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Abstract: The correction of spatial scaling bias on the estimate of leaf area index (LAI) retrieved from
remotely sensed data is an essential issue in quantitative remote sensing for vegetation monitoring.
We analyzed three techniques, including Taylor’s theorem (TT), Wavelet-Fractal technique (WF),
and Fractal theory (FT), for correcting the scaling bias of LAI with empirical models in different
functions (i.e., power, exponential, logarithmic and polynomial) on both simulated data and a
real dataset over a cropland site. The results demonstrated that the scaling bias became greater
when the model non-linearity increased. The spatial heterogeneity, which was characterized by the
class-specific proportion, the between-class spectral difference and the number of classes within each
coarse pixel, was found to be the primary factor in the scaling effect. These factors influenced the
scaling effect collectively and existed dependently. With the RMSE less than 0.3 × 10−6 m2/m2,
TT was suggested for the correction with a polynomial LAI-NDVI functions. WF was preferred for
neighboring scales rather than continuous scales. FT was not recommended for correcting the scaling
bias caused by the significant non-linearity in LAI estimation models. This study illustrates the main
causes of the scaling effect and provides a reference of technique selection for scaling bias correction
to improve the application of remotely sensed estimates.

Keywords: scaling effect correction; spatial heterogeneity; non-linearity; leaf area index;
comparative analysis; transform model

1. Introduction

Leaf area index (LAI), defined as half the total foliage area per unit ground horizontal surface
area [1], is an essential biophysical property of vegetation for environmental assessment [2,3],
crop growth monitoring [4,5] and yield prediction [6–8]. The accurate monitoring of LAI on multiple
scales has become a key technique in those applications. However, the description of surface features
based on quantitative remote sensing must have a multi-scale problem, scaling effect [9]. Due to
the difference of spatial scale (the resolution of an image), the properties or laws of LAI obtained
from one scale would change on another scale even with the same observation conditions [10–13].
Without correcting the scaling bias, the relative errors of LAI estimates from SPOT5 at a large scale
were 2% in woodland and 7% in a crop-water area [14]. A case study of the middle reach of the Heihe
River Basin showed that the scaling bias in LAI retrieval was 26% if the scaling effect was ignored [15].
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Wu et al. [16] found that the relative scaling bias of LAI could be 55% in an uncorrected, large-scale
mixed pixel. LAI of mixed forests in Canada were overestimated by approximately 200% based on the
MODIS LAI product [17]. The maximum relative scaling error of 400% would be introduced in the
mixing pixel composed of vegetation and water [18]. Huang et al. [19] assimilated the LAI estimates at
various resolutions into the WOFOST model to monitor heavy metal stress in rice. They found the
uncertainties from 16 m to 256 m changed from 6% to 90% compared to the original GF-1 image with
8-m spatial resolution for the area with severe metal stress. Therefore, it is crucial to correct the scaling
bias of LAI for improving the authenticity and availability of quantitative remote sensing monitoring.

Before correcting the scaling bias of remotely sensed LAI, the physical mechanism of the
scaling effect should be investigated. Many studies have focused on the spatial scaling effect of
LAI [10,11,20–29]. For continuous canopies, Milne and Cohen [27] analyzed the variables including
LAI at multiple scales, and Xu et al. [26] found that the nonlinear relationship of the averaged
vegetation area fraction within mixed pixel was the main cause of scaling effect. For discrete
canopies, Fan et al. [10] explored the reason for spatial scaling effect of LAI based on the directional
second-derivative method of effective LAI retrieval. For some typical crops, such as wheat and
corn, Zhu et al. [29] analyzed the scaling effect of LAI at maturity stage using a two-layer canopy
reflectance model. For reeds, Chen et al. [28] discussed the main cause of LAI scaling effect based on
Thematic Mapper and Moderate-resolution Imaging Spectroradiometer data. It has been concluded
that the primary causes of scaling effect are the non-linearity of LAI estimation model and the
spatial heterogeneity of land surface. However, previous studies only focused on a specific condition
(i.e., specific vegetation, particular remotely sensed data). How the model non-linearity and spatial
heterogeneity affect the scaling effect remains unclear.

To correct the scaling bias, some statistical regression relationships among LAIs on different
scales have been established [30–34]. Since the empirical regression method is generally susceptible to
external factors, it has great limitations in applicability. Therefore, several generic algorithms were
established based on mathematical and geostatistical theory [11,24,35,36]. In 1992, a spatialization
model named CGM (computational geometry method) was proposed to reduce the scaling bias [35].
For the application of CGM, the retrieval model should follow a uniform distribution of the radiometric
variables between the convex and concave function. However, the assumption was argued to be
inappropriate within a moderate resolution pixel [11], which led to significant overestimations of
scaling bias [37]. In consideration of this uncertainty, Hu and Islam [24] proposed the Taylor series
expansion method. To improve the practical utility of this method, Garrigues et al. [11] extended the
Taylor expansion to correct the scaling bias by a multivariate transfer function based on the Taylor’s
theorem (TT) of the relationship between variance, covariance and the mean values of parameters
on the pixel scale. However, the multivariate model strongly relies on the second-order stationarity
hypothesis. TT might fail to correct the scaling bias when the hypothesis does not hold.

