
remote sensing

Article

Deep Kernel Extreme-Learning Machine for the
Spectral–Spatial Classification of
Hyperspectral Imagery

Jiaojiao Li 1,† , Bobo Xi 1,†, Qian Du 2,†, Rui Song 1,*, Yunsong Li 1,* and Guangbo Ren 3,†

1 The State Key Laboratory of Integrated Service Networks, School of Telecommunications Engineering,
Xidian University, Xi’an 710200, China; jjli@xidian.edu.cn (J.L.); xibobo1301@foxmail.com(B.X.)

2 The Department of Electronic and Computer Engineering, Mississippi State University, Starkville, MS 39762,
USA; du@ece.msstate.edu

3 The First Institute of Oceanography, State Oceanic Administration, Qingdao 266000, China;
renguangbo@fio.org.cn

* Correspondence: ruiScientific@gmail.com (R.S.); ysli@mail.xidian.edu.cn (Y.L.);
Tel.: +86-186-8189-3919 (R.S.); +86-158-2926-2265 (Y.L.)

† These authors contributed equally to this work.

Received: 12 Novemver 2018; Accepted: 12 December 2018; Published: 14 December 2018 ����������
�������

Abstract: Extreme-learning machines (ELM) have attracted significant attention in hyperspectral
image classification due to their extremely fast and simple training structure. However, their
shallow architecture may not be capable of further improving classification accuracy. Recently,
deep-learning-based algorithms have focused on deep feature extraction. In this paper, a deep neural
network-based kernel extreme-learning machine (KELM) is proposed. Furthermore, an excellent
spatial guided filter with first-principal component (GFFPC) is also proposed for spatial feature
enhancement. Consequently, a new classification framework derived from the deep KELM network
and GFFPC is presented to generate deep spectral and spatial features. Experimental results
demonstrate that the proposed framework outperforms some state-of-the-art algorithms with very
low cost, which can be used for real-time processes.

Keywords: hyperspectral classification; deep layer; kernel-based ELM; spectral and spatial features

1. Introduction

Hyperspectral imagery in remote sensing with hundreds of narrow spectral bands is used in many
applications, such as global environment monitoring, land cover change detection, natural disaster
assessment and medical diagnosis [1–4] etc. Classification is a significant information acquisition
technique for hyperspectral imagery, which focuses on distinguishing physical objects and classifying
each pixel into a unique label. With the development of machine learning, most machine learning
algorithms based on statistical learning theory are employed in the information processing field.
There are many traditional classification algorithms, such as k-nearest neighbors (KNN) [5], Bayesian
models [6], random forests [7], etc. One of the most important and famous classifiers for hyperspectral
image classification is the kernel-based support vector machine (KSVM), which can also be considered
to be a neural network [8,9]. It provides superior classification performance by learning an optimal
decision hyperplane to best separate different classes in a high-dimensional feature space through
non-linear mapping. Some popular kernels include polynomial function and Gaussian radial basis
function (RBF).

Recently, deep neural networks (DNNs) have been highlighted in the literature, which can learn
high-level features hierarchically [10–13]. DNNs have demonstrated their potential in classification;

Remote Sens. 2018, 10, 2036; doi:10.3390/rs10122036 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0470-9469
http://www.mdpi.com/2072-4292/10/12/2036?type=check_update&version=1
http://dx.doi.org/10.3390/rs10122036
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2018, 10, 2036 2 of 22

in particular, they have motivated successful applications of deep models in hyperspectral image
classification, which outperform other traditional classification methods. The typical deep-learning
architectures include stacked autoencoders (SAEs) [14], deep belief networks (DBNs) [15] and
convolutional neural networks (CNNs) [16,17]. Chen et al. first employed SAE depth model to
extract features of hyperspectral imagery and classify these features via logical regression [18].
Then, Chen et al. used DBN as a classifier to distinguish each pixel [19]. In addition, Li and Du
proposed a hyperspectral classification model which combines an optimized DBN with a texture
feature enhancement model, achieving superior classification accuracy [20]. In particular, due to its
local receptive fields, CNNs play a dominant role for processing the visual-based issues. Hu et al.
employed a CNN to classify hyperspectral images directly in spectral domain [21]. However, without
enough training samples, the traditional CNN faces an over-fitting problem. Li et al. proposed a fully
CNN for feature enhancement and obtained outstanding hyperspectral accuracy [22]. Nevertheless,
due to the high computation cost and space complexity, the aforementioned algorithms are very
time-consuming. Real-time application is the predominant trend in future hyperspectral processing,
and most of the aforementioned algorithms may not meet the requirements in fast data processing
and analysis.

Extreme-learning machine (ELM) as a very fast and effective machine learning algorithm with a
single hidden-layer feed-forward neural network was proposed by Huang in [23]. The parameters
between its input and hidden layers are simply random variables. The only parameters to be trained
are output weights, which can be easily estimated by a smallest norm least-squares solution. Compared
with the traditional gradient-based back propagation (BP) learning, ELM is computationally much
more efficient than the SVM and BP neural networks. Therefore, plentiful works about ELM have
already done in hyperspectral classification [24–27] and achieved acceptable contributions. However,
with the randomly generated weights and bias of ELM, it leads to different results even with the same
hidden nodes. The kernel-based ELM (KELM) [28] was proposed to overcome this problem, which
employs a kernel function to replace the hidden layer of the ELM. In [29,30], KELM has been used for
hyperspectral image classification and obtained appreciate results. However, the feature representation
ability is limited of the shallow networks. Therefore, multilayer solutions are imperative. Inspired by
the multilayer perception (MLP) theory, Huang extended ELM to a multilayer ELM (ML-ELM) through
using ELM-based autoencoder (ELM-AE) for feature representation and extraction [31]. From the
perspective of deep learning, ELM-AE is stacked by deep layers can further extract deep robust and
abstract features. In [32], the ML-ELM and KELM were combined for handling the EEG classification,
where the former acted as a feature extractor and the latter as a classifier. The architecture of the
method is complex and too much hyperparameters need to be determined. Additionally, several
studies [33–36] have focused on integrating spatial and spectral information in hyperspectral imagery
to assist classification. Multi-features are extracted and employed for classification. For instance,
Kang et al. used a guided filter to process the pixel-wise classification map in each class by using the
first-principal component (PC) or the first three PCs to capture major spatial features [37].

