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Abstract: Terrestrial vegetation has numerous positive effects on the main regulating services of
agricultural channels, such as seed retention, pollutant mitigation, bank stabilization, and sedimentation,
and this vegetation acts as a porous medium for the flow of matter through the channels. This vegetation
also limits the water conveyance in channels, and consequently is frequently removed by farmers
to increase its porosity. However, the temporal effects of these management practices remain poorly
understood. Indeed, the vegetation porosity exhibits important temporal variations according to the
maintenance schedule, and the water level also varies with time inside a given channel section according
to rainfall events or irrigation practices. To maximise the impacts of vegetation on agricultural channels,
it is now of primary importance to measure vegetation porosity according to water level over a long
time period rather than at a particular time. Time series of such complex vegetation characteristics
have never been studied using remote sensing methods. Here, we present a new approach using the
Structure-from-Motion approach using a Multi-View Stereo algorithm (SfM-MVS) technique to construct
time series of herbaceous vegetation porosity in a real agricultural channel managed by five different
practices: control, dredging, mowing, burning, and chemical weeding. We post-processed the time series
of point clouds to create an indicator of vegetation porosity for the whole section and of the surface of
the channel. Mowing and chemical weeding are the practices presenting the most favorable temporal
evolutions of the porosity indicators regarding flow events. Burning did not succeed in restoring the
porosity of the channel due to quick recovery of the vegetation and dephasing of the maintenance
calendar with the flow events. The high robustness of the technique and the automatization of the
SfM-MVS calculation together with the post-processing of the point clouds should help in handling time
series of SfM-MVS data for applications in ecohydrology or agroecology.
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1. Introduction

Terrestrial vegetation plays a central role in agricultural channels by providing regulating
services [1–3], such as pollutant mitigation [3], sediment retention, or bank stabilization [4]. It also
provides habitats for diverse species, including invertebrates, amphibians, birds and mammals [1,5,6],
and contribute to floodplain diversity [7,8] by producing seeds carried across the channel network
through hydrochory [9,10]. However, terrestrial vegetation also provides disservices to agriculture,
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especially because it reduces the hydraulic conveyance capacity of channels [11,12] or causes
channel occlusion by sediment trapping [13]. Because of these effects, considered as adverse by
farmers, channels are frequently managed to remove the vegetation cover [3] by mowing, dredging,
chemical weeding, and burning [14]. According to the maintenance schedule and depending on
cropping practices, vegetation cover significantly varies throughout the year. Recently, it has been
demonstrated that vegetation cover exhibited great variations after being managed by farmers,
with direct consequences on water conveyance capacities [15]. The agricultural channels are mainly
used for channelizing overland flow, and the water level is highly dynamic throughout the year and
depends on the frequency of rainfall or irrigation events [16,17]. The dynamics of vegetation cover,
exhibiting variations according to management practices and seasonal growth, together with water
level fluctuations across the year, needs to be understood to implement an effective management
schedule to optimize the positive and negative impacts of vegetation on channels.

Finding a vegetation property that can be linked to the flow of water or other elements carried
in waterways has been the aim of numerous studies (see review from [11]). In general, authors
estimated that vegetation creates an obstacle to water flow, and they calculated the friction induced
by this obstruction. To quantify this obstruction, vegetation is considered as a porous medium to
water, sediment or particle flows [18]. The porosity of the vegetation inside a channel is calculated by
aggregating the vegetation over the wetted flume section to estimate the proportion of the channel
occupied by vegetation [19] or only at the water surface in a channel section for the particular case
of floating seeds [20]. The porosity is sometimes denoted as a “blockage factor” [21] to illustrate
the cross-sectional area occupied by vegetation. Vegetation porosity depends on various factors
such as the heterogeneity in plant positioning in the cross-section or the branching complexity or
individual thickness of the vegetation [19]. Moreover, the distribution of plants in a channel is highly
variable, and several measures at different cross-sections are needed for an accurate assessment of
plant cover [19]. Hence, close-range remote sensing technologies are good candidates for the required
fine-scale monitoring of these heterogeneities, providing that the resolution of the imagery is fine
enough to distinguish vegetation configuration in waterways [18].