To cope with the problem, Jiang et al. [38] proposed the Wavelet-Fractal technique (WF).
The fractal theory was first introduced by Mandelbrot [39] to decompose a function or signal to
infinite dimensional space. The exponent of each item x indicates the dimension of the space (such as
x2 representing a two-dimensional space). The coefficient of x is the energy of the function or signal in
the corresponding dimensional space. Based on the wavelet transform, each component is orthogonal.
That means the energy in different dimensional space has no intersection and the components from
wavelet transform are more representative than those from TT. By combining these two methods, it is
found that the scaling bias and the high frequency components decomposed by Haar wavelet were
fractal relationship. The scaling bias of LAI for both univariate and bivariate models were effectively
corrected on multi-scales [38].

Given the fractal characteristics (self-similarity and fractional dimensionality) of remotely sensed
images, the fractal relationship is one of the transformation tendencies that can be used to describe
the scaling effect. Zhang et al. [12] defined the information fractal of quantitative remote sensing
products to describe the scaling transformation law of LAIs on different scales, but it could not be
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applied to scaling effect correction. Subsequently, an image-based LAI scaling transfer model was
established [40], which could only correct the scaling bias of the entire image. With extension from the
image-based method, Wu et al. [41] developed a pixel-based model based on the Fractal Theory (FT)
to correct the LAI scaling effect.

Previous studies have been dedicated to answer the key questions on the scaling effect of LAI,
which include: What are the fundamental causes of the scaling effect? What kind of methods could
be effectively used to correct the scaling bias? Many of them have focused on the scaling effect from
different perspectives. However, the analysis of LAI scaling effect has been mostly confined to a specific
crop type or particular kinds of remotely sensed data. It has been difficult to determine the underlying
mechanism and interactions among the process of the scaling effect. Moreover, to the best of our
knowledge, no research in the literature has provided a comprehensive comparison of these methods
for correcting LAI scaling bias. To address these research gaps, this study uses numerical experiments
with a large amount of randomly simulated data to explore the fundamental causes of scaling effect
and their influences. It presents a comparative assessment of three representative techniques (TT, WF,
and FT) applied to simulated datasets and remotely sensed observations over a cropland site. The main
objectives were: (1) to investigate the influences of landscape spatial heterogeneity and the non-linear
estimation of LAI on the scaling effect; and (2) to evaluate the performance and robustness of the three
scaling effect correction techniques in various conditions.

2. Materials and Methods

2.1. Principle of Scaling Effect

Figure 1 indicates two different processes of retrieving a biophysical parameter through remote
sensing for the same ground object in the same area using the same model f that is a function relating
x to y. Yexa is the result obtained by retrieving at the high spatial resolution using f and then aggregating
the values from four pixels. Yapp is computed from the direct application of f to the average value
of four pixels (X). In the application of LAI estimation, x represents the vegetation index (VI) of
a high resolution pixel with spatial heterogeneity. If x1 = x2 = VIa and x3 = x4 = VIb, then VIm is
the average representing the VI value of the coarse resolution pixel. f is the non-linear estimation
model relating LAI to VI. LAIexa and LAIapp are the exact and approximated values on the coarse scale,
respectively. It is obvious that the estimation process would be scale invariant if the land surface
is homogeneous or the model is linear. With the effects of both spatial heterogeneity and model
non-linearity, LAIapp (from Path_2, “aggregation-estimation”) overestimates the exact value of LAI
(LAIexa from Path_1, “estimation-aggregation”), which results in the scaling effect and introduces
the scaling bias. Therefore, the non-linearity of LAI estimation model and the landscape spatial
heterogeneity are the sufficient and necessary conditions of scaling effect.
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Figure 1. Schematic flowchart for the up-scaling process: f is a function relating y to x; xi (i = 1, 2, 3, 4)
is the value of each pixel at the original high resolution and X is their average. Suppose x1 = x2 = VIa,
x3 = x4 = VIb, then X is VIm representing the vegetation index value of the coarse spatial resolution
pixel, and yi is the corresponding LAI value. The subscript exa means the exact value and app represents
the approximated value of the coarse resolution pixel.
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2.2. Experimental Data

2.2.1. Real Data

The study area for the real dataset was located within the city of Huai’an, Jiangsu Province and
in the Yangtze-Huai Plain, one of the major agricultural regions in China (119◦6′16′′E, 33◦23′45′′N)
(Figure 2). The crops in this area are often grown in a rice–wheat double cropping system. The dataset
was acquired in the winter wheat season of 2014–2015 when the cultivated winter wheat cultivars
were Huai-35 and Yangfu-4. To acquire field measurement data over the study area, five times of
sampling were performed during the growth period of winter wheat (early jointing, jointing, booting,
heading and filling stages) from March to May 2015. Throughout the study area, 24 samples were
collected within an area of 2 m× 2 m each. Three subsample plots (0.5 m× 0.5 m) were enclosed in each
sample. The plots were relatively homogeneous and distributed as shown in Figure 2c. The spectral
measurements expressed as NDVI (Normalized Difference Vegetation Index) were measured with
GreenSeeker RT100 (NTech Industries, Ukiah, CA, USA). On the same days, LI-3000C Portable Area
Meter (LI-COR Biosciences, Lincoln, NE, USA) was used to measure LAI with 1 mm2 resolution by
destructive sampling of 30 plant individuals. NDVI and LAI of all subsamples from each sample were
collected and then averaged to represent the sample means.
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Figure 2. Location of the study area in Huai’an, Jiangsu Province (b), China (a) and 2-m resolution
GF-1 satellite image of the study area (c). The band combination of this false color composite image is
NIR (0.77 µm to 0.89 µm), R (0.63 µm to 0.69 µm), and G (0.52 µm to 0.59 µm). Shown on the right of
the satellite image (c) is the layout of subsamples in each sample.