In this paper, we firstly investigate the ML-ELM for its suitability and effectiveness for
hyperspectral classification. Then, to acquire desirable performance, we promote a deep layer-based
kernel ELM (DKELM) algorithm to extract the deep and robust features of hyperspectral imagery.
In addition, spatial information through different filters is added to further enhance the classification
accuracy. The main contributions of this paper are summarized below:

1. ML-ELM is investigated and applied firstly in hyperspectral classification.
2. A classification framework is proposed for hyperspectral classification which combines DKELM

and a novel guided filtering first-principal component (GFFPC) spatial filter.
3. The DKELM model remains simple, because randomly generated parameters are not necessary

but only kernel parameters need to be tuned in each layer. Furthermore, compared to the
ML-ELM, the numbers of nodes for each hidden layer are not required to be set due to the
kernel tricks.

Remote Sens. 2018, 10, 2036 3 of 22

4. The proposed framework can achieve superior performance with very fast training speed, which
is beneficial for real-time application.

This paper is organized as follows. Section 2 briefly introduces the ELM, KELM and ML-ELM
(for convenience, we use MELM to replace ML-ELM in the following sections). Section 3 proposes our
new framework to address the hyperspectral classification problem. Section 4 depicts the datasets and
parameters tuning. Experimental results are presented and discussed in Section 5. The conclusions are
drawn in Section 6.

2. Related Works

2.1. ELM and KELM

The ELM is a single hidden-layer feed-forward neural network (SLFN) as depicted in Figure 1.
Please note that the hidden layer is non-linear because of the use of a non-linear activation function.
However, the output layer is linear without an activation function. It contains three layers: input layer,
hidden layer, and output layer.

Figure 1. The structure of ELM.

Let x represent a training sample and f (x) be the output of the neural network. The SLFN with k
hidden nodes can be represented by the following equation:

fELM(x) = BT • G (w, b, x) , (1)

where G(w, b, x) denotes the hidden-layer activation function, w is the input weight matrix connecting
the input layer to the hidden layer, b means the bias weight of the hidden layer, and B = [β1β2...βm]

is the weight between the hidden layer and output layer. For an ELM with n training samples, d
input neurons (i.e., the number of bands), k hidden neurons, and m output neurons (i.e., m classes),
Equation (1) becomes

ti = BT • g
(〈

wj, xi
〉
+ bj

)
, i = 1, 2, · · · n, (2)

where ti is the m-dimensional desired output vector for the i-th training sample xi, the d-dimensional
wj represents the j-th weight vector from the input layer to the j-th hidden neuron, and bj is the bias of
the j-th hidden neuron. Here,

〈
wj, xi

〉
denotes the inner product of wj and xi. The sigmoid function g

is used as the activation function, so the output of the j-th hidden neuron is

g
(〈

wj, xi
〉
+ bj

)
= 1/

(
1 + exp

(
−

wT
j xi + bj

2ε2

))
, (3)

where exp(·) denotes the exponent arithmetic, and ε2 is the steepness parameter.

Remote Sens. 2018, 10, 2036 4 of 22

In matrix form, model (2) can be rearranged as

HB = T, (4)

where T ∈ Rn×m is the target output, B ∈ Rk×m. H =

 h(x1)
...

h(xn)

 is referred to as hidden-layer output

matrix of ELM with the size of (n, k), which can also be expressed as follows:

H = g (W.X + b) =

 g(< w1, x1 > +b1) · · · g(< wk, x1 > +bk)
... · · ·

...
g(< w1, xn > +b1) · · · g(< wk, xn > +bk)


n×k

. (5)

Then, B can be estimated by a smallest norm least-squares solution:

B = H†T=HT(
I
C
+ HHT)−1T, (6)

where C is a regularization parameter. The ELM model can be represented as

fELM(x) = h(x)HT(
I
C
+ HHT)−1T, (7)

ELM can be extended to kernel-based ELM (KELM) via using kernel trick. Let

Ω = HHT , (8)

in which
Ωi,j = k(xi, xj), (9)

where xi and xj represent the i-th and j-th training sample, respectively. Then, replacing HHT by Ω,
the representation of KELM can be written as

fKELM(x) = h(x)HT(
I
C
+ Ω)−1T, (10)

where fKELM(x) represents the output of the KELM model, and h(x)HT=

 k(x, x1)

k(x, xn)

.

Obviously, different from ELM, the most important characteristic of KELM is that the number
of hidden nodes is not desired to be set and there are no random feature mappings. Furthermore,
the computing time is reduced compared with ELM due to the kernel trick used.

2.2. Multilayer Extreme-Learning Machines (MELM)

Figure 2 depicts the detailed structure of ELM autoencoder(ELM-AE). ELM-AE represents features
based on singular values. MELM is a multilayer neural network through stacking multiple ELM-AEs.

Let X(i) = [x(i)1 , · · · , x(i)n], where x(i)k is the i-th data representation for input xk, k=1 to n. Suppose

Λ(i) = [λ
(i)
1 , · · · , λ

(i)
n] is the i-th transformation matrix, where λ

(i)
k is the transformation vector used

for representation learning with respect to x(i)k . According to Equation (4), B is replaced by Λ(i) and T
is replaced by X(i) respectively in MELM.

H(i)Λ(i) = X(i), (11)

Remote Sens. 2018, 10, 2036 5 of 22

where H(i) is the output matrix of the i-th hidden layer with respect to X(i), and Λ(i) can be solved by

Λ(i) = (H(i))T(
I
C
+ H(i)(H(i))T)−1X(i). (12)

Then
X∗ = g(X(i)(Λ(i))T), (13)

where X∗ is the last representation of X(1). X∗ is used as hidden-layer output to calculate the output
weight β∗ and β∗ can be computed as

β∗ = (X∗)†T = (X∗)T
(

I
C
+ X∗(X∗)T)−1T. (14)

x

1

1

k

d

n

1

k

n

x

Input nodes Output nodes

ELM orthogonal

random feature mapping

1g

dg

Figure 2. The structure of ELM-AE: both the input and output are x, and ELM-AE has the same solution
as the original ELM. gd is the d-th hidden node for input x.

3. The Proposed Framework for Hyperspectral Classification

In this section, we propose a new framework for hyperspectral classification which combines the
hyperspectral spatial features with the Deep-layer-based KELM. The details of the proposed framework
are discussed in this section. The main procedure of our proposed framework is briefly depicted in
Figure 3. From Figure 3, we can see that the major three parts are as follows: data normalization,
spatial feature enhancement and DKELM classification. The following sections introduce these three
procedures in detail.

