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Abstract: Reliable information about the spatial distribution of surface waters is critically important
in various scientific disciplines. Synthetic Aperture Radar (SAR) is an effective way to detect floods
and monitor water bodies over large areas. Sentinel-1 is a new available SAR and its spatial resolution
and short temporal baselines have the potential to facilitate the monitoring of surface water changes,
which are dynamic in space and time. While several methods and tools for flood detection and
surface water extraction already exist, they often comprise a significant manual user interaction
and do not specifically target the exploitation of Sentinel-1 data. The existing methods commonly
rely on thresholding at the level of individual pixels, ignoring the correlation among nearby pixels.
Thus, in this paper, we propose a fully automatic processing chain for rapid flood and surface water
mapping with smooth labeling based on Sentinel-1 amplitude data. The method is applied to three
different sites submitted to recent flooding events. The quantitative evaluation shows relevant
results with overall accuracies of more than 98% and F-measure values ranging from 0.64 to 0.92.
These results are encouraging and the first step to proposing operational image chain processing to
help end-users quickly map flooding events or surface waters.
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1. Introduction

Mapping the extent of surface waters is crucial for many applications as waters constitute
a resource and a natural hazard during flooding events. Flood disasters occur in many regions
of the globe and cause great losses each year [1], and flood extend maps derived from optical or
Synthetic Aperture Radar (SAR) Earth Observation (EO) sensors are a source of information for flood
disaster management [2]. Besides disaster relief operations, these maps can also serve for the validation
of hydraulic models [3–5] and for quantifying flood hazard maps in the context of spatial planning
and insurance [6].

In the case of favorable weather conditions, optical EO sensors are the preferred information
source due to their straightforward interpretability. Successful applications of optical satellite data are
presented in [7,8], while a detailed review of optical-based flood mapping is presented in [9].

However, as flood events often occur during periods of persistent cloud cover, monitoring by optical
sensors (visible, infrared, thermal) is rarely feasible. Microwave SAR sensors offer clear advantages by
providing their own sources of illumination, thus being able to operate in nearly all-weather/day-night
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conditions. For almost 20 years, spaceborne SAR sensors have increasingly been used for large-scale
flood mapping, mainly at medium spatial resolutions, using X- (SIR-C/X-SAR, SRTM), C- (ERS-1/2 AMI,
Envisat ASAR, RADARSAT-1, RISAT-1, SIR-C/X-SAR), and L- (SEASAT-1, JERS-1, ALOS PALSAR,
SIR-A/B/C/X-SAR) band sensors. With the launch of the X-band TerraSAR-X/TanDEM-X and
COSMO-SkyMed (CSK) constellations, higher sensor spatial resolutions (up to 0.24 m for the TerraSAR-X
Staring SpotLight mode) or higher revisit times (six days for Sentinel-1, and up to 5 × 20 m in the
standard Interferometric Wide—IW—Swath mode), have increased capabilities for estimating flood
extent and for flood monitoring in the case that complex, small-scale, and operational scenarios are
available. The potential of this new generation X-band data has already been demonstrated by several
use cases in flood emergency situations [10–12]. The usefulness of the C-band Sentinel-1 sensor mission
for flood mapping purposes has not been thoroughly investigated, while the design of this mission for
operating in a pre-programmed conflict-free mode ensuring consistent long-term data archives [13] and
the possibility of fully-automated surface water services [14] have been studied. The objective of this
work is to address this gap by investigating the potential of Sentinel-1 data for the efficient and reliable
mapping of flood extents.

Several SAR-based water detection algorithms have been proposed in the literature using
supervised and unsupervised classification approaches [15–17], thresholding [18–20], object-based
image analysis [21,22], and hybrid approaches [23,24]. Among these methods, thresholding is the
most commonly adopted method for SAR image analysis to discriminate water and non-water areas.
The approach is based on the contrast of low radar returns from water bodies and high radar returns
from the surrounding terrain. The accuracy of the detection algorithms varies drastically independent
of the land cover prevalent in the scene. Flood detection in urban areas is very challenging due to
shadowing effects from buildings as a result of the side-looking viewing geometry of SAR satellite
sensors [25]. Further, waters beneath vegetation layers are difficult to detect due to double bounce
scattering resulting in a drastic increase of radar backscatter in such areas [26]. Misclassification
errors are also prevalent in the presence of strong wind that roughens the water surfaces. Finally, it is
difficult to determine the optimal threshold value for a scene/landscape, which implies the need for
user intervention.