The remotely sensed image used in this study was a scene of the GF-1, the first series of Chinese
High Resolution Earth Observation System launched on 26 April 2013. The sensor is equipped with
two 2-m resolution panchromatic/8-m multispectral cameras (PMS) and four 16-m wide-field-of-view
cameras (WFV). The GF-1 image was acquired on 22 April 2015 quasi simultaneously with the collection
of field measurements on 27 April at heading stage. To reduce the estimation bias due to the time
gap between satellite data and field measurements acquisitions, we used the field-measured LAI and
GreenSeeker NDVI over all of the major growth stages of winter wheat to derive four basic statistical
functions (Figure 3, Table 1). This ensures the universality of the LAI-NDVI models for the simulation
experiments. The radiometric correction was performed for all the panchromatic and multispectral data.
The atmospheric correction was taken by using the Fast Line-of-Sight Atmospheric Analysis of Spectral
Hyper-cubes (FLAASH) model to obtain the reflectance in each multispectral band. The geometric
correction was performed for all the images through the RPC (rational polynomial coefficient)
ortho-rectification with a DEM (digital elevation model) file. Finally, we used the Nearest Neighbor
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Diffusion (NNDiffuse) pan sharpening algorithm to merge the panchromatic and multispectral images
into a 2-m resolution fused image set. All of these operations were performed in ENVI 5.2. According to
Figure 1, the high-spatial resolution data GF-1 with 2 m (1024 × 1024 pixels) was up-scaled to six large
scales: 4 m (512 × 512 pixels), 8 m (256 × 256 pixels), 16 m (128 × 128 pixels), 32 m (64 × 64 pixels),
64 m (32 × 32 pixels), and 128 m (16 × 16 pixels).
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Table 1. Statistical estimation models of LAI.

Model Formula R2

Power LAI = 6.352(NDVI + 0.18)2.302 0.887
Exponential LAI = 0.519e3.106NDVI 0.872
Logarithmic LAI = 7.512 ln(NDVI + 0.18) + 6.031 0.775
Polynomial LAI = 5.901NDVI2 + 3.465NDVI − 0.465 0.803

A land-use map in the study area was obtained using the Maximum Likelihood Classification with
24,517 pixels representing the five classes of land use classes built-up, water, bare soil, winter wheat
and other vegetation (Figure 4a). The overall accuracy of the classification was 90.1% and the Kappa
coefficient was 0.87. The land use map was used to mask all the pixels that were not classified as
winter wheat (Figure 4c).
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power function relating LAI to NDVI (Table 2).



Remote Sens. 2018, 10, 221 6 of 20

2.2.2. Simulated Data

The model non-linearity and spatial heterogeneity are the main factors of scaling effect. The spatial
heterogeneity is manifested as the mixing or purity of the interior, including the class-specific
proportion, between-class spectral difference, and the number of classes within coarse pixels. To explore
the influences and interactions of these factors on scaling effect, numerical simulation experiments
were conducted based on the variable control principle (Table 2).

• Experiment 1, model non-linearity. We designed a simulation experiment encompassing
10,000 groups of matrices in the dimension of 16 × 16. These matrices comprised randomly
generated numbers from 0 to 1 as NDVI values and represented subpixel images of the
coarse pixels. We used the exponential function model (f : LAI = aNDVI) and the base number
a to characterize the variation in linearity of the LAI estimation model. For random pixels
of each group, the results were calculated by both “estimation-aggregation” (Path_1) and
“aggregation-estimation” (Path_2) as shown in Figure 1. The difference was the scaling bias.

• Experiment 2, the class-specific proportion. We set 16 × 16 subpixels with two classes
(NDVI1 = 0.2, NDVI2 = 0.8) within a coarse pixel. Then, we changed the proportion (p1) of NDVI1

from 0 to 100% with the step of 0.4%.
• Experiment 3, the between-class spectral difference. A coarse pixel contained two classes (NDVI1,

NDVI2) with the same proportions (p1, p2) of 50%. The spectral values of the two classes were
different, but the sum of spectral values remained the same (NDVI1 + NDVI2 = 1). It meant the
value of the coarse pixel (average values of fine subpixels) was unchanged.

• Experiment 4, the number of classes. Three classes were defined as NDVI1, NDVI2 and NDVI3,
with the value of 0.01, 0.5 and 0.9 respectively. Firstly, calculating the scaling bias of pixels with
two classes (NDVI1&NDVI2, NDVI1&NDVI3, and NDVI2&NDVI3). Then, we added the third
class to this coarse pixel and maintained the equal proportion of each class (pi = 33.33%). Such that,
the number of classes within the coarse pixel increased to three (NDVI1&NDVI2&NDVI3).

In Experiment 2–4, four types of estimation models (power function, exponential function,
logarithmic function, and polynomial function) were applied to calculate LAI (Table 2). To examine the
effect of the three techniques (TT, WF, and FT) on spatial heterogeneity (Experiment 2–4), we kept the
linearity of each model approximately the same by uniformly distributing classes within each coarse
pixel randomly from 0 to 1. After the elimination of model non-linearity effect, the scaling effect could
be considered to be mainly caused by spatial heterogeneity represented by standard deviation of NDVI
(σvi) within coarse pixels.

Table 2. Design of numerical simulation experiments.