Figure 3. The main procedure of our proposed framework. Λ̄(1) is the first layer’s transformation
matrix of DKELM got from the KELM-AE of the input data. Λ̄(i+1) refers to the transformation matrix
of (i + 1)-th hidden layer hi+1 of DKELM, which obtained by KELM-AE of the i-th hidden layer hi.

3.1. Data Normalization

Let X ∈ RN∗L be a hyperspectral data, where N denotes the number of samples and L is the
number of bands. Data normalization is the pre-procedure to make each sample standardization.
For each sample:

x̂i =
xi − µi

δi
, (15)

Remote Sens. 2018, 10, 2036 6 of 22

where x̂i is the normalized sample, xi ∈ X, i ∈ {1, · · · , N}, and µi and δi denote the mean and variance
of the samples, respectively. After this process, the data has zero mean and unit variance.

3.2. Spatial Features Enhancement

In our proposed framework, we use the Gaussian filters to extract spatial information; furthermore,
a spatial feature enhancement method combined with guided filter (GF) and principal component
analysis (PCA) is presented to enhance spatial information. Here, we introduce the GFFPC in detail.

The GF was proposed by He in 2012 [38], which can be used as an edge-preserving filter such as
bilateral filter and it performs better near edges with fast time. As a local linear model, GF assumes
that output image o is a linear transformation of guidance image g in a window Wk of size ω ∗ ω

centered at the pixel k, where ω = (2r+1):

oi = akgi + bk, ∀i ∈Wk, (16)

where oi is the i-th pixel of the output image o and gi is the i-th pixel of guidance image g, respectively.
It is obvious that this model ensures ∇o = a∇g, which means the output o will have an edge only if g
has an edge. To calculate the coefficients ak and bk, a minimum energy function is applied as follows:

E (ak, bk) =
(
(akgi + bk − fi)

2 + αa2
k

)
, (17)

where fi is the i-th pixel of the input image, and α is a regularization parameter penalizing large ak,
which can affect the blurring for the GF. According to the energy function, it is expected that the output
image o ought to be as close as possible to the input image f , while preserving the texture information
of guidance image g through the linear model.

The solution to (16) can be addressed by linear regression as follows (Draper, 1981):

ak =

1
|W| ∑i∈Wk

gi fi − µk f̄k

v2
k + α

, (18)

bk = f̄k − akµk, (19)

where µk and v2
k are the mean and variance of guidance image g within the local window Wk,

respectively. |W| is the number of pixels in Wk. In addition, f̄k=∑k∈Wk
fk is the mean value of f

in the window.
The structure of GFFPC is shown in Figure 4. We can see that the original hyperspectral image

is processed by PCA method firstly, then we get the reconstructed dataset consisting of a new set of
independent bands named PCs. After that, the GF is performed on each band of the original dataset,
where the first PC of the reconstructed dataset is used as the gray-scale guidance image with the
most information of the hyperspectral image including spatial features. The filtering output is the
novel hyperspectral data cube with more distinctive edges and texture features, that can help further
hyperspectral classification.

Figure 4. The structure of GFFPC.

Remote Sens. 2018, 10, 2036 7 of 22

3.3. DKELM Classification

DKELM consists of several KELM-auto-encoders (AEs) in deep layer. Thus, we firstly present a
brief description of the KELM-AE.

3.3.1. KELM-AE

Figure 5 demonstrates the structure of KELM-AE which is very similar to ELM-AE except the
kernel representation. The kernel operation in Figure 5 can be represented as

Ω = k(x̃, xj)=<φ(x̃),φ(xj)>, (20)

x̃ is referred to as the testing samples, xj denotes the j-th training sample, and φ is the mapping function
to the reproducing kernel Hilbert space(RKHS). From Figure 5, the input matrix X(i) is mapped into
a kernel matrix Ω(i) through kernel function k(k)(xi, xj)= exp(−||xi − xj||/2σ2

k). In our proposed
DKELM, we use the RBF kernel function with parameter σk.

Figure 5. The structure of KELM-AE.

Then Λ̄(i) is employed to represent the i-th transformation matrix in KELM-AE, which is similar
to ELM-AE in (10)

Ω(i)Λ̄(i) = X(i), (21)

and then Λ̄(i) is calculated via
Λ̄(i) = (

I
C
+ Ω(i))−1X(i), (22)

The data can be represented through the final data transformation procedure using:

X(i+1) = g(X(i)(Λ̄(i))T), (23)

where g is still an activation function. The hidden-layer activation functions can be either linear
or non-linear. In our proposed DKELM, we use non-linear activation functions. Because deep
distinct and abundant features can be learned and captured through the data representation via
non-linear activation functions used between each KELM-AE. The combination of dense and sparse
representations has more powerful interpretation than only linear learning. Compared to ELM-AE,
we can find that the number of hidden nodes is not necessary to be set in advance because of the kernel
trick used in each hidden layer. The pseudocode of KELM-AE is depicted in Algorithm 1.

3.3.2. DKELM

DKELM can obtain the universal approximation due to two separate learning procedures
contained as same as in H-ELM [31]. Each pair of Λ̄(i) and X(i) (in the i-th KELM-AE) can be computed
via Equations (22) and (23), respectively. At last, the final data representation X∗final is calculated,
and then X∗final is used as the training input to train a KELM classification model as:

Remote Sens. 2018, 10, 2036 8 of 22

Ω∗finalβ = T, (24)

where Ω∗final is obtained from X∗final , then the output weight β can be calculated via

β = (
I
C
+ Ω∗final)

−1T. (25)

The procedure of DKELM is depicted in Algorithm 2, including the training and testing phases.

Algorithm 1 The pseudocode of KELM-AE.

Input: Input matrix X(i), regularization parameter Ci, kernel parameter σi, activation function gi.
Output: Transformation matrix Λ̄(i), new data representation X(i+1).
Step1: Calculate the kernel matrix Ωk,j

(i) ← K(xk, xj, σi), where xk and xj are referred to as the k-th
and j-th training sample, respectively.

Step2: Calculate the output weight Λ̄(i) ←
(

I
Ci

+ Ω(i)
)−1

X(i)T .

Step3: Calculate the new data representation X(i+1) ← gi(Λ̄
(i)X(i))T .