Multi-temporal remote sensing analysis of vegetation porosity requires (i) a robust and repeatable
procedure, (ii) a material insensitive to windy and rainy conditions, (iii) a method adapted to both
the sharp relief of channels and the vegetation cover, and (iv) an automated processing chain able to
handle a large amount of data issued from multi-temporal surveys. Two categories of methods co-exist:
the methods using a terrestrial laser scanner (TLS) [22–24] and those using a camera [25,26]. The first
method consists in acquiring a 3D point cloud by measuring the distance between a sensor and a target
based on the elapsed time between the emission and return of photons. The second method consists in
taking images from multiple points of view and reconstructing the 3D point cloud of the scene using
structure-from-motion combined with multiview-stereophotogrammetry (SfM-MVS). In both cases,
3D information is gathered and aggregated at various scales to monitor vegetation height, biomass,
or architecture [27].

However, these methods significantly differ on the technology involved and on the manner to
obtain 3D data. If both are now almost fully automated, these methods have contrasted advantages and
limits pointed out, amongst others, by [24,28]. Currently, TLS has several advantages: 3D point clouds
are a direct output, punctual laser-beam-based measurement usually provides better penetration
through canopies than correlation-based SfM-MVS measurement and the acquisition rate may exceed
hundred of thousands points by second. Even if technology is expected to change shortly, the main
drawback is still its cost and manoeuvrability, the latter being affected by the significant weights
of state-of-the-art devices. On the other hand, recent advances in digital photography and the
development of fully automated SfM-MVS photogrammetry brought this technique to the forefront
of 3D data acquisition. The main advantage of the SfM-MVS is its accessibility, both in terms of
cost and handling. Moreover, consumer-grade cameras now provide increasing resolved sensors,
and consequently point density achievable by SfM-MVS is comparable with point density obtained
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with TLS. With single-lens reflex imagery and appropriate acquisition and processing protocols,
precision and accuracy of SfM-MVS 3D information is of the order of magnitude of the pixel [29]. Then,
lightweight cameras can be operated in a wide range of situations and with various platforms, from the
hand to aircraft, including poles and masts [25], making it suitable to the widest range of weather
and field conditions. Finally, due to its intrinsic need of multi-view geometry, SfM-MVS enables a
greater amount of viewpoints than multi-station TLS. Meanwhile, local lack of texture in areas of
homogeneous colour may prevent one for obtaining 3D information out of SfM-MVS processing.
Even with this possible and non negligible drawback, SfM-MVS constitutes a cost-effective alternative
to the “gold standard” TLS [28]. It is now used in geosciences (see, for instance, reviews of [30–32]).

The SfM-MVS method has been applied to vegetation cover to study cultivated plants in the
field [33,34] or vegetation structure in drylands [35,36]. Shifting to sharp surfaces characterizing
waterways, the method has been used mainly to studying gully erosion [37–39] and the topography of
river beds [40–43] or classifying river bed vegetation [44]. To the best of our knowledge, the SfM-MVS
technique has never been applied to study multi-temporal dynamics of vegetation cover inside a
channel, despite the major importance of such dynamics in affecting flows of water and other elements
in agricultural landscapes.

The objective of our study is to test the potential of the SfM-MVS technique to quantify the
porosity of vegetation inside bed channels across time and water levels. To that end, time series of
vegetation porosities were constructed to estimate flow resistance and seed retention as an application
of the method. We carried out this research on a real agricultural channel in a Mediterranean
landscape monitored from April 2015 to July 2017 in which a succession of management practices has
been applied.

2. Material and Methods

2.1. Study Site

The study was performed on a channel in a vineyard area located in southern France (43.48N,
3.34W). The climate is Mediterranean with scarce but heavy rainfall events generating intermittent
flooding of the channel. The precipitation ranges from 600 to 800 mm per year, with a dry period from
April to October and heavy rainfall in autumn and spring. The mean annual temperature is 14 ◦C [45].

The channel is part of a man-made network consisting of agricultural and roadside channels
used to regulate excess overland water fluxes [3]. This channel has a 120-m length and a 3.3h bottom
slope. Its cross-sections have a trapezoidal shape with a 60-cm depth, 60-cm bottom width and 160-cm
top width.

An exhaustive characterization of channel species in April 2015 revealed an important diversity of
plants with a richness similar to that observed in other channels located in the same geomorphological
context [46]. The channel vegetation was mainly composed of Asteraceae and Poaceae species, with the
latter being primarily located on the banks of the channel.