Experiment Description
Parameters * Model

1 Model non-linearity NDVI = 0.0–1.0
a = 1, 2, ..., 10 LAI = aNDVI

2 Class-specific proportion
NDVI1 = 0.2, NDVI2 = 0.8

p1, p2 = 0−100%,
p1 + p2 = 100%

LAI = 6.352 (NDVI + 0.18)2.302

LAI = 0.519e3.106NDVI

LAI = 7.512 ln(NDVI + 0.18) + 6.031
LAI = 5.901NDVI2 + 3.465NDVI − 0.465

3 Between-class spectral
difference

p1 = p2 = 100%
NDVI1, NDVI2 = 0.0−1.0,

NDVI1 + NDVI2 = 1.0
The same as above

4 The number of classes
NDVIi = 0.01, 0.5, 0.9
Two classes: pi = 50%

Three classes: pi = 33.33%
The same as above

* p is the proportion of the corresponding NDVI class, and the subscript i is 1, 2, or 3.
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2.3. Correction Techniques

2.3.1. The Taylor’s Theorem Technique (TT)

According to Figure 1, the NDVIm at the coarse resolution is considered to be a simple average of
the NDVIs within the coarse pixel at the high resolution (NDVIi),

NDVIm =
1
N

N

∑
i=1

NDVIi (1)

where N is the number of high resolution pixels within the corresponding coarse pixel. Then,
the application of f at the coarse resolution leads to LAIapp (Path_2 in Figure 1):

LAIapp = f (NDVIm) = f (
1
N

N

∑
i=1

NDVIi) (2)

LAIexa is calculated by first applying f at the high resolution and then by the aggregating at the
coarse resolution (Path_1 in Figure 1):

LAIexa =
1
N

N

∑
i=1

f (NDVIi) (3)

The difference between LAIapp and LAIexa is the scaling bias:

bias = LAIapp − LAIexa = f (
1
N

N

∑
i=1

NDVIi)−
1
N

N

∑
i=1

f (NDVIi) (4)

Based on the Taylor’s theorem, the bias could be approximated by a second order Taylor
development of f around VIm:

bias ≈ − 1
N

N

∑
i=1

f ′(NDVIm)(NDVIi − NDVIm)−
1
N

N

∑
i=1

f ′′ (NDVIm)

2
(NDVIi − NDVIm)

2 (5)

following Equation (5),

1
N

N

∑
i=1

f ′(NDVIm)(NDVIi − NDVIm) = f ′(NDVIm)

(
1
N

N

∑
i=1

(NDVIi − NDVIm)

)
= 0 (6)

and
1
N

N

∑
i=1

(NDVIi − NDVIm)
2 = σvi (7)

where σvi is the standard deviation of NDVIi within the coarse resolution pixel. Therefore, the scaling
bias of LAI could be corrected based on the variance of the original image and the second order
differential equation of the estimation model.

LAIcor = LAIapp − bias = LAIapp +
f ′′ (NDVIm)

2
σvi (8)

where LAIcor is the corrected value of LAI on the large scale.

2.3.2. The Wavelet-Fractal Technique (WF)

In the process of aggregation, some details will inevitably be lost. According to the wavelet
transform theory, the information at the high resolution contains the information at the coarse
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resolution and some extra data. It is demonstrated that the additional information is the main
reason for the scaling bias, which could be extracted by wavelet decomposition [31]. As a quantitative
representation of high-frequency information, wavelet coefficients from the detail components are
suitable for analyzing the changes of remotely sensed data on different scales. Two-dimensional
discrete wavelet transform was used to decompose a remotely sensed image on the small scale.
Therefore, the high-frequency coefficients (high) can be defined as follows:

high =

√
(cDh

j+1)
2
+ (cDv

j+1)
2 + (cDd

j+1)
2 (9)

where cDh
j+1, cDv

j+1, cDd
j+1 and cD1 are the component in the horizontal, vertical and diagonal direction,

respectively. With self-similarity and fractional dimensionality, remotely sensed images are proven to
have fractal characteristics. Based on the advantages of the two methods, the wavelet-fractal technique
was first developed by [38] to analyze and correct the spatial scaling bias of LAI. It is found that the
relationship between high-frequency coefficient and scaling bias can be built in log–log coordinate,
and the slope of the fit line is the fractal dimension.

bias = a× highb (10)

where a and b are the parameters of error correction equation. Therefore, the corrected LAI on the large
scale could be obtained according to:

LAIcor = LAIapp − bias = LAIapp − a× highb (11)

2.3.3. The Fractal Theory Technique (FT)

The concept of fractal dimension (D) is a statistical index of complexity comparing how detail in a
pattern changes with the scale at which it is measured and it rests in unconventional views of scaling
and dimension. Based on the fractal theory, the measurements perform power function correlation
with the scales [42].

LAIm,j =
1

( n
m )2

( n
m )2

∑
g=1

f (
1

m2

m2

∑
i=1

NDVIi,g) (12)

LAIm,j = K×mdn,j (13)

dn,j = 2− Dn,j (14)

where LAIm,j is the LAI value of the jth (j = 1, 2, ..., (S/n)2) coarse pixel on the scale of m × 2 m (m = 1, 2,
..., n) and S × S is the size of the original remotely sensed image with the high spatial resolution. VIi,g
is the ith (i = 1, 2, ..., m2) high spatial resolution NDVI value within the gth (g = 1, 2, ..., (n/m)2) pixels
with a size of m × m original pixels. dn,j is the slope of the linear fitting curve of the scale m versus the
LAI value LAIm,j in log-log coordinate, which relates to the information fractal dimension D of the jth
coarse pixel [43].When scale m equals 1, LAI1,j is the exact LAI value of the jth coarse resolution pixel.
In addition, LAI1,j also equals K in Equation (13). Hence, the transformation of Equations (2), (3) and
(13) are as follows:

LAIapp
n,j =

1

( n
n )

2

( n
n )