Return: X(i+1), Λ̄(i).

Algorithm 2 The pseudocode of DKELM.

• Training Phase

Input: Input matrix X(i), output matrix T, regularization Ci for each hidden layer, kernel parameter σi
for each hidden layer, activation function gi for each hidden layer, and the number of layers N.
Output: Transformation matrix Λ̄(i) for each hidden layer, the final representation of the training
samples XN and final output weight β of the output layer.
Step1:

for i = 1 : N − 1 do:
Calculate X(i+1), Λ̄(i) ← KELM−AE(X(i), Ci, σi, gi)
end.

Step2: XN ← X(i+1)

Step3: Calculate Ωfinal
k,j ← K(xN

k , x(N)
j , σN), where xN

k and x(N)
j are the final representation of the

training samples xk and xj respectively.

Step4: Calculate the final output weight β=
(

I
Ci

+ Ωfinal
)−1

TT .

Return Λ̄(1)–Λ̄(N−1), XN , β.

• Testing Phase

Input: Input matrix of testing samples TX(1), output of the training phase Λ̄(1)–Λ̄(N−1), XN , β.
Output: Output matrix of the testing samples TY.
Step1:

for i = 1 : N − 1 do:
Calculate the hidden representation TX(l+1) ← gl(Λ(l)TX(l)T)
end.

Step2: TXN ← TX(l+1)

Step3: Calculate the kernel matrix Ω
(N)
k,j ← K(xN

k , x(N)
TX j, σN), where xN

k and x(N)
TX j are the final

representation of the training samples xk and the final representation of the testing sample xj,
respectively.
Step4: Calculate the final output of the DKELM TY = (Ω(N))T β.

MELM employs the pseudoinverse to calculate the transformation matrix in each layer. Compared
to MELM, exact inverse is used to calculate Λ̄(i) via invertible kernel matrix in the KELM-AEs of

Remote Sens. 2018, 10, 2036 9 of 22

DKELM. Therefore, a theoretically perfect reconstruction of X(i) is resulted, which will reduce the
error accumulation of the AEs in a certain degree. Consequently, DKELM can learn a better data
representation and make for better generalization.

4. Experiments

In this section, we design a series of experiments to evaluate our proposed hyperspectral
framework combining spatial filters with DKELM. As the comparison algorithms, ELM, KELM,
KSVM and CNN are used in our experiments. Besides, all these algorithms are combined with GFFPC
spatial feature enhancement method for further comparison purpose. The evaluation criteria employed
are overall accuracy (OA) and kappa coefficient. Three classic hyperspectral benchmark datasets and
one self-photographed hyperspectral dataset, noted as Indian Pines, University of Pavia, Salinas
and Glycine ussuriensis, are used. In this paper, except CNN, all experiments are performed using
MATLAB R2017b on a computer with 3.2 GHz CPU and 8.0 GB RAM. CNN algorithm is performed on
NVIDIA Tesla K80 GPU.

4.1. Hyperspectral Datasets

The Indian Pines dataset was gathered by Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor in North-western Indiana. It contains 220 spectral bands from 0.4–2.45 µm region with
spatial resolution of 20 m. This image has 145 × 145 pixels with 200 bands after removing 20 noisy
and water absorption bands. The Indian Pines scene includes two-third agriculture, and one-third
forest. The groundtruth of this image is introduced in Figure 6. Sixteen classes are contained and their
numbers of labeled samples are tabulated in Table 1. In Indian Pines, 10% to 50% of labeled data of
each class is selected randomly as training samples, and the remaining is testing samples.

Figure 6. The groundtruth of Indian Pines.

Table 1. Labeled samples in Indian Pines dataset.

No. Classes Samples

1 ALFALFA 46
2 CORN-NOTILL 1428
3 CORN-MIN 830
4 CORN 237
5 GRASS/PASTURE 483
6 GRASS/TREES 730
7 GRASS/PASTURE-MOWED 28
8 HAY-WINDOWED 478
9 OATS 20
10 SPYBEAN-NOTILL 972
11 SOYBEAN-MIN 2455
12 SOYBEAN-CLEAN 593
13 WHEATS 205
14 WOODS 1265
15 BUILDING-GRASS-TREE-DRIVES 386
16 STONE-STEEL TOWERS 93

TOTAL 10,249

Remote Sens. 2018, 10, 2036 10 of 22

The second dataset we used is about the University of Pavia, an urban scene acquired by the
Reflective Optics Spectrometer (ROSIS) sensor. The ROSIS sensor can generate 115 spectral bands
over 0.43 to 0.86 µm. This image scene has 610 × 340 pixels, and each pixel has 103 bands after noisy
band removal. The geometric resolution is 1.3 m per pixel. The Nine groundtruth classes with the
number of labeled samples are tabulated in Table 2. Figure 7 demonstrates the groundtruth of the
Pavia University using as the referenced image. In Pavia University, 5% to 25% of labeled data of each
class used as training samples to evaluate the proposed framework.

Figure 7. The groundtruth of University of Pavia.

Table 2. Labeled samples in University of Pavia.

No. Classes Samples

1 ASPHALT 6631
2 MEADOWS 18,649
3 GRAVEL 2099
4 TREES 3064
5 METAL SHEETS 1345
6 BARE SOIL 5029
7 BITUMEN 1330
8 BRICKS 3682
9 SHADOWS 947

TOTAL 42,776

The third dataset is named Salinas which was also collected by the 224-band AVIRIS sensor over
Salinas Valley, California. This image scene comprises 512× 217 pixels. It has 204 bands after removing
noisy and water absorption bands. The groundtruth depicted in Figure 8 contains 16 classes and the
detailed samples are showed in Table 3. In Salinas dataset experiments, 5% to 25% of labeled samples
of each class are chosen randomly for training our proposed classification framework.

The last dataset is named Glycine ussuriensis dataset which was collected over the Yellow River
Delta National Nature Reserve, Qingdao, China. The image is acquired by the Nano-hyperspec
imaging system equipped on unmanned aerial vehicle. This image scene comprises 355 × 266 pixels
with 270 bands after removing noisy and water absorption bands. The Glycine ussuriensis dataset
contains 4 classes shown in Figure 9 and Table 4. All four categories are plants, specifically, Glycine
ussuriensis is a small-seeded species, which is grown in hills, roadsides, or shrubs at 100–800 m above
sea level. Unlike the datasets mentioned before, the classes in Glycine ussuriensis have no strict
geographical separation. For instance, the samples in tarragon are surrounded by other samples. In the

Remote Sens. 2018, 10, 2036 11 of 22

experiments, 5% to 25% of labeled samples of each class are chosen randomly to testify our proposed
classification framework.