The water level inside the channel after rainfall events was monitored with a capacity sensor with
centimetric precision [47]. Rainfall, temperature, wind velocity, and global radiation were measured
by a meteorological station located 1.5 km from the study site.

2.2. Experimental Design and Maintenance Practices

The experimental design has been described in detail in [15]. In brief, five treatments were applied
from upstream to downstream in 4-m-long quadrats separated by 2-m-long unmanaged buffers:
(1) non-managed (control), (2) dredged, (3) mowed, (4) burned, and (5) chemically weeded (Figure 1).
Each block was replicated four times according to a factorial design.

Dredging was performed using a straight spade to remove a 10-cm layer of dredged material from
both the bottom and the sides of the channel. The channel was mowed using a brush cutter. Burning
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was performed by adding a fine layer of hay to help establish the fire. Finally, chemical weeding was
implemented by a hand sprayer with glyphosate.

Replicate 1
Replicate 3 Replicate 4Replicate 2

control
dredged
mowed
burned
chemically weeded

targets

Treatments

water level sensor
flow direction

0 5 10 15 20 25
m

Figure 1. Location of the study site and sequence of maintenance practices. Positions of the
control points are represented by white squares. Colored polygons represented the areas of each
maintenance practice.

2.3. Applying the Ultra-Fine SfM-MVS Approach at the Study Site

The study was performed between April 2015 and July 2017 for a total of 35 surveys. Surveys
were conducted monthly, except when maintenance practices were performed on some of the channel
sections. In these cases, two surveys were made: on the day prior to and on the day after the
maintenance practice. At the end of the study, the channel was completely burned to produce the
digital terrain model (DTM) of the zone, i.e., the equivalent of the digital surface model (DSM) without
vegetation cover.

In our study, the reproducibility of the procedure was analyzed by choosing a sufficient number
of ground control points (GCPs) to ensure image alignment for a given survey and to help align all the
surveys in the same spatial reference system [48]. GCPs consisted of vertical stakes with a 50-cm length
buried 30 cm into the ground and topped with horizontal targets. The targets were rigid plastic squares
with 10-cm edges coded in 16 bits, allowing approximately 2000 unique combinations of numbers.
The planimetric and vertical positions of each target’s center were measured at the beginning of the
study using a differential global positioning system (DGPS) at a 1-cm accuracy in the RGF93 system
(EPSG:2154). The GCPs were regularly placed along both sides of the channel, 1 m from each other.
This spacing between GCPs was selected to allow at least three targets to be included in a given image
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to help alignment using the SfM-MVS approach [29,49]. The GCPs were kept in place throughout the
study period.

During the entire procedure, the camera was fixed on a 250-cm pole operated in continuous
shooting mode using a Phottix© remote (Hong-Kong, China). Our protocol presents much similarities
with the one used by ([37], Figure 3a), with the difference that we only used one single camera, which
supposedly allows for better lens calibration conditions. We chose a time-lapse interval between
images and operator walking speed ensuring a 90% overlap between successive images. Image data
were acquired using a Nikon D3200 camera (Melville, NY, USA) with a fixed 28-mm AF Nikkor
objective to obtain a resolution of ground pixels below 1 mm and a ground footprint of approximately
4 m2. The objective was set to infinity, and the camera was set in bulk mode to limit blurry images.

Because the approach was designed for high vegetation cover in a sharp channel, we considered
both vertical and oblique perspectives to cope with occlusion effects due to complex canopies [35].
Both oblique and vertical imagery were acquired with the equipment described above and with a
targeted 90% overlap. Oblique images were simply acquired by tilting the pole to the desired angle.
Each channel section of approximately 30 m was surveyed in seven passages, with three passages
acquired at the nadir of the two sides and the bottom of the channel and four passages converging
towards the top of each bank (around −30° and 30° from the nadir, Figure 2). The three nadir image
sets served as connectors of the four convergent image sets. Lower numbers of passages with different
orientations were tested, with the undesirable consequence of a lower number of aligned images
(data not shown). The survey was carried out around midday to limit hill shading and lasted for
approximately one hour. Between 3500 and 4000 images were taken for each data acquisition survey,
with an intensity of 30 images·m−1.

bottom

bank

side

target

1 2 3 4 5

camera

30°

7 6
250 cm

30°

Figure 2. Order of passages and orientation of the pole during SfM-MVS acquisition. The numbers
from 1 to 7 in the upper part of the image stand for the order of passages of the cameras. Angles of the
oblique imagery for the passages 2–3 and 6–7 are indicated, the passages 1, 4, 5 being realized in nadir.