2

∑
g=1

f (
1
n2

m2

∑
i=1

NDVIi,g) = f (
1
n2

m2

∑
i=1

NDVIi,g), m = n (15)

LAIexa
n,j =

1

( n
1 )

2

( n
1 )

2

∑
g=1

f (
1
12

m2

∑
i=1

NDVIi,g) =
1
n2

m2

∑
i=1

f (NDVIi,g), m = 1 (16)
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LAIapp
n,j = LAIexa

n,j × n2−Dn,j (17)

Because both the information fractal dimension (D) and the standard deviation (σvi) can reflect
the heterogeneity characteristic of coarse mixed pixel, a correlation should exist between them [41].
It is found that D-2 has power law dependence at σvi, so a linear empirically determined function is
used to estimate D:

logn(D− 2) = a× logn(σvi) + b (18)

where a and b are the fitting parameters of D-2 and σvi in log-log coordinate. Note that the Fractal
theory (FT) used in this study refers in particular to the pixel-based method by [41].

2.4. Performance Assessment

To evaluate the performance of the three techniques (TT, WF, FT) for correcting the scaling bias,
two indicators root-mean-square error (RMSE) and relative error (RE) were defined as follows:

RMSE =

√
∑N

i=1 (LAIexa,i − LAIest,i)

N
(19)

RE = |LAIexa − LAIest| (20)

where LAIest is the estimated LAI (LAIapp or LAIcor). In this study, RMSE was used to characterize the
average error of the whole image and RE was used to quantify the error for a single pixel. Higher values
of RMSE and RE indicated lower estimation of LAI or the poorer performance of techniques on the
correction of scaling bias. The numerical simulation experiments and the evaluation of the three
techniques were implemented using custom-written MATLAB (2016a) scripts.

3. Results

3.1. Numerical Simulation Experiments on Scaling Effect

3.1.1. Model Non-Linearity

The characteristics of model non-linearity and the relationship of model non-linearity with scaling
bias are shown in Figure 5. The non-linearity of the power function relating LAI to NDVI (LAI = aNDVI)
became more significant when the base number a increased from 1 to 10 (Figure 5a). Therefore, we used
the base number a to represent the non-linearity of the power model. It is obvious that the scaling bias
increases with the base number a (Figure 5b). That means the more significant non-linearity of LAI
estimation model would lead to greater scaling effect.
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Figure 5. The relationship of model non-linearity with scaling bias. (a) The non-linearity of LAI
estimation model (LAI = aNDVI) represented by the base number a. (b) The relationship between base
number a and the scaling bias. The grey lines represent the simulations of 10,000 groups and the black
line represent the average scaling bias.
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To correct the scaling bias caused by model non-linearity, the three techniques (TT, WF, and FT)
were applied to random datasets with the same standard deviation. Figure 6 shows that TT and WF
had better performance of correcting the scaling bias than FT. When the model became more nonlinear
(represented by the base number a), the scaling bias became much larger after the correction by FT.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 

 

To correct the scaling bias caused by model non-linearity, the three techniques (TT, WF, and FT) 
were applied to random datasets with the same standard deviation. Figure 6 shows that TT and WF 
had better performance of correcting the scaling bias than FT. When the model became more 
nonlinear (represented by the base number a), the scaling bias became much larger after the correction 
by FT.  

 
Figure 6. Correction of the scaling bias caused by model non-linearity using the three techniques TT, 
WF, and FT. The non-linearity of LAI estimation model (LAI = aNDVI) was represented by the base 
number a. 

3.1.2. Spatial Heterogeneity 

The Class-Specific Proportion within A Coarse Pixel 

Assuming there were only two classes (NDVI1 and NDVI2) within each coarse pixel, the 
relationships between scaling bias and proportion (p1) of the class NDVI1 within a coarse pixel are 
shown in Figure 7. By changing p1 from 0% to 100%, scaling bias firstly increased and then decreased 
for all types of estimation models (power, exponential, logarithmic, and polynomial functions). 
Around 50% of p1, the scaling bias reached the peak. However, when using different models, the 
class-specific proportions corresponding to the maximum scaling bias were not the same. 

 
Figure 7. The relationship between scaling bias and the proportion of class (NDVI1) within coarse 
pixels for four types of LAI estimation models. 

Figure 6. Correction of the scaling bias caused by model non-linearity using the three techniques TT,
WF, and FT. The non-linearity of LAI estimation model (LAI = aNDVI) was represented by the base
number a.

3.1.2. Spatial Heterogeneity

The Class-Specific Proportion within A Coarse Pixel

Assuming there were only two classes (NDVI1 and NDVI2) within each coarse pixel,
the relationships between scaling bias and proportion (p1) of the class NDVI1 within a coarse pixel
are shown in Figure 7. By changing p1 from 0% to 100%, scaling bias firstly increased and then
decreased for all types of estimation models (power, exponential, logarithmic, and polynomial
functions). Around 50% of p1, the scaling bias reached the peak. However, when using different
models, the class-specific proportions corresponding to the maximum scaling bias were not the same.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 

 

To correct the scaling bias caused by model non-linearity, the three techniques (TT, WF, and FT) 
were applied to random datasets with the same standard deviation. Figure 6 shows that TT and WF 
had better performance of correcting the scaling bias than FT. When the model became more 
nonlinear (represented by the base number a), the scaling bias became much larger after the correction 
by FT.  

 
Figure 6. Correction of the scaling bias caused by model non-linearity using the three techniques TT, 
WF, and FT. The non-linearity of LAI estimation model (LAI = aNDVI) was represented by the base 
number a. 