Figure 8. The groundtruth of Salinas Dataset.

Table 3. Labeled samples in Salinas Dataset.

No. Classes Samples

1 BROCOIL_GREEN_WEEDS_1 2009
2 BROCOIL_GREEN_WEEDS_2 3726
3 FALLOW 1976
4 FALLOW_ROUGH_PLOW 1394
5 FALLOW_SMOOTH 2678
6 STUBBLE 3959
7 CELERY 3579
8 GAPES_UNTRAINED 11,271
9 SOIL_VINYARD_DEVELOP 6203

10 CORN_SENNESCED_GREEN_WEEDS 3278
11 LETTUCE_ROMAINE_4WK 1068
12 LETTUCE_ROMAINE_5WK 1927
13 LETTUCE_ROMAINE_6WK 916
14 LETTUCE_ROMAINE_7WK 1070
15 VINYARD_UNTRAINED 7268
16 VINYARD_VERTICAL_TRELLIS 1807

TOTAL 54,129

Figure 9. The groundtruth of Glycine Ussuriensis Dataset.

Remote Sens. 2018, 10, 2036 12 of 22

Table 4. Labeled samples in Glycine Ussuriensis Dataset.

No. Classes Samples

1 SETARIA VIRIDIS 8295
2 TARRAGON 33,985
3 GLYCINE USSURIENSIS 3446
4 TAMARISK 31,112

TOTAL 76,838

4.2. Parameters Tuning and Setting

In our proposed framework, we need to tune several parameters. There are two user specified
parameters are required for GFFPC, the size of local sliding window denoted ω and the regularization
parameter denoted α, respectively, in which the latter determining the degree of the blurring for the
GF. In the simulations, ω is chosen from [3, 5, 7, 9, 11], and α is selected in the range of [1e-1, 1e-2, 1e-3,
1e-4, 1e-5, 1e-6]. Figure 10a shows the classification accuracies of DKELM in the ω subspace, where the
parameter α is prefixed. It can be seen that better performance is achieved when ω equals 7 for all the
datasets. Then Figure 10b indicates the impact on the classification results of different α. The OA first
increased, and then decreased as α decreasing. Thus, we set α to 1e-4 finally.

(a) (b)

Figure 10. The impact on the classification results of different parameters of GFFPC (a) local sliding
window size ω, (b) regularization parameter α.

Figure 11 shows the accuracies obtained with different numbers of kernel layers in DKELM.
We can see that in the case of using three kernel layers, the classification performance of DKELM
can achieve superior results, because, based on the characteristics of hyperspectral datasets, three
kernel layers of the network can already extract sufficient refined and distinguished features for the
classification task, and the over-fitting occurs when the network is too deep with limited training
samples. Thus, in our proposed framework, we set the number of kernel layers to 3.

Figure 11. The accuracies obtained with different numbers of kernel layers in DKELM.

Remote Sens. 2018, 10, 2036 13 of 22

Kernel function we used in this paper is RBF. The activation functions employed to connect
different KELM-AEs are sigmoid and ReLU function. Sigmoid function can constrain the output of
each layer to the range from 0 to 1, which has been represented in Equation (3). The ReLU function [39]
can be expressed as follows:

ReLU(x) =

{
x, x > 0
0, x ≤ 0

(26)

where x is the input. The ReLU leads a sparse learning which can decrease the relationship among the
parameters and eliminate the over-fitting problem. Therefore, the combination of sigmoid and ReLU
functions can learn deep feature with different scales, which is beneficial to DKELM. Our proposed
DKELM has three kernel layers, therefore three main parameters need to be tuned. σ1, σ2 and σ3 are
the parameters used in RBF kernel functions. To make full advantages of our framework, a gird search
algorithm is employed in tuning σ1, σ2 and σ3. Figure 12 depicts the detailed tuning procedures of
the three parameters in Indian Pines, University of Pavia, Salinas, and Glycine ussuriensis datasets,
respectively. The vertical coordinate axis represents σ3, and the two horizontal coordinate axes express
σ1 and σ2. The color bars in Figure 12 mean the classification accuracy obtained via the different sets
of values. The black circle with best classification accuracy depicts the values we finally chosen. Here,
we list the final chosen values employed in the four datasets: {4e2, 3.6e3, 5.2e7} , {2.9e2, 1e5, 6e6}, {4e2,
5e4, 8e6} and {4e2, 3.6e3, 6e7}.

-8

8

-6

-4

6

-2

4 8

0

lo
g

1
0
(

3
)

6

2

2
4

4

0 2

6

-2 0

8

-2-4
-4-6 -6

-8 -8
log 10

(1)
log

10 (2)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

-8

8

-6

-4

6

-2

4 8

0

lo
g

1
0
(

3
)

6

2

2
4

4

0 2

6

-2 0

8

-2-4
-4-6 -6

-8 -8
log 10

(1)
log

10 (2)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

-8

8

-6

-4

6

-2

4 8

0

lo
g

1
0
(

3
)

6

2

2
4

4

0 2

6

-2 0

8

-2-4
-4-6 -6

-8 -8
log 10

(1)
log

10 (2)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

-8

8

-6

-4

6

-2

4 8

0

lo
g

1
0
(

3
)

6

2

2
4

4

0 2

6

-2 0

8

-2-4
-4-6 -6

-8 -8

log
10 (2)

log 10
(1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

Figure 12. Parameters tuning of DKELM in (a) Indian pines, (b) University of Pavia, (c) Salinas, and
(d) Glycine ussuriensis Datasets.

5. Experimental Results and Discussions

In this section, the proposed GFFPC and the novel classification model will be assessed, and
the related results will be summarized and discussed at length. All the algorithms are repeated 10
runs with different locations of the training samples for each dataset, and the mean results with the
corresponding standard deviation are reported.

5.1. Discussion on the Proposed GFFPC

In the experiments, we first investigate the impact of different spatial filters to MELM and DKELM.
Figure 13 illustrates the OA of different spatial filters based on MELM and DKELM algorithms. Origin

Remote Sens. 2018, 10, 2036 14 of 22

denotes the performance obtained via the original MELM and DKELM. G_3 × 3 and G_5 × 5 mean
using Gaussian filter with 3 × 3 and 5 × 5 size of windows respectively before employing MELM and
DKELM. The GFFPC represents using GFFPC based on MELM and DKELM.