2.4. SfM-MVS Processing Chain for Generating the DTM, DSM and Orthophotos

Each set of images was processed for SfM-MVS modelling using Photoscan Pro© (v 1.2.6) (Agisoft LLC,
St. Petersburg, Russia), given its efficiency compared to other software [35]. With Photoscan Pro©, targets
were automatically recognized in the images (Figure 3). Sparse cloud processing was undertaken using the
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highest quality settings. After optimization of the sparse cloud, the dense cloud was reconstructed using
medium and aggressive parameters to accelerate the processing time. Then, the dense cloud was meshed
with the highest level, i.e., a number of vertexes corresponding to the number of points in the dense cloud.
The complete parameter set used for the analysis is presented in Table 1. Analyses were performed on a
high-performance computer (Intel© Xeon©, 40 cores, 128 GB RAM, NVIDIA Quadro K4200, Santa Clara,
CA, USA), and each set of images took approximately 30 h to be fully processed. The final product of the
SfM-MVS processing chain was a DSM at 1-cm resolution, a value that allows for reasonable computing
time while keeping a proper representation of the canopy relatively to its spatial variability (more details
given in the next section). The DSM from the last survey obtained after the complete burning of the channel
was assimilated into a DTM given the absence of a vegetation cover.

Figure 3. Illustration of automatic recognition of the targets on a picture using Photoscan Pro©.
(a) original image; (b) image with recognized targets (boxes linked to a red dot).



Remote Sens. 2018, 10, 2050 7 of 18

Table 1. Parameters used in PhotoScan Pro©.

Processing Step Property Value

Alignment Accuracy Highest
Pair preselection Generic
Key point limit 200,000
Tie point limit 100,000

Adaptive camera model fitting Yes

Optimization Lens parameters f,b1,b2,cex,cy
k1,k2,k3,k4,p1,p2

Marker accuracy (pix) 0.1
Marker accuracy (m) 0.01

Tie point accuracy (pix) 0.1

Dense cloud Quality Medium
Depth filtering Aggressive

Mesh Surface type Custom
Interpolation Disabled

Quality Medium
Depth filtering Moderate

DEM Pixel size (m) 0.01

The quality of the DSM was assessed by calculating the root mean square error (RMSE, in pixels)
of the image alignment parameters to check the internal coherence of the image block-estimated
geometries. The mean absolute error (MAE) between target simulated and observed positions was also
calculated using a k-fold cross-validation procedure with k = 4. Within this procedure, a quarter of the
positions were used for a validation test, and the remaining three quarters were used to fit the point
cloud using solid transformation, i.e., with only rotation and translation of the cloud. The procedure
was repeated four times until all targets were included in the training and testing datasets. Then,
the four sets of results were averaged to produce a single estimate per survey. Quality indicators of the
DSM (RMSE, MAE) were related to meteorological data using Pearson product-moment correlation.

2.5. Estimation of Indicator of Porosity

To obtain the vegetation point clouds, the DSMs and the DTMs were transformed into point
clouds and cropped according to the limit of each quadrat. Each cropped DSM was shifted and
toggled considering the slope of the channel to be perpendicular to the cross-section. We applied the
same procedure to the DTM. Then, we filled the volume below each DSM with regularly sampled
points to simulate the vegetation cover below the canopy (Figure 4). The periodicity of canopy
height variation having been estimated at approximately 5 cm through a 2D fast-fourier transform,
the point spacing was fixed to 1 cm, a value which gives a reasonable security margin relatively to the
theoretical requested value given by the Shannon sampling theorem [50] without a significant increase
in computing time.

The mean vegetation height was calculated by substracting the DSM from the DTM and averaging
the difference over the entire quadrat. Quality indicators of the DSM (RMSE, MAE) were related
to vegetation height using Pearson product-moment correlation. Temporal effect of treatment on
vegetation height was estimated using a one-way ANOVA applied on each date with treatment as
explaining variable of vegetation height, the latter being normally distributed (Shapiro–Wilk test >0.05
for all dates). Difference among means were analyzed with Tukey’s honestly significant difference
(HSD) test on the ANOVA model.