The number of SAR-based water detection algorithms and automatic flood mapping services has
increased in the last years [3,19,27]. In most cases, a certain amount of user interaction is needed for
data collection, pre-processing, and integration of auxiliary data in the processing pipelines. NASA’s
Goddard’s Office of Applied Science proposes an automated global daily flood and surface water mapping
service (http://oas.gsfc.nasa.gov/floodmap/). As one of the first SAR-based services, the Fast Access
to Imagery for Rapid Exploitation (FAIRE) service hosted on the ESA’s Grid Processing on Demand
system (G-POD, http://gpod.eo.esa.int/) provides automatic SAR pre-processing and change detection
capabilities which can be triggered on demand by a user via a web-interface. Automatic algorithms for
medium resolution surface water mapping have been presented by [28], e.g., Fully Automatic Aqua
Processing Service/FAAPS) and [29]. WaMaPro [30] implements thresholding and morphological filtering
but requires user intervention. RaMaFlood [31] has been developed for semi-automatic flood extent
mapping using an interactive object-based classification algorithm. The TerraSAR-X Flood Service
(TFS) [25] and the TanDEM-X Water Indication Mask processor (TDX WAM) [31] are water detection
tools based on fully-automatic processing of TerraSAR-X and TanDEM-X images. The Canada Centre for
Remote Sensing has developed the FnFCE (Forest non-Forest Class Extraction) water detection tool for
the automated extraction of water bodies, but this tool only ingests Radarsat images [32].

The processing chain of the TerraSAR-X Flood Service is currently being adapted to Sentinel-1
data [33], which enables systematic disaster monitoring with high spatial and temporal resolutions.
In contrast to the TerraSAR-X Flood Service, this is a major advantage since the time-consuming step
of tasking new satellite data can be omitted.

Hence, while several semi-automatic and automatic tools already exist, there are, to the best of our
knowledge, currently only a few scientific references which present a fully automatic water detection
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processor for surface water mapping from Sentinel-1 imagery [33–35]. This method uses thresholding
on individual pixels ignoring the correlation among neighboring pixels. Considering that individual
pixels are not independent random variables but form a random field [36], the potential to improve
the accuracy of the flood extent maps exists.

The objectives of this work are thus (1) to investigate the use of bilateral filtering as a smooth
labeling method for defining the thresholds; (2) to integrate hydrologic/topographic information in
the detection using the ‘Height above nearest drainage’ (HAND) index [37]; and (3) to quantitatively
evaluate the accuracy of our proposed fully-automated SAR-based water detection algorithm for
Sentinel-1 data.

2. Study Areas and Datasets

Three test areas were selected for this study as shown in Table 1. During Storm Desmond on the
4 December 2015, heavy rain with a 24 h total of 160.8 mm was reported at Keenagh Beg (Co Mayo,
Ireland) [38]. The storm led to a 100-year flood event particularly affecting the cities Ennis, Gort,
Roscommon, Ballinasloe, and Portumna (Figure 1—Zone A).

Table 1. Images used, location, and events.

No
Occasion

SAR Acquisition Mode
Zone Image Acquisition Information

1

Zone A (Ireland)

22 November 2015 Before floods Ascending
2 16 December 2015 Floods occurred Ascending
3 9 January 2016 Floods occurred Ascending
4 14 February 2016 After floods Ascending
5 Zone B (England) 29 December 2015 Floods occurred Descending
6 Zone C (Italy) 28 November 2016 Floods occurred Ascending

Three weeks after, heavy rainfalls (about 215 mm 24 h rainfall) during Storm Eva (22 December 2015)
caused flooding to areas in Northern England [39]. Particularly affected areas were Yorkshire, along the
River Ouse, and a large zone of West Yorkshire including the city of Leeds (Figure 1—zone B). Starting on
21 November 2016, persistent rainfalls with levels of up to 200 mm in around 12 h were recorded in
some areas of North West Italy [40]. This led to severe flooding in the regions Liguria and Piedmont
(Figure 1—zone C).