(a) (b)

(c) (d)

Figure 13. The performance of different spatial filters combined with MELM and DKELM in (a) Indian
pines, (b) University of Pavia, (c) Salinas, and (d) Glycine ussuriensis Datasets.

From Figure 13, We can see that the performance with spatial filters become better than without
spatial filters. Furthermore, the GFFPC obtains superior performance to Gaussian filters. Consequently,
in our subsequent experiments, the GFFPC filter is our recommended spatial filter for strongly
enhancing spatial features.

5.2. Discussion on the Classification Results

Table 5 tabulates the performance achieved by different classification algorithms and the
combinations with GFFPC spatial filter through using 10% of labeled samples as training samples
in Indian Pines. Although the OA of DKELM is slightly worse than the performance of CNN,
our proposed framework DKELM-GFFPC outperforms other classification algorithms. In addition,
quite apart from that, our proposed GFFPC can enhance the classification performance by a wide
range. For instance, the OA of ELM-GFFPC is increased by 16.23% and the OA of CNN-GFFPC has
been improved from 83.19% to 95.57%. In particular, the performance of MELM and DKLEM are
enhanced by 17.02% and 16.38%, respectively. For class 1, 9 and 16 of Indian Pines, the accuracies
increase from 83.33%, 66.67% and 98.33% to 100%, 94.44% and 100% when DKELM-GFFPC is used
instead of DKELM. This phenomenon indicates that our proposed framework can beneficial to the
performance of several small-size classes.

Table 6 also lists the classification performance of the comparison algorithms and the proposed
algorithm in University of Pavia dataset through using 5% labeled samples as training samples.
From the accuracies exhibited in Table 6, the OA of DKELM is improved by 13.95% via using GFFPC
spatial filter. The performance of other algorithms is also enhanced in different degrees from 2.6% to
11.29%. It also can be seen that after combining with GFFPC, the classification performance is enhanced
greatly. In particular, the DKELM-GFFPC achieves the best performance. Furthermore, the accuracies
of small-size classes such as classes 5, 7 and 9 are improved through using GFFPC, implying that
GFFPC can keep more distinctive features of small-size classes.

Remote Sens. 2018, 10, 2036 15 of 22

Table 5. Classification Accuracy(%) of the comparison and proposed algorithms in Indian Pines.

NO. ELM KELM KSVM CNN MELM DKELM ELM-GFFPC KELM-GFFPC KSVM-GFFPC CNN-GFFPC MELM-GFFPC DKELM-GFFPC

1 92.00 ± 2.24 100.00 ± 0.00 73.53 ± 1.25 75.00 ± 1.21 88.24 ± 4.67 83.33 ± 0.66 100.00 ± 0.00 100.00 ± 0.00 90.70 ± 0.76 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
2 70.79 ± 1.80 77.40 ± 2.24 78.37 ± 0.48 77.05 ± 0.77 71.46 ± 0.94 78.20 ± 3.65 84.48 ± 0.92 91.21 ± 0.85 95.30 ± 0.87 93.76 ± 0.41 96.48 ± 0.15 97.60 ± 1.22
3 69.13 ± 3.61 77.38 ± 1.14 74.34 ± 1.38 80.13 ± 0.56 70.75 ± 2.53 74.42 ± 1.52 90.15 ± 1.02 96.08 ± 0.57 94.24 ± 1.24 97.31 ± 0.96 95.75 ± 0.37 98.91 ± 0.88
4 61.58 ± 2.75 69.14 ± 3.57 59.49 ± 1.55 68.16 ± 2.66 74.44 ± 2.48 67.39 ± 2.07 93.67 ± 0.91 83.40 ± 1.17 83.68 ± 1.19 83.61 ± 0.34 97.70 ± 0.45 93.39 ± 1.38
5 84.91 ± 1.53 86.69 ± 0.97 86.40 ± 0.35 91.55 ± 0.83 85.56 ± 0.95 85.49 ± 1.31 94.35 ± 0.39 97.09 ± 0.55 96.26 ± 0.94 97.72 ± 0.64 99.01 ± 0.09 99.28 ± 0.06
6 89.73 ± 0.82 86.60 ± 0.12 90.84 ± 0.12 92.99 ± 0.49 90.50 ± 0.58 89.54 ± 0.13 96.89 ± 1.21 98.20 ± 0.99 99.85 ± 0.75 98.64 ± 0.26 100.00 ± 0.00 99.85 ± 0.05
7 80.00 ± 10.48 80.00 ± 0.00 70.00 ± 3.55 95.45 ± 1.80 94.12 ± 5.18 85.00 ± 1.17 95.65 ± 0.95 74.19 ± 1.33 71.88 ± 1.79 64.71 ± 2.40 82.76 ± 1.92 77.42 ± 2.22
8 94.21 ± 1.02 87.68 ± 1.03 96.09 ± 0.02 96.32 ± 2.11 91.59 ± 0.82 92.59 ± 0.64 99.06 ± 0.06 99.07 ± 0.65 99.77 ± 0.03 99.30 ± 0.57 99.77 ± 0.23 99.31 ± 0.18
9 66.67 ± 0.65 66.67 ± 3.00 75.00 ± 3.10 41.67 ± 6.78 100.00 ± 0.00 66.67 ± 0.55 0.00 ± 0.00 100.00 ± 0.00 70.83 ± 2.13 91.67 ± 1.52 100.00 ± 0.00 94.44 ± 0.64