To calculate the indicators of porosity, we followed the approach of [23] by projecting the
vegetation clouds in the direction of flow from each quadrat on the channel section to obtain an
unique indicator of porosity for each quadrat. The projection of the cloud consisted of a raster with
values ranging between 0 and 1 (Figure 4). We kept the best relationship found in [23] by filling the
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raster values below the canopy of the raster (Figure 4). The values of the raster that were strictly positive
were transformed to 1 (Figure 4). The corresponding raster, averaged over the whole section, is referred
to as POROsection (Figure 4). This raster ranges from 0 (absence of porosity) to 1 (total porosity).

Figure 4. Illustration of the post-processing procedure of the DSM on a sub-sample of the zone
corresponding to a control quadrat.

In the same way, we calculated another parameter to link seed retention to emergent vegetation.
We started from the binarized and filled raster corresponding to the projection of the vegetation cloud,
and we then sliced it around the water surface as an indicator of the seed retention due to obstacles
provided by protruding vegetation. We based our assumption on the work done by [51] on floating
particle trapping, where the authors assumed that the particle trapping probability is linked to the
spacing between adjacent plants. This indicator, POROsur f ace, corresponded to the raster slice averaged
over the width of the water surface. Similarly to POROsection, POROsur f ace ranges from 0 (absence of
porosity) to 1 (total porosity) (Figure 4).

We virtually filled each quadrat with water from the bottom (DTM) to the highest virtual water
level corresponding to the overflow limit (Figure 4). For each filling level, we considered the polygon
depicting the vertical section of the channel, and we calculated, for each combination of water
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level × time and for each treatment, the indicators of porosity POROsection and POROsur f ace. Temporal
effect of treatment on porosities were estimated using a one-way ANOVA applied on each date with
treatment as explaining variable of porosities, the latter being normally distributed (Shapiro-Wilk
test > 0.05). Difference among means were analyzed with Tukey’s HSD test. Difference between
POROsection and POROsur f ace was tested using a Generalized Linear Model (GLM) with binomial
distribution. Values of the indicators were averaged over the four replicates.

2.6. Manipulation of Time Series

Considering the high volume of data produced (i.e., approximately 150,000 images were taken and
processed), post-processing algorithms were specifically designed for reproducibility of the treatments.
Target detection, image alignment, point cloud, DSM generation and cross-validation procedures
were automated using the Python scripting console provided in Photoscan Pro©. Point cloud
post-processing, i.e., cropping and shifting, was performed using CloudCompare [52] called recursively
for each quadrat by R software (3.5.1, Vienna, Austria) [53]. Point clouds were manipulated using
R software with a specific package called data.table used for high-speed calculation performed on large
datasets. Statistical analyses were conducted using R software [53].

3. Results

3.1. Quality of DSM and DTM Reconstructions

Choosing a high intensity level helped improve alignment accuracy for all surveys, with the
alignment proportion always reaching nearly 100%. The RMSE was approximately 1 ± 0.5 pixels.
The MAE was 0.05 ± 0.03 m on average for all surveys. Moreover, the evolution of vegetation
height during the period was related to neither the RMSE nor the MAE (Pearson product-moment
correlation < 0.6), suggesting that the vegetation cover outside the zone disturbed by management
practices, remaining rather constant in terms of configuration and development between surveys, was
the main factor affecting the RMSE and MAE. This permanent cover partially masked some of the
ground control points for oblique view acquisition.

Wind velocities averaged 22 km·h−1 over the surveys, with peaks at 40 km·h−1 for three surveys.
Two surveys were carried out under rainy conditions. The global radiation averaged 217 joules·cm−2

during the surveys, with two surveys performed under low-illumination conditions, i.e., global radiation
under 50 joules·cm−2. The RMSE and MAE were not related to wind velocity, global radiation or rainfall
over the survey duration (Pearson product-moment correlation < 0.6).

3.2. Evolution of the Porosity Indicators

Regarding the evolution of water level fluctuations during the study period, the channel
experienced eight major flooding events, with the water level peaking from 10 to 60 cm. The channel
bottom was lastingly submerged during two periods: in spring 2015 and 2017. We observed an
exceptionally dry period in spring 2016 with consequences for vegetation height in all treatments.