Six images of Sentinel-1 IW GRDH (Ground Range Detected in High resolution) data are available
for these three study sites. Sentinel-1 imageries include pre-event, during event, or post-event images
collected from the European Space Agency (ESA) Sentinels Scientific Data Hub [41]. Each image has
a spatial resolution of about 20× 22 m with double polarization (VV and VH). In order to build HAND
(Height above Nearest Drainage) [42] maps to account for the limitation of surface water areas, SRTM
(Shuttle Radar Topography Mission) version 3, 1 Arc-Second Global with a 30-m resolution is used [43].

Reference maps to assess our results are available through the COPERNICUS Emergency
Management Service [44]. These data are produced using ESRI World Imagery, COSMO-SkyMed,
Radarsat-2, and other images except Sentinel imagery [44].

A preliminary statistical analysis based on permanent surface water surfaces in the Alsace Region
(France) defined by topographic databases showed that with the spatial resolution of SENTINEL-1
images, the smallest water surfaces are limited to 1 ha. Consequently, only areas greater than or equal
to 1 ha will be retained in the reference maps for the quantitative assessment.
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3. Methods

The automatic processing chain is described in Figure 2. It includes five components: (i) pre-processing
of raw Sentinel-1 data; (ii) a tiling approach in order to focus on surface water areas automatically; (iii) class
modeling with Finite Mixture Models [45] to produce probability maps based on established class models;
(iv) bilateral filtering [36] for smooth labelling; and (v) post-processing and accuracy assessment.
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In this study, we try to compare two scenarios of the processing chain based on the use of the
HAND map. In the first scenario, the HAND index is applied in the pre-processing step to limit the
considered area for the next processing step in order to avoid misclassification. In the second scenario,
the HAND index is used as a final post-processing step for the amount of misclassified areas in the
surface water maps. Moreover, we also perform a sensibility analysis of tile size used for the tiling
approach in order to find a suitable tile size to be used in the processing.
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3.1. Processing Chain

3.1.1. Step 1: Pre-Processing

Image pre-processing is applied to each Sentinel-1 IW GRDH dataset in order to reduce orbital
errors, speckle noise, and geometric distortion. A first processing step comprises the application of precise
Sentinel orbits, which can be obtained from SNAP (Sentinel Application Platform) [46,47] and considerably
improve the geolocation accuracy. To transform raw amplitude images to calibrated products for the
quantitative use of SAR images, we used also SNAP software. Among available calibrated products from
SNAP, such as amplitude, intensity, beta-nought, and sigma nought, we selected sigma-nought since
preliminary statistical tests showed that sigma-nought provides a better separation between water
and land surfaces. Some previous studies have also used sigma-nought images for surface water
mapping [48,49]. In order to reduce speckle noise, multilooking and speckle filtering with a Median
filter and window size of 5 × 5 pixels was used after some preliminary tests on the size of window
(3 × 3 or 5 × 5) and with some types of filtering (Mean, Median, Gamma Map, Lee, Frost, and Refined
Lee). Subsequently, Range Doppler Terrain Correction was applied to geocode the images.

3.1.2. Step 2: Image Tiling Using a Modified Split-Based Approach (MSBA)

A Split-Based Approach (SBA) was originally proposed by [50] for flood detection with Radarsat
images. This approach comprises a tiling of the satellite imagery into smaller sub scenes of a user-defined
size and a successive local thresholding analysis. The approach’s performance has been confirmed in
many studies for automatic mapping in remote sensing, e.g., [19,51]. The original SBA approach relies on
the coefficient of variation to pre-select tiles for further processing and a global thresholding method to
produce binary maps of surface water coverage. As noted by the authors, global thresholding methods
are well adapted for small scene extents but face problems for the larger scene extents of Sentinel-1 with
higher backscatter variances resulting from variations in the incidence angle.

To address this issue, we proposed a modified split-based approach which only applied pre-selection
tiles for class modelling. Images are first automatically tiled into squared non-overlapping blocks.
The tiles selection is then performed to choose only image tiles, which contain some portion of surface
waters. This selection is based on Hartigan’s dip statistic (HDS) value [52]. The underlying hypothesis
is that tiles with surface waters and land areas have bimodal grey-value distributions. HDS is used to
distinguish between tiles with unimodal and bimodal distributions. p-values resulting from the HDS test
are considered with values less than 0.05, indicating statistically significant bimodality [52]. Thus, only tiles
with a p-value of less than 0.05 will be used for the subsequent class modelling with finite mixture models.
In this context, it is important to note that this processing step only concerns the pre-selection for the class
modeling, whereas the entire image is processed for the generation of the final water surface maps.