3.1.2. Spatial Heterogeneity 

The Class-Specific Proportion within A Coarse Pixel 

Assuming there were only two classes (NDVI1 and NDVI2) within each coarse pixel, the 
relationships between scaling bias and proportion (p1) of the class NDVI1 within a coarse pixel are 
shown in Figure 7. By changing p1 from 0% to 100%, scaling bias firstly increased and then decreased 
for all types of estimation models (power, exponential, logarithmic, and polynomial functions). 
Around 50% of p1, the scaling bias reached the peak. However, when using different models, the 
class-specific proportions corresponding to the maximum scaling bias were not the same. 

 
Figure 7. The relationship between scaling bias and the proportion of class (NDVI1) within coarse 
pixels for four types of LAI estimation models. 

Figure 7. The relationship between scaling bias and the proportion of class (NDVI1) within coarse
pixels for four types of LAI estimation models.



Remote Sens. 2018, 10, 221 11 of 20

The Between-Class Spectral Difference within a Coarse Pixel

The scaling bias became larger when the difference between classes (NDVI1 and NDVI2) within
each coarse pixel increased (Figure 8). The scaling bias for the exponential function was the most
sensitive to the between-class spectral difference and that for polynomial function was relatively stable.
Regardless of function types, the greater difference of classes within a coarse pixel would introduce
higher scaling bias and lead to more significant scaling effect.
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The Number of Classes within a Coarse Pixel

The scaling bias varied by the number of classes within a coarse pixel (Table 3). When a coarse
pixel contained two classes, the greatest difference between NDVI1 (0.01) and NDVI3 (0.9) resulted in
the largest scaling bias, which was consistent with the finding on the experiment of "the between-class
spectral difference". When the initial classes were NDVI1&NDVI2 or NDVI2&NDVI3, the scaling bias
became larger after the third class (NDVI3 or NDVI1) was added. When NDVI2 as the third class was
added to the coarse pixel which initially contained NDVI1 and NDVI3, the scaling bias decreased.
The scaling bias would increase when the value of newly added class (NDVInew) was more than or less
than the two existing classes (NDVInew < NDVI2 < NDVI3 or NDVI1 < NDVI2 < NDVInew). It would
decrease when the value of the third class was between the initial classes (NDVI1 ≤ NDVInew < NDVI3).

Correction of Scaling Bias Caused by Spatial Heterogeneity

The scaling bias values for different estimation models were all reduced by using the three
techniques (Figure 9). As for WF, when the spatial heterogeneity (σvi) became larger, the relative error
(RE) firstly decreased to 0 and then rebounded to the peak. The valley values of RE were distributed
approximately in the range of standard deviation from 0.27 to 0.29, especially for the power and
polynomial models. The greatest difference in correction performance occurred to TT, which strongly
depended on the LAI estimation model. TT almost eliminated the values of RE for the polynomial
model, but had lowest effect for the power model among the three techniques. The performance of FT
was more stable than that of others for the spatial heterogeneity of different levels.
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Table 3. Scaling bias values for different types of models and number of classes within a coarse pixel.

Classes (NDVI1, NDVI2, NDVI3) Model
Scaling Bias (m2/m2)

Two-Class Three-Class Difference

(0.01, 0.5, 0.9)

Power 0.44 1.09 +0.65
Exponential 0.35 1.59 +1.24
Logarithmic 1.43 1.70 +0.27
Polynomial 0.35 0.78 +0.43

(0.01, 0.5, 0.9)

Power 1.63 1.09 −0.54
Exponential 2.38 1.59 −0.79
Logarithmic 2.54 1.70 −0.84
Polynomial 1.17 0.78 −0.39

(0.01, 0.5, 0.9)

Power 0.37 1.09 +0.27
Exponential 0.91 1.59 +0.68
Logarithmic 0.20 1.70 +1.50
Polynomial 0.24 0.78 +0.54

Note: NDVI with black font was the initial class within coarse pixel, while NDVI with red mark was the third class
added to the coarse pixel. “+” and “−” means an increase or decrease in the scaling bias after adding the third
class, respectively.
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3.2. Performance Comparison between the Three Techniques on the Real Data

3.2.1. Image Level

Based on the numerical simulation experiments, the influence of model non-linearity and spatial
heterogeneity were analyzed separately with different LAI estimation models. In applications to real
data, both factors needed to be considered. The RMSE values after the correction of scaling bias were
illustrated on different scales (Figure 10). At 4-m, 8-m, and 16-m resolution, the RMSE values from the
three techniques for different models were similarly approaching to zero. After 16 m, the RMSE of WF
increased to the peak at 64 m, and then decreased as the spatial scale became larger. This trend was the
same for the different LAI estimation models and was similar to the results of correcting scaling bias
mainly caused by spatial heterogeneity on the numerical simulation experiment (Figure 9). In contrast
to WF, the performances of TT and FT were highly dependent on the type of LAI estimation model.
For the exponential model, the RMSE was significantly reduced (<0.0052 m2/m2) after correction
by FT. For the polynomial model, the LAI scaling bias was almost completely eliminated by TT at
all resolutions.
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Figure 10. Correction of scaling bias with the four LAI estimation models at different spatial resolutions
using the three techniques. The LAI estimation models are: (a) power model; (b) exponential model;
(c) logarithmic model; and (d) polynomial model. The three techniques used to correct scaling bias are:
TT (Taylor’s theorem), WF (Wavelet-Fractal technique), and FT (Fractal theory). The spatial scales are:
4 m, 8 m, 16 m, 32 m, 64 m, and 128 m.
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3.2.2. Pixel Level