Figure 5 illustrates the yearly evolution of vegetation height across practices. Logically, the height
of vegetation cover was higher for the control than for the other management practices (p < 0.05 in
all cases, Tukey’s HSD), with fluctuations in height related to seasons. The evolution of vegetation
cover for the other treatments was more associated with the timing of maintenance than with seasonal
effects. The control treatment exhibited a diminution of vegetation height just after the major flow
event that occurred in December 2016. The vegetation of the dredged section required only one year to
recover to the same height observed in the control (p < 0.05 before April 2016 then p > 0.05 after April
2016, Tukey’s HSD). According to the maintenance schedule, the vegetation height in the burned and
mowed sections exhibited non-phased variations, with a reduction in vegetation cover in winter for
the burned treatment and in summer for the mowed treatment, in comparison to the control (p < 0.05,
Tukey’s HSD). Finally, the chemically weeded treatment tended to limit variations in the vegetation
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height, always under the control (p < 0.05 for 30% of the dates, Tukey’s HSD), with the dead vegetation
from the treatment being progressively replaced by new stands in spring.
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Figure 5. Evolution of the mean difference between the DSM and the DTM across different treatments
presented from top to bottom: control, dredged, mowed, burned, and chemically weeded. The dots
correspond to the value averaged over the four replicates, and the vertical lines, to the standard
deviation. Black arrows indicate the timing of the practice. The star symbol * indicated that treatment
was significantly different from control at p < 0.05 (based on Tukey’s HSD).

Figure 6 presents examples of DTM and DSM point clouds during the growing season. At the
scale of a quadrat, we distinguished heterogeneity in vegetation height along the cross-section of the
channel. The two sides of the channel presented a stable vegetation height across the surveys and
the treatments (Figure 2). The bottom and bank parts of the channel contained an important and
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homogeneous vegetation cover in the chemically weeded and control treatments, with the depth of the
cover exceeding the depth of the channel for the latter treatment. In contrast to the mowed and burned
treatments, which exhibited high variations in cover during the surveys, the control and chemically
weeded treatments exhibited cover that remained stable during the study period. The vegetation cover
grew preferentially on the banks of the dredged channel, with a lower growth rate during the study
period in these treatments than in the mowed and burned treatments.

Figure 6. Time series of the point clouds showing the DTM (in black and red) and the DSM (in white
and green) at a 1-cm resolution for four representative surveys in 2016 across different treatments
presented in rows from top to bottom: control, dredged, mowed, burned, and chemically weeded.
Black arrows indicate the timing of the practice.

Figure 7 presents the contour plots of the indicators of porosities (POROsection in Figure 7a and
POROsur f ace in Figure 7b), with time on the abscissa and the virtual water level on the ordinate,
for each treatment. Regarding the timing of the eight major flow events, only the mowed treatment
was phased with the peak flow, leading to the highest porosities. The POROsur f ace indicator was high
for the major flow events occurring in autumn 2016, i.e., when the virtual water level was above 50 cm,
but only for the mowed and chemically weeded treatments, suggesting a higher temporal efficiency of
these treatments in comparison to the others.



Remote Sens. 2018, 10, 2050 12 of 18

Figure 7. Dynamics of the vegetation indicators across different treatments presented in columns from
left to right: control, dredged, mowed, burned, and chemically weeded. (a,b) from top to bottom,
contour plots of the porosity indicators POROsection and POROsur f ace against virtual water level on
the ordinate and time on the abscissa. Values of porosities are between 0 (non-porous) and 1 (totally
porous). Contour lines are drawn on the plots to better represent the variation in the indicators. The red
dots represent the peaks of water levels for the main flow events during the study period. Vertical
dashed lines delimit years. Black arrows indicate the timing of the practice..

According to Figure 8, the POROsection and POROsur f ace at the highest virtual water level reached
a peak of between 0.7 and 0.8 for the mowed and burned treatments. The porosity at the surface,
POROsur f ace, presented significantly higher values than that for POROsection (binomial GLM, p < 0.001).
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Among the treatments, the control treatment showed the lowest POROsection and POROsur f ace values,
i.e., the lowest permeability to water flow and seeds, during the study period, in comparison to
the other treatments (p < 0.05, Tukey’s HSD). The mowing helped maintain a low vegetation cover
throughout the year and, consequently, high porosity for the highest virtual water level in comparison
to the control (p < 0.05, Tukey’s HSD). Porosities reached the control level three months on average
after applying the treatment for all treatments (p < 0.05, Tukey’s HSD); then, no significant differences
were measured between treatment and control.
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Figure 8. Evolution of the two indicators POROsection (thick line) and POROsur f ace (fine line) against
time and across different treatments presented from top to bottom: control, dredged, mowed, burned,
and chemically weeded. The dots correspond to the value averaged over the four replicates, and the
standard deviations were not represented for readability. The two indicators were estimated for a
virtual water level of 0.5 m. Black arrows indicate the timing of the practice. The star symbol * indicated
that treatment was significantly different from control at p < 0.05 (based on Tukey’s HSD).