3.1.3. Step 3: Class Modelling with Finite Mixture Models (FMM)

The Finite Mixture Models represent the existence of subclass diversity with a limited number of
distributions. They allow the decomposition of probability distributions into subgroups assuming that
the observed distribution is the result of a mixture of sub-populations which are distributed according
to a particular form (i.e., Gaussian). A popular method for modeling the parameters of the probability
distributions contributing to the mixture is Expectation-Maximization (EM) [45]. The experimental
results presented in this study rely on the assumption of a mixture of two Gaussian components,
whereas the underlying implementation also allows the use of skewed distributions such as the
Gamma function. Their initial means are determined automatically from the binned histograms and
the standard deviation is set as 3 for the respective tile. The probability of surface waters is set as 0.1 in
accordance with previous works [19,53], suggesting that a minimum amount of 10% of each class
is sufficient for accurate threshold detection. Sensitivity tests of these parameters are performed to
quantify the influence of standard deviation and probability parameters in this process. The EM-based
distribution fitting is performed over a maximum of 1000 iterations and tiles for which convergence
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is not reached within this number of iterations are excluded only for the calculation of the threshold
value. Instead of directly determining the threshold value, this process is used to compute posterior
probabilities to generate surface water probability maps.

The standard EM algorithm for normal mixtures is based on a first step called E-step (Equation (1))
and followed by a second step called M-step (Equation (2)) [45]. In the E-step, it searches for the
expected value p of the complete likelihood for all i = 1, . . . , n and j = 1, . . . , m at iteration t, from the
given parameterization (λ, φ(x)).

p(t)
ij =

1 + ∑
j′ 6=j

λ
(t)
j′

φ
(t)
j′ (xi)

λ
(t)
j φ

(t)
j (xi)

−1

(1)

In the M-step, it finds the model parameters λ that maximize the conditional expected values
from the E-step.

λ
(t+1)
j =

1
n

n

∑
i=1

p(t)
ij , for j = 1, . . . , m (2)

After computing the model parameters for each tile, we calculate the average of those parameters
to derive a global set of parameters. Then, using the global parameters, posterior probabilities
(Equation (1)) are computed for each pixel of the entire image.

3.1.4. Step 4: Smooth Labelling Using a Bilateral Filtering Approach

Binary thresholding methods commonly treat each pixel independently to assign class labels
such as land and surface water areas. However, considering the spatial auto-correlations among
nearby pixels, it can be assumed that nearby pixels tend to have the same class label (smoothness
assumption) [36].

Based on this assumption, bilateral filtering is used as a strategy for smooth labelling and the
suppression of small spurious detection. This filter is a non-linear, edge-preserving, and noise-reducing
smoothing filter commonly used in image processing. The intensity value at each pixel in an image
is replaced by a weighted average of intensity values from nearby pixels. The resulting image is
subsequently transformed into a binary image assigning all pixels with a probability of surface water
greater than 0.9 as water surface.

3.1.5. Step 5: Post-Processing

In the post-processing step, the accuracy of final binary maps is assessed by calculating classical
measures (overall accuracy, F-measure [54], true positive rates, false positive rates, omission and
commission errors) obtained by a comparison with very-high resolution Copernicus products [44].

3.2. Comparison of Two Scenarios Using HAND Maps

Height above Nearest Drainage (HAND) is a terrain index based on the drainage network [42,55].
A previous study showed the advantages of using HAND maps for flood mapping [33,34] to remove
false positive surface water detections which are located high above the nearest drainage line. In order
to create HAND maps, stream networks are defined with a 10 ha threshold [56]. For this study,
a HAND threshold of 15 m [33,42] is used.

In this study, we performed two approaches to improve the accuracy of the surface water mapping.
The first approach is using the HAND map in the pre-processing step, while the second approach
employs the HAND map in the post-processing step. A comparison of the results will determine the
best scenario for this study. A tile size of 10 km will be used in both of the scenarios.
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3.2.1. Scenario 1: Use of HAND Maps in Pre-Processing

For the first scenario, we use a HAND map in the pre-processing step, after subsetting the
sigma-nought image in the study area boundary. All areas with a HAND index of >15 m are excluded
from all further processing steps including the computation of the HDS, finite mixture modelling,
the generation of the probability maps, bilateral filtering, and the generation of the final maps. In this
scenario, potential false positives are removed in the initial stage of the processing chain and will thus
not impact the statistical analysis. A further advantage of this scenario is the reduction of the amount
of data and hence faster processing.

