds the tolerance of the filter, the residual noise point begins to affect
the statistical results [51]. Moreover, the change in image resolution with the new acquisition system
may also impact the parameter values. At present, we have not obtained images of the same plot with
the two different digital cameras, so we cannot deduce which effect is dominant [52].

2. Influence of image-edge distortion

Due to the plateau height of the ground phenotype constraints, sensors can only capture images
of a certain area [53]. The nearer the wheat spike is to the edge of the image, the more obvious is the
morphological aberration [54]. In addition, the excessive deformation affects computer-vision target
recognition. Two main types of edge distortion exist: barrel and pincushion distortion.

Here, we use Matlab R2017b to correct barrel and pincushion distortion, following which we
segment the corrected image in succession (Figure 12).Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 25 
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Figure 12 shows that barrel correction significantly improves the image segmentation accuracy
when the observation radius continues to expand [55]. For small observation radius, pincushion
correction leads to slight improvement of the image segmentation accuracy [56], but a significant
improvement in accuracy occurs for a larger observation radius. We thus conclude that the main
factor leading to the decrease in accuracy is the edge barrel distortion when the segmentation area
increases [57].

5.6. Accuracy Analysis of Manual Statistics

The proposed method gives satisfactory results for images taken at the mature period because
the ears do not have a lot of overlaps [58]. However, because our objective is not to determine the
exact shape but only the right location of each spike, these locations can be represented by a few
pixels, which may sometimes be accidentally erased when cleaning the images. Thus, errors in the
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counting results may also be due to such imperfections. A study at the pixel level is needed to solve
this dilemma. Concerning the counting level, improvements should be possible through the threshold
segmentation of a new type of firefly. However, above all, the present results should be compared with
manual counting, which can only be done just before the harvest.

5.7. Analysis of the Algorithm Efficiency

Speed is also critical for image segmentation applications [59]. In this paper, average running
time is used to evaluate the algorithm efficiency [60]. The average running-times of several methods
are shown in Figure 13. Here, we use the G-S method to complete the image fusion (Figure 13).Remote Sens. 2018, 10, x FOR PEER REVIEW  21 of 25 
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segmentation with Minimum cut; (b) Coarse-segmentation with Edge detection; (c) Coarse-segmentation
with fuzzy clustering; (d) Coarse-segmentation with snake model; (e) Coarse-segmentation with region
growth; (f) Coarse-segmentation with proposed method.

From Figure 13, we can see that the average running times of different coarse segmentation
methods are respectively: 13.6 s, 15 s, 14 s, 14.7 s, 14 s, and 11 s. The method proposed in this paper has
the shortest running-time. As the other steps are the same, the improvement of the coarse segmentation
efficiency is the key to the shortening of the time. The use of the global search ability of the firefly,
which greatly reduces the search time of the optimal, leads us to conclude that the algorithm is less
computationally complex and improves the speed of image coarse segmentation, making it better
suited for real-time image segmentation.

6. Conclusions

We propose herein a new algorithm based on a land phenotype platform for counting wheat
spikes. First, the images are acquired by a home-built ground phenotype platform. The panchromatic
and multispectral images are fused by using the G-S fusion algorithm, which improves the detail of
information. Next, the target function is obtained by using the maximum-entropy method, the optimal
threshold of the image is found by using the FACT, and the image is segmented with this threshold.
The experimental results show that the proposed method improves the segmentation accuracy and
segmentation speed, has good noise immunity, and is highly robust. By solving some shortcomings of
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the conventional methods, such as long segmentation time and excessive computational complexity,
it opens a broad range of applications in the field of precision agriculture yield estimation.

Experimental results show that the improved algorithm is competitive compared with the existing
method. However, these results also show that the chaotic local search operator can significantly
improve the performance of the initial evolution algorithm, whereas the latter is limited. To further
improve the performance of the algorithm, the next step is to combine other local search techniques
with chaotic local search operators.
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