Remote Sens. 2018, 10, 2050 14 of 18

4. Discussion

The elaboration of a diachronic series of DSMs at ultra-fine resolution required an automated
processing chain to handle the large amount of data generated by the surveys. The need for process
automation has already been expressed by [32] for future development of the SfM-MVS approach and
was diagnosed by [24] as an disadvantage to actual repeatability. Through Python scripting and batch
processing, Photoscan Pro© software allowed for accessing a full range of automated post-processing
options, unlike other software such as Photosynth (2.0, University of Washington, WA, USA) and 123D
Catch (3.0, Autodesk, San Rafael, CA, USA) [30], making multi-temporal applications of the SfM-MVS
approach over long time periods possible. Furthermore, R software is particularly interesting for its
ability to recursively call the full set of software dedicated to point cloud post-processing and large
dataset handling. To the best of our knowledge, this is the first time that R software was tested in an
automated processing chain for SfM-MVS post-processing.

The SfM-MVS technique used in this study provides access to vegetation characteristics with a
higher accuracy than that of other manual surveys [15] but requires preparation of the survey area.
The two indicators of porosities could not be measured visually in the field because they are based on
fine monitoring of vegetation cover and channel topography. The channel should be accessible by foot,
bordered by a high density of ground control markers, and not exceed several hundreds of metres.
In comparison to unmanned aerial vehicle (UAVs) used for image acquisition, the use of a pole enabled
the surveys to be performed under windy conditions with low illumination and significant rainfall
amounts. The same conditions would be prohibitive for wind-sensitive UAVs [25]. The absence of
correlations of the RMSE and MAE with the climatic conditions confirms the robustness of the method
for performing surveys under various climatic conditions.

The survey intensity considered in our approach is within the range of frequencies used in other
SfM-MVS studies focusing on gully erosion (between 4.4 and 64.3 images·m−1, cf [37]). A survey
duration of one hour exceeds the maximal limit of 30 min proposed by [54] to limit shadow changes
and the associated flawed image matching, but, in our case, the linear progression of the observer
along the channel resulted in a lower actual time difference between overlapping images. This is
supported by the fact that we almost reached 100% matching for all surveys. It is also interesting to
note that, contrarily to what is often admitted (e.g., by [28]), the use of a rigorous survey protocol
led to acquisition times that would probably be comparable or even better than acquisition times
with multi-station TLS. In addition, the geometry of agricultural waterways—a steep incision in the
relatively flat surrounding cultivated areas—would require either a significant number of stations for
TLS or the use of low-altitude airborne laser scanning.

Choosing a robust remote sensing method to obtain complete coverage of a vegetated channel
necessitated a high survey intensity with a medium alignment quality and an average error larger
than those for other studies on relatively flat surfaces with limited vegetation [33–35]. Specifically,
the absolute error calculated from ground control points was slightly higher than that for studies on
gully erosion (on the basis of average errors between 0.03 and 0.07 m gathered in [37]). Because these
studies focused on ground measures, the proportion of vegetation was considerably lower than that
in our study and could explain this difference in error. Based on the MAE, our approach obtained
better results than that used in olive tree plantations in [34] (0.46 m) and dryland trees in [35] (0.07 m),
but poorer results than that used in maize and sorghum in [33] (0.03 m). We could not compare our
results to those from the study of [36] because they compared only vegetation properties determined
with an SfM-MVS method without ground control points.