3.2.2. Scenario 2: Use of HAND Maps in Post-Processing

In the second scenario, we use a HAND map only in the post-processing step after labeling
the surface water class. In order to reduce misclassification, we subset surface water areas in the
HAND ≤ 15 m boundaries and produced the final surface waters map. In this scenario, all previous
processing steps are based on the entire input image.

3.3. Sensitivity Analysis of Tile Size Used in Tiling Approach

It is a known issue that statistical thresholding methods applied to subsets of the image are
sensitive to the size of the individual tiles [19]. The default tile size used in this study is 10 × 10 km
due to the spatial extent of a Sentinel-1 image (250 km swath), but it cannot be excluded that increasing
or reducing the tile size might improve or degrade the accuracy of the final maps. Using the first
processing scenario, tile sizes of 2.5 km and 5 km are also evaluated and compared for the three zones
(A, B, and C).

4. Results

4.1. Influence of FMM Parameters Values

Given that FMMs are sensitive to the initial values set for standard deviations and prior class
probabilities, the impact of variations in the initial parameter settings on the final class model is
examined. The influence of FFM parameter values is assessed for the Sentinel-1 image (9 January 2016).
This analysis is performed for three tiles of Zone A (Ireland), which are representative for different
proportions of land and surface waters (Figure 3). In Tile (a), surface waters cover more than 70%
of the area, while in Tile (b), land and surface waters cover the same proportion of areas. In Tile (c),
the majority is land surface. FMMs are initialized on these three tiles testing initialization values from
1 to 9 and from 0.1 to 0.9 for the standard deviation and prior class probabilities, respectively.

The results of this evaluation are presented in Figure 3. In the column of standard deviation,
we give various values of standard deviation as initial values and observe mean and probability values
of the model. The graphs indicate the mean and probability values of the model associated with initial
values of standard deviation. Subsequently, in the column of surface water probabilities, we give
various values of probability as initial values and observe mean and standard deviation values of the
model. Figure 3 shows that image tiles with large portions of surface water areas converge to the same
stable output model no matter which initial values are selected. Contrarily, Tile (c), which includes
rather small portions of surface water area, tends to marginal solutions at standard deviations above
3 or prior probabilities for the surface water class above 0.5. For Tile (b), which presents an intermediate
contribution of water surfaces, the FMMs converge to a stable solution below standard deviations of
7 and water class probabilities of 0.7. Considering the results of this analysis, the use of a standard
deviation of 3 and prior probability of 0.1 was considered as sufficiently low to assure that the FMMs
will generally converge to stable solutions with a good approximation of the bimodal distributions.
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4.2. Sensitivity of Bilateral Filtering Parameter

The size of the filtering window and its influence on the results is also analyzed. The sensitivity
of the classification accuracy to changes in these parameters is evaluated empirically for the image
Sentinel-1 scene recorded on 9 January 2016 over the Gort area in Zone A.

Figure 4 represents the dependence of overall accuracy and F-measure on changes in the window
size. It can be seen that a window size of 5× 5 pixels yields the optimal result with the overall accuracy
reaching 99.07% and F-measure at 0.84. Therefore, for all experiments, the bilateral filtering window
was fixed to 5 × 5 pixels.
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Figure 4 also shows that bilateral filtering yields higher overall accuracies when compared to
unfiltered maps over a wide range of window sizes between 3× 3 pixels and 17× 17 pixels. This clearly
justifies the use of a bilateral filter as the smooth labeling method in this study.

4.3. Results Comparison between Scenario 1 and Scenario 2

Based on a comparison of quantitative evaluation results from scenario 1 and 2, there are no significant
differences in all evaluation parameter values between the two scenarios. However, compared to scenario 2,
scenario 1 gives slightly better evaluation results. This can be seen in Figure 5, which displays the F-measure
values from all images. In the F-measure graph, the higher the value signifies the better the results. Figure 5
shows higher values for scenario 1 for two images and the same values for the other images. Thus, the use
of scenario 1 is recommended and will be applied for this study.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 18 
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4.4. Sensitivity of Tile Size in MSBA and FMM Steps

A sensitivity analysis is carried out in all study areas through a quantitative assessment of the
results with different tile sizes. Using scenario 1 and all further processing steps as explained above,



Remote Sens. 2018, 10, 217 10 of 17

only the tile size used in the MSBA and FMM steps is changed to values of 10 km, 5 km, and 2.5 km.
A quantitative comparison against the available reference maps in Zone A is presented in Table 2 and
indicates only subtle differences between three tile sizes. While small variations exist regarding the
tradeoff between TPR and FPR, the F-measures are indistinguishable.