For clarity, we selected the Landsat-like upscaled image with 32-m spatial resolution to compare
the performance of the three techniques (TT, WF, FT) at pixel level (Figure 11). The results of other
scales were similar. Except for logarithmic model (Figure 11c), the approximated LAI values (LAIapp)
of the other three models were all distributed above the 1:1 line before correction. This means the
scaling effect would lead to an underestimation (for power, exponential, and logarithmic models) or
an overestimation (for logarithmic model) of LAI. In general, the values of RMSE were reduced by an
average of 90% after the correction of LAI scaling bias and the corrected LAI (LAIcor) were closer to the
1:1 line compared with LAIapp. Particularly, the correction effect of LAI estimated from the polynomial
model (in Figure 11(d-1)) was remarkable with RMSE of 0.2 × 10−6 m2/m2 based on TT.
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Figure 11. Correction of scaling bias with the four LAI estimation models at 32-m spatial resolution
using the three techniques. The LAI estimation models are: (a) power model; (b) exponential model;
(c) logarithmic model; and (d) polynomial model. The three techniques used to correct scaling bias
are: (d-1) Taylor’s theorem (TT); (d-2) Wavelet-Fractal technique (WF); and (d-3) Fractal theory (FT).
LAIapp is the approximated LAI before correction, and LAIcor is the corrected LAI. The unit for RMSE
is m2/m2.
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3.2.3. Subpixel Level

In Figure 12, the spatial heterogeneity of study area on the large scale of 32 m was represented
by the standard deviation of NDVI (σvi). There were 16 × 16 sub pixels of 2-m resolution within each
coarse pixel. In the extreme case (the minimum and the maximum) of spatial heterogeneity, the factors
(the class-specific proportion, the between-class spectral difference, and the number of classes within
coarse pixel) were extracted (Figure 12b–g). For the pixel with minimum σvi, it was relatively pure with
100% of winter wheat (Figure 12d) and the range of NDVI was only 0.017 (Figure 12b). For the four LAI
estimation models, the RE values from the three techniques were all less than 0.00012 m2/m2. However,
the performance for the maximum heterogeneity was more complex. In the pixel of maximum σvi,
the values of NDVI ranged from 0.251 to 0.753 (Figure 12c). Although the winter wheat occupied
the largest proportion (64.5%), there were two other classes (Figure 12e) within the coarse pixel.
The built-up resulted in the low values of NDVI (Figure 12c). If we used the uncorrected value of
LAI on large scale to replace the exact LAI of winter wheat in this pixel, it would cause a RE up
to 0.28 m2/m2. After correction, the RE values were reduced to less than 0.15 m2/m2. Particularly,
despite the different heterogeneity, the lowest RE (~0 m2/m2) occurred in the polynomial model by
using TT, which was the same as the previous results. Moreover, it is worth noting that more classes
within one pixel did not correspond to greater heterogeneity. The scaling effect produced by the three
classes (winter wheat, other vegetation, and built-up) was even greater than that caused by complex
multiple classes.
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Figure 12. Comparison of LAI scaling bias correction in the extreme case of spatial heterogeneity. (a) The
spatial heterogeneity of study area at 32-m resolution was obtained by the standard deviation of NDVI
(σvi). Within each pixel, there are 16 × 16 subpixels with spatial resolution of 2 m. NDVI distribution
in the pixel of: (b) minimum σvi; and (c) maximum σvi. The classes in the pixel of: (d) minimum σvi;
and (e) maximum σvi. By using TT (Taylor’s theorem), WF (Wavelet-Fractal technique), and FT (Fractal
theory), the correction results of pixels with: (f) minimum σvi; and (g) maximum σvi for the four LAI
estimation models (power, exponential, logarithmic model and polynomial models) were obtained.
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4. Discussion

4.1. The Influences of Model Non-Linearity and Spatial Heterogeneity on Scaling Effect

The main causes of scaling effect are the model non-linearity and the spatial heterogeneity.
Before correcting the scaling bias, their influences on the scaling effect should be investigated.
This study used numerical experiments to simulate different conditions.

The model non-linearity has not been quantitatively analyzed in previous studies. Because most
studies focused on correcting the scaling bias on real data, the influence of model non-linearity was
difficult to be extracted. Our results proved the common view that the scaling bias became larger
when the non-linearity of LAI estimation model increased. Because the NDVIs in both Path_1 and
Path_2 (Figure 1) were calculated at the fine resolution, the scaling bias caused by the non-linearity of
NDVI as a function of red and near infrared reflectances was not considered. However, another way to
upscale LAI is firstly aggregating the reflectances and then calculating NDVI and LAI at the coarse
resolution. In this case, the scaling bias would be caused not only by the nonlinear relationship
between LAI and NDVI, but also by the non-linearity of NDVI equation relating to the reflectances.
Therefore, how the non-linearity of the two equations concerning NDVI-reflectance and LAI-NDVI
relationships influences the scaling effect needs to be investigated in the future to understand the
overall non-linearity of the LAI-reflectance model.