The porosities could be underestimated because they were based on vegetation clouds under dry
conditions, while water flows induced spatial plant reconfiguration that is known to limit resistance
factors [55]. Filling the areas below the vegetation canopy should lead to an underestimation of the
porosities, depending on the vertical heterogeneity in the plant architecture. However, this effect could
be counterbalanced by the presence of small plants below the canopy. For example, the decrease in
vegetation height occurring in December 2016 suggests a washing out of the dead vegetation [15,56]
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and a probable reconfiguration of vegetation due to the flow [57]. It is worth mentioning that the
vegetation height estimated with our method showed lower error (0.1 m) across treatments and
surveys than that in the study of [15] (0.2 m), confirming the robustness of the SfM-MVS surveys for
vegetation monitoring.

Applying all management practices greatly decreased the water resistance but with a recovery
time sometimes too quick to have an impact during flow periods. Dredging, initially used to remove
sediment layers, could negatively impact the seed bank inside the channel. It may also remove
superficial roots, increasing the effective shear stress at the bottom of the channel [58]. However,
the recovery of vegetation one year after dredging suggests that a maintenance interval for this
practice of five years [14] is insufficient to have a mid-term impact on vegetation cover. This result
is particularly true for burning out of step with the rainy period. Considering the major flow events
during the period, it appears that mowing and burning have opposite effects on vegetation porosity
at the surface, with the first contributing to seed dispersal and the other enhancing seed retention.
Mowing the vegetation seemed to be the only treatment able to maintain a high porosity at the surface
during the major flow events, regardless of the water level. Mowing, by increasing the amount of
dead vegetation inside the channel, could also reduce the effective shear stress [59]. This practice
also increases species richness throughout the landscape via the dispersal of floating seeds of riparian
plant species [60]. Inversely, from the perspective of capturing the maximal amount of weed seeds,
burning the vegetation in winter seems to be adequate. This practice helps limit the spread of weeds
in agricultural landscapes.

5. Conclusions

The application of frequent monitoring of vegetation growth according to agricultural practices
has never been studied in agricultural waterways, despite the critical positions of these waterways at
the interface between agricultural plots. Frequent monitoring of the vegetation cover in agricultural
waterways is necessary because the waterways experience high variations throughout the year due to
the schedule of management practices, the intermittency of water flow depending on rainfall events,
and the seasonality of vegetation regrowth. Combining time series of vegetation characteristics is the
only way to estimate the critical period for maximizing the efficiency of agricultural practices because,
as highlighted by this study, several practices are out of phase with the flow periods.

The use of the SfM-MVS approach has proven its value in their particular conditions. Combined
with an automated processing chain for dense cloud construction and post-processing, it paves the
way to a systematic processing of time series of vegetation monitoring. This study also highlighted
recommendations in using the SfM-MVS approach at a very high resolution over dense time series.
To increase the robustness of the surveys, the areas must be densely covered by ground control points,
and the intensity of image capture during surveys must be high to facilitate image matching and
co-registration of multi-temporal digital surface models. Future research should be oriented towards
new methodologies capable of limiting the cumbersome implementation of remote sensing projects in
the field.

Author Contributions: Conceptualization, F.V. and J.-S.B. and J.D.; Methodology, F.V. and D.F.; Software, F.V. and
D.F.; Formal Analysis, F.V.; Writing—Original Draft Preparation, F.V.; Writing—Review and Editing, J.D. and G.R.
and D.F. and G.B. and J.-S.B.; Visualization, F.V.; Funding Acquisition, F.V.

Funding: The authors are grateful to the INRA, who funded the experimental work presented in this paper within
the Pari-Scientifique: Hydro-ecologie des fosses agricoles project (INRA-EA). This project is also supported by the
Agropolis Fondation under the reference ID 1605-034 through the Investissements d’avenir programme (Labex Agro:
ANR-10-LABX-0001-01).

Acknowledgments: The authors are very grateful to the LISAH laboratory’s technicians and especially Sebastien
Troiano for his valuable support and involvement in the collection of the data and the preparation of the targets.
The authors thank the two farmers, namely, Mr Cros and Mr Boulade, who authorized the experiments in
their fields.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2018, 10, 2050 16 of 18

Abbreviations

The following abbreviations are used in this manuscript:

DEM Digital Elevation Model
DSM Digital Surface Model
DTM Digital Terrain Model
GLM Generalized Linear Model
HSD Honestly Significant Difference
MAE Mean Absolute Error (in m)
RMSE Root Mean Squared Error (in m)
SfM-MVS Structure-from-Motion approach using a Multi-View Stereo algorithm
TLS Terrestrial Laser Scanner
UAV Unmanned Aerial Vehicle
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