Table 2. Results assessment for three different tile sizes in Zone A—Ireland.

Evaluation
22 November 2015 16 December 2015 09 January 2016 14 February 2016

10 km 5 km 2.5 km 10 km 5 km 2.5 km 10 km 5 km 2.5 km 10 km 5 km 2.5 km

Overall accuracy 99.41% 99.40% 99.40% 98.68% 98.68% 98.68% 98.68% 98.67% 98.66% 99.35% 99.36% 99.38%
F-measure 0.88 0.88 0.88 0.77 0.77 0.78 0.92 0.92 0.92 0.88 0.88 0.88

TPR 81.27% 81.65% 81.44% 66.96% 67.04% 67.83% 89.67% 89.42% 89.18% 86.42% 86.26% 86.51%
FPR 0.09% 0.10% 0.10% 0.22% 0.22% 0.24% 0.47% 0.45% 0.44% 0.29% 0.27% 0.31%

Omission error 18.73% 18.35% 18.56% 33.04% 32.96% 32.17% 10.32% 10.58% 10.82% 13.58% 13.74% 13.49%
Commission error 3.79% 4.29% 4.06% 8.54% 8.60% 9.31% 5.26% 5.10% 4.96% 10.80% 10.22% 11.29%

Similarly, in Zone B, a smaller tile size seems to favor both a higher TPR and a higher FPR,
whereas the F-measure remains rather stable among all tested tile sizes (Table 3). On the other hand,
the results for Zone C indicate a significant improvement from an F-measure of 0.64 towards 0.7 when
using smaller tile sizes (Table 3). This might be due to smaller water surfaces in Zone C, which are less
likely to be omitted at smaller tile sizes.

Table 3. Results assessment for three different tile sizes in Zone B—England and Zone C—Italy.

Evaluation
England 29 December 2015 Italy 28 November 2016

10 km 10 km 5 km 2.5 km 5 km 2.5 km

Overall accuracy 98.40% 98.68% 98.75% 98.75% 98.42% 98.40%
F-measure 0.75 0.64 0.66 0.7 0.76 0.76

TPR 62.44% 48.51% 52.11% 61.05% 66.13% 67.36%
FPR 0.15% 0.10% 0.11% 0.33% 0.28% 0.36%

Omission error 37.56% 51.49% 47.89% 38.95% 33.87% 32.64%
Commission error 5.72% 7.50% 8.15% 18.17% 9.57% 11.64%

5. Discussion

Generally, the accuracy assessment shows very high overall accuracies of about 98% for each of the
study sites. Moreover, the commission error remains below 20% for all test zones. The final quantitative
evaluation of surface water extraction results is presented in Table 4. The presented results are obtained
fully automatically using scenario 1 and a tile size of 10 km. As shown in the previous section,
further improvements can be expected through an adaptation of the tile size, whereas we prefer to
present here the results obtained with a default value that is more realistic for an operational scenario.

For each zone, a map depicting the extent of surface waters is presented and several zooms
overlaying Sentinel-2 imagery allow a better visualization of results. The surface water detection
in Zone A shows results with F-measures ranging from 0.77 to 0.92. Figure 6a–d show that false
negatives occur mainly along the borders of surface water bodies, where most of the false positives
are also located. In the Ennis area, the narrow river with a width of around 50 m cannot be detected.
This is probably due to vegetation along the river banks and increased turbulence along the permanent
riverbed which leads to increased backscattering in those areas (see Figure 6d). Flooded areas are
detected in wetland areas along Shannon River (Figure 6b).