10 69.73 ± 0.51 77.27 ± 2.14 74.97 ± 2.07 76.21 ± 3.66 78.16 ± 1.53 76.88 ± 0.69 91.95 ± 1.21 94.45 ± 0.50 94.32 ± 0.45 92.60 ± 0.82 97.37 ± 0.44 97.42 ± 0.42
11 70.60 ± 2.21 73.71 ± 0.29 77.35 ± 1.67 81.21 ± 0.37 79.67 ± 1.03 78.73 ± 1.22 93.58 ± 0.78 94.90 ± 0.42 98.86 ± 0.86 95.74 ± 1.21 99.28 ± 0.40 99.23 ± 0.45
12 74.34 ± 0.42 81.58 ± 0.31 81.02 ± 0.16 80.39 ± 1.16 76.89 ± 1.14 84.68 ± 0.47 85.56 ± 2.55 92.49 ± 0.91 94.12 ± 1.03 88.85 ± 0.92 95.90 ± 0.36 97.19 ± 1.44
13 96.77 ± 2.21 92.86 ± 0.48 86.26 ± 1.41 92.71 ± 0.21 94.27 ± 1.38 93.78 ± 0.58 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
14 88.75 ± 0.60 82.69 ± 1.38 92.49 ± 1.12 93.48 ± 1.07 91.35 ± 0.36 89.65 ± 2.31 99.91 ± 0.08 99.91 ± 0.06 99.12 ± 0.12 99.91 ± 0.05 99.82 ± 0.09 99.91 ± 0.04
15 63.76 ± 2.68 84.76 ± 0.61 69.58 ± 2.05 68.28 ± 2.35 88.04 ± 1.25 86.14 ± 1.45 95.39 ± 1.55 97.06 ± 1.21 96.43 ± 0.11 96.76 ± 0.82 99.04 ± 0.31 98.53 ± 0.36
16 98.39 ± 1.33 98.61 ± 0.00 98.57 ± 0.35 100.00 ± 0.00 100.00 ± 0.00 98.33 ± 0.08 100.0 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

OA 76.70 ± 0.28 79.42 ± 0.88 81.06 ± 1.20 83.19 ± 0.85 81.24 ± 0.28 82.21 ± 0.56 92.93 ± 0.33 95.31 ± 0.39 96.64 ± 0.91 95.57 ± 0.49 98.26 ± 0.12 98.59 ± 0.40
Kappa 73.25 ± 0.35 76.26 ± 0.44 78.34 ± 0.60 80.77 ± 0.98 78.52 ± 0.33 79.59 ± 0.78 91.92 ± 0.21 94.64 ± 0.22 96.17 ± 1.64 94.94 ± 0.36 98.02 ± 0.13 98.39 ± 0.29

Table 6. Classification Accuracy(%) of the comparison and proposed algorithms in University of Pavia.

NO. ELM KELM KSVM CNN MELM DKELM ELM-GFFPC KELM-GFFPC KSVM-GFFPC CNN-GFFPC MELM-GFFPC DKELM-GFFPC

1 89.22 ± 0.52 92.62 ± 1.02 93.87 ± 0.18 94.88 ± 0.71 90.69 ± 0.40 91.17 ± 0.29 89.03 ± 0.48 90.07 ± 0.87 95.47 ± 1.21 92.47 ± 0.50 94.74 ± 2.18 99.65 ± 0.34
2 81.88 ± 1.33 82.22 ± 0.19 95.97 ± 0.19 97.35 ± 1.09 85.54 ± 0.22 93.38 ± 0.59 92.69 ± 0.58 95.48 ± 0.49 99.48 ± 0.46 99.22 ± 0.76 97.94 ± 0.11 99.99 ± 0.01
3 75.20 ± 1.80 80.94 ± 0.10 84.90 ± 0.81 86.59 ± 2.55 78.31 ± 1.09 79.99 ± 2.08 98.23 ± 0.20 98.99 ± 0.09 98.94 ± 0.13 93.64 ± 0.90 95.45 ± 0.46 98.45 ± 0.50
4 83.84 ± 0.22 85.21 ± 0.14 97.84 ± 0.19 92.61 ± 0.15 88.05 ± 1.11 94.77 ± 1.32 85.28 ± 0.53 87.60 ± 1.01 94.07 ± 0.38 92.45 ± 0.60 88.01 ± 0.55 96.12 ± 0.74
5 99.45 ± 0.32 99.53 ± 0.08 98.99 ± 0.39 99.07 ± 0.06 99.84 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
6 84.90 ± 7.79 92.49 ± 0.14 92.18 ± 1.14 93.00 ± 1.33 87.17 ± 0.29 90.38 ± 1.37 96.55 ± 0.92 98.38 ± 0.95 99.50 ± 0.08 98.88 ± 0.99 95.62 ± 2.12 99.71 ± 0.17
7 77.35 ± 0.12 86.61 ± 0.16 83.13 ± 2.48 87.45 ± 2.46 82.80 ± 0.47 91.47 ± 1.14 97.92 ± 0.88 99.92 ± 0.03 100.00 ± 0.00 95.82 ± 0.14 99.44 ± 0.09 99.84 ± 0.08
8 64.07 ± 0.13 71.14 ± 2.60 84.71 ± 0.87 83.26 ± 0.46 72.17 ± 0.22 74.51 ± 3.96 92.31 ± 1.01 96.02 ± 0.81 93.97 ± 1.43 92.20 ± 1.61 97.21 ± 1.59 98.23 ± 0.89
9 91.58 ± 0.67 91.29 ± 0.19 100.00 ± 0.00 100.00 ± 0.00 93.93 ± 2.00 91.42 ± 0.97 100.00 ± 0.00 100.00 ± 0.00 99.89 ± 0.07 99.89 ± 0.44 98.30 ± 0.33 98.33 ± 0.50

OA 81.52 ± 0.90 84.02 ± 0.21 93.59 ± 0.63 94.12 ± 0.52 85.41 ± 0.19 90.51 ± 1.21 92.81 ± 0.69 95.03 ± 0.26 98.01 ± 0.28 96.72 ± 0.60 96.40 ± 0.21 99.36 ± 0.29
Kappa 74.66 ± 1.36 78.06 ± 2.30 91.47 ± 0.14 92.21 ± 0.43 80.14 ± 0.28 87.31 ± 0.88 90.13 ± 0.59 93.35 ± 0.14 97.36 ± 0.31 95.65 ± 0.43 95.20 ± 0.15 99.15 ± 0.45

Remote Sens. 2018, 10, 2036 16 of 22

Table 7 demonstrates the performance obtained via different classification algorithms in Salinas
dataset through adopting 5% of labeled samples as training samples. Compared with other algorithms,
the proposed DKELM-GFFPC is still a predominant one. In addition, the classification performance of
ELM, KELM, KSVM, CNN, MELM and DKELM is increased by 5.86%, 7.81%, 6.21%, 6.43%, 6.61% and
6.22%, respectively. Furthermore, classes 11, 13 and 14 are small classes with a few training samples,
the performances of which are enhanced greatly through using the GFFPC spatial filter.