For the spatial heterogeneity, different heterogeneous structures within a coarse pixel would result
in different scaling effect. The scaling bias firstly increased and then decreased when the proportion of
one class within a coarse pixel became larger. Usually the class that occupies a larger area is called
“the dominant class” and the low-proportion class is considered as “the heterogeneous class”. In the
numerical experiment, we simulated two contrasting classes (NDVI1 and NDVI2) within a coarse
pixel. The proportion of the dominant class (NDVI2) was relatively reduced when the proportion of
the heterogeneous class (NDVI1) increased from 0% to ~50%. The scaling bias became larger during
this process. When the proportion of NDVI1 continued to increase to 100%, it became the dominant
class instead of NDVI2 and the scaling bias dropped to zero (Figure 7). This is consistent with the
finding in [36]. He selected nine areas with different proportions of water from 0% to 93% in Canada
from Landsat TM and found that the scaling bias was smaller than 2% for a pure forest pixel and
would be up to 45% for a pixel containing around 50% open water [36]. Therefore, we suggested that
the scaling problem for pure pixels be ignored for LAI estimations. The larger difference of classes
would lead to higher heterogeneity and more significant scaling effect. This is easy to understand and
is consistent with various studies [15–18,36]. The scaling bias would not monotonically increase or
decrease with the number of classes within a coarse pixel. In the numerical simulation experiment
(Table 3), the scaling bias increased when the newly added class with the highest or the lowest value.
On the contrary, the scaling bias would decrease when the third class was added as “transitional
class” with the value between the initial two classes. It is possible because a “compensation effect”
weakens the heterogeneity. For the real data (Figure 12), the greatest scaling effect appeared in the pixel
with three classes rather than the pixel with the maximum number of classes, as found by previous
studies [11,44].

None of these factors existed independently in the process of scale transformation and they
collectively influenced on the scaling effect. The non-linearity is related not only to the model form
but also to the between-class spectral difference. For example, there are four subpixels with values
of 0.11, 0.12, 0.13 and 0.14 in a coarse pixel and the other contains four subpixels with values of 0.1,
0.3, 0.5 and 0.7. We applied a simple non-linearity function with form of y = x2 to the two coarse
pixels. It is obvious that the model non-linearity for the two pixels is markedly different. In addition,
internal composition of subpixels within coarse pixel can also further influence the model non-linearity
such as the proportions and the number of classes. That means the model non-linearity is affected by
the spatial heterogeneity. This implies that the influence of spatial heterogeneity on scaling effect is
greater than the non-linearity of LAI estimation model [28,29,45].
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4.2. The Reliability and Practicability of the Three Techniques

The correction results of TT strongly depended on the model type and it was perfect for the
polynomial model. Perhaps because the Taylor’s theorem was proposed by decomposing a function,
the function form directly affected correction results. The performance of WF exhibited lower stability.
WF could reduce LAI scaling bias ideally on relatively small scale but not for large scale compared
with TT and FT. The results of simulations (Figure 9) showed that WF could achieve great correction
results in a certain range of heterogeneity (standard deviation of VI, σvi). It could be explained that
the standard deviation of remotely sensed VI image with 64-m resolution was out of the optimal
range for WF. This is probably because WF is based on the adjacent scales. When the gap between
the original scale and the coarse scale becomes bigger, the bias of each scale on the gap would be
accumulated. Therefore, WF is more suitable for neighboring scales. It is found that TT and WF had a
better performance of correcting the scaling bias caused by model non-linearity than FT. This is because
FT was proposed by considering the spatial heterogeneity but not the non-linearity of estimation
model [41]. According to the results in Figure 6, this property of FT was prominently proven. However,
FT had good performance of correcting the scaling bias for the real data.

The advantages and disadvantages of the three techniques (TT, WF, FT) were summarized in
Table 4. With considering both model non-linearity and spatial heterogeneity, TT and WF can be used
to correct the scaling bias of LAI. By extending the application of TT, WF has been successfully used
for the model without a clear function expression such as the radiation transfer model [38]. Therefore,
WF is of high universality for different models. However, WF is not suggested for continuous scales
possibly due to the dyadic property of the Haar wavelet. Generally, TT is a better selection than
WF if the second-order stationarity hypothesis holds. Although FT showed a potential capability
of correcting the scaling bias, it was not recommended to correct the scaling bias caused by great
model non-linearity. It is necessary to assess its performance for physical models in future work.
Moreover, the uncertainties of the three techniques should be analyzed in different landscape patterns.
Additionally, it is necessary to further investigate the application of the optimal technique selected
in this study to promote the accuracy and integrity of the precision agriculture, such as multi-scale
monitoring and prediction, data fusion, and data assimilation.

Table 4. Summary of characteristics of the three techniques.

Taylor’s Theorem (TT) Wavelet-Fractal Technique (WF) Fractal Theory (FT)

Advantages
for model non-linearity
for spatial heterogeneity
for continuous scales

for model non-linearity
for spatial heterogeneity
with high universality (for
physical models)

for spatial heterogeneity
for continuous scales

Disadvantages the second-order
stationarity hypothesis not for continuous scales not consider model non-linearity

universality needed to be tested

5. Conclusions

The scaling bias became greater when the non-linearity of LAI estimation model increased. For the
spatial heterogeneity, different heterogeneous structures within a coarse pixel would lead to different
scaling effect. None of these factors existed independently and they collectively influenced on the
scaling effect. Compared with spatial heterogeneity, the model non-linearity was not the key factor of
scaling effect and could be ignored in some applications especially for pure pixel with only one class.

The Taylor’s theorem (TT) can be used when the second-order stationarity hypothesis is satisfied.
With low RE and RMSE (~0 m2/m2) values for both simulated and real data, TT was suggested for
correcting the scaling bias with a polynomial function relating LAI to NDVI. The Wavelet-Fractal
technique (WF) was preferable for neighboring scales rather than continuous scales. The Fractal theory
technique (FT) only focused on the description of spatial heterogeneity, and it was not recommended
for correcting the scaling bias caused by significant model non-linearity.
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