The evaluation of Zone B shows an adequate performance of the automatic detection with
an F-measure value of 0.75. Zone B comprises numerous narrow river sections which, even during
flooding events, do not exceed 100 m in width and are consequently difficult to detect with Sentinel-1
(see Figure 7d). Similar to Zone A, the detection of these sections is further complicated by tree-and
hedge lines along the river banks, as well as greater turbulence and hence water surface roughness
along the permanent riverbed.
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Zone C comprises several narrow river sections in Sale regions, which similarly leads to omission
errors of about 51%. Some false negatives are visible along the borders of Po River (see Figure 8a,b)
and mostly appear in the bar or river bank areas (see Figure 8c,d). In particular, it seems that several
bar and river banks already reemerged after the main flooding event on 25 and 26 November 2016.
The omission is hence due to the acquisition delay of Sentinel-1 because, at the time of imaging,
these areas where not submerged.

Given the persistent omission of permanent river beds at all three study sites, further improvements
of the processing chain could include the analysis of SAR time-series to amplify the signal of permanent
riverbeds through spatio-temporal averaging.

Considering these results, our new automatic chain processing for floods detection and rapid
surface water mapping using Sentinel-1 data appears to be efficient for mapping flood events and water
surfaces. It has been applied to three major floods events in Ireland, the United Kingdom, and Italy
with largely favorable results. The proposed method features a short processing time. For instance,
using a computer with multiple Intel Duo processors of 1.90 GHz and 32 GB RAM, the time of
processing is about 10 h per Sentinel-1 image. Multiple images can be processed easily in parallel.
Rapid mapping can hence be achieved in less than half a day after the image data is made publicly
available. Given the variable landscape characteristics at the investigated sites, we consider that the
processing chain can also be deployed for rapid mapping in other geographic regions. Probabilistic
map products can also be derived to better guide further intervention by human operators if required.

In this study, the methodology was specifically designed for the analyses of Sentinel-1 data
and the suitability of the method for rapid surface water mapping was explored. The method is
adapted to the particular features of high spatial resolution Sentinel-1 data which are different from
the other available automatic tools targeting the use of SAR images with a very high spatial resolution
(e.g., [31,57]). Since the required Sentinel-1 input data is publicly available without restriction, it will
be easy to access unlimited data of Sentinel-1 and process it for surface water mapping.

Table 4. Quantitative evaluation of surface water extraction results (using scenario 1 and tile size 10 km).

Study
Area Image Date Event Overall

Accuracy F-Measure True Positive
Rate

False Positive
Rate

Omission
Error

Commission
Error

Zone A
(Ireland)

22 November 2015 Before floods 99.41% 0.88 81.27% 0.09% 18.73% 3.79%

16 December 2015 Floods
occurred 98.68% 0.77 66.96% 0.22% 33.04% 8.54%

09 January 2016 Floods
occurred 98.68% 0.92 89.67% 0.47% 10.32% 5.26%

14 February 2016 After floods 99.35% 0.88 86.42% 0.29% 13.58% 10.80%

Zone B
(England) 29 December 2015 Floods

occurred 98.40% 0.75 62.44% 0.15% 37.56% 5.726

Zone C
(Italy) 28 November 2016 Floods

occurred 98.68% 0.64 48.51% 0.10% 51.49% 7.50%
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6. Conclusions

The objective of this study has been twofold. First, to assess the suitability of Sentinel-1 data
for flood detection and surface waters mapping. Second, to construct automatic chain processing
for surface waters extraction. To this end, we presented an approach consisting of pixels modelling,
probability maps, and a smoothness assumption in order to capture floods and surface waters.

We developed a modified SBA method to facilitate focusing on surface water areas rather
than the entire image scene observed. Finite Mixture Models are found to be suitable for the
automatic modelling of surface water class and land. Using bilateral filtering for smooth labeling
from a probability map led to more accurate results than using direct thresholding. HAND maps are
used as terrain filters in order to remove potential false positives early on in the processing chain.
A comparison of two procedures integrating HAND in the pre- or post-processing showed better
results when used already in the pre-processing step. Sensitivity analysis of tile size pointed out the
importance of surface water areas to determine tile size. Yet, a default tile size of 10 km can yield high
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overall accuracies. Our results show that we were able to estimate floods and surface waters in the
three study areas with an average F-measure of about 0.8.

Using Sentinel-1 as free SAR data with wide area monitoring capabilities, we established
a processing chain which can extract floods and surface water areas automatically. The automatic
approach has been tested for three floods events in Central Ireland, England, and Northern Italy,
suggesting an applicability for rapid flood mapping at other sites beyond the presented study areas.
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