The classification accuracies achieved through the Glycine ussuriensis dataset are tabulated
in Table 8. From Table 8, the DKELM-GFFPC obtains best performance than other classification
frameworks. GFFPC still has the positive influence on enhancing the classification performance.
For instance, the OAs of MELM and CNN are improved by 13.41% and 12.48% through adding GFFPC
spatial filter. Moreover, the classification accuracy of the class Glycine ussuriensis with the least labeled
samples is enhanced greatly through our proposed spatial filter and classification framework.

From Tables 5–8, we can see that CNN, MELM and DKELM can work better than other traditional
classifiers. Therefore, to further testify our proposed framework, we compare DKELM-GFFPC with
CNN-GFFPC and MELM-GFFPC when using different percentage of training samples in Figure 14.
With the increasing training samples, the classification performance is increasing gradually. Obviously,
DKELM-GFFPC outperforms other two classification frameworks regardless the number of training
samples. One of the most significant advantages of the proposed classification framework is the very
fast training procedure. Thus, the average training times of different algorithms are compared and
demonstrated in Table 9. ELM-based methods are faster than KSVM and CNN. The training time of
DKELM and KELM depend on the number of training data. Meanwhile, ELM and MELM rely on
the number of hidden neurons. The more the hidden neurons, the more the training time since the
higher model generalization is provided subject to the data complexity. CNN can achieve superior
classification performance. Nevertheless, it spends more training time which is nearly 135 to 411 times
than that of DKELM in different experimental datasets. Therefore, DKELM is the most appealing one
with the best performance and the least training time.

(a) (b)

(c) (d)

Figure 14. The performance of CNN, MELM and DKELM combined with GFFPC through using
different size of training sample in (a) Indian pines, (b) University of Pavia, (c) Salinas, and (d) Glycine
ussuriensis Dataset.

Remote Sens. 2018, 10, 2036 17 of 22

Table 7. Classification Accuracy(%) of the comparison and proposed algorithms in Salinas Dataset.

NO. ELM KELM KSVM CNN MELM DKELM ELM-GFFPC KELM-GFFPC KSVM-GFFPC CNN-GFFPC MELM-GFFPC DKELM-GFFPC

1 99.84 ± 0.16 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.78 ± 0.22 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
2 99.10 ± 0.64 98.25 ± 0.12 99.07 ± 0.05 99.24 ± 0.16 99.18 ± 0.08 99.49 ± 0.11 99.69 ± 0.18 99.97 ± 0.23 99.89 ± 0.07 99.69 ± 0.27 100.00 ± 0.00 100.00 ± 0.00
3 97.53 ± 1.01 98.81 ± 0.26 95.79 ± 0.33 94.56 ± 1.52 98.58 ± 0.98 97.55 ± 0.08 97.66 ± 1.05 99.79 ± 0.65 97.61 ± 1.18 97.81 ± 0.36 100.00 ± 0.00 100.00 ± 0.00
4 99.47 ± 0.30 99.54 ± 0.13 99.02 ± 0.21 97.20 ± 0.38 99.53 ± 0.09 99.54 ± 0.13 98.21 ± 0.91 98.73 ± 0.78 98.63 ± 0.51 98.14 ± 1.84 99.08 ± 0.08 99.02 ± 0.71
5 93.46 ± 1.04 96.86 ± 1.12 99.12 ± 0.20 99.35 ± 0.07 98.74 ± 0.55 98.78 ± 0.64 99.64 ± 0.33 99.76 ± 0.23 98.81 ± 0.59 99.72 ± 0.23 98.94 ± 0.14 99.45 ± 0.40
6 99.87 ± 0.03 99.95 ± 0.02 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.97 ± 0.01 99.95 ± 0.05 100.00 ± 0.00 99.87 ± 0.11 100.00 ± 0.00 99.97 ± 0.01
7 98.52 ± 1.09 99.41 ± 0.36 99.21 ± 0.35 99.94 ± 0.05 99.88 ± 0.09 99.59 ± 0.07 99.76 ± 0.18 99.88 ± 0.09 98.42 ± 0.41 99.79 ± 0.15 99.94 ± 0.02 99.97 ± 0.01
8 74.68 ± 1.45 75.78 ± 3.27 80.28 ± 1.26 76.98 ± 2.65 80.73 ± 0.58 82.42 ± 0.87 88.02 ± 1.23 98.76 ± 0.15 98.55 ± 0.62 97.67 ± 1.05 98.97 ± 0.37 99.91 ± 0.03
9 98.30 ± 0.28 98.68 ± 0.45 99.05 ± 0.45 98.05 ± 0.51 98.92 ± 0.07 98.92 ± 0.25 99.81 ± 0.12 99.95 ± 0.03 99.51 ± 0.36 99.49 ± 0.42 99.97 ± 0.02 99.85 ± 0.11

10 92.73 ± 0.05 95.85 ± 1.22 98.34 ± 0.62 94.87 ± 2.61 98.58 ± 0.36 98.42 ± 0.28 98.79 ± 0.52 99.17 ± 0.22 99.15 ± 0.80 98.67 ± 0.66 99.32 ± 0.58 99.20 ± 0.50
11 96.16 ± 0.07 97.33 ± 0.68 98.24 ± 0.06 92.69 ± 1.21 99.80 ± 0.19 98.83 ± 0.30 99.61 ± 0.07 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
12 92.99 ± 1.63 96.37 ± 0.78 98.12 ± 0.23 96.47 ± 0.97 99.29 ± 0.11 98.92 ± 1.30 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.78 ± 0.07 100.00 ± 0.00 100.00 ± 0.00
13 92.07 ± 0.42 92.21 ± 1.35 95.64 ± 1.22 93.44 ± 0.22 97.71 ± 0.22 99.07 ± 0.55 97.26 ± 1.28 99.53 ± 0.11 99.88 ± 0.09 97.59 ± 1.89 100.00 ± 0.00 100.00 ± 0.00
14 95.92 ± 0.68 96.73 ± 1.66 96.63 ± 0.55 94.37 ± 1.55 96.82 ± 0.44 96.87 ± 0.18 96.99 ± 0.81 97.16 ± 1.86 96.05 ± 0.69 97.01 ± 0.63 96.89 ± 1.59 98.51 ± 0.59
15 79.67 ± 0.38 82.36 ± 3.28 83.39 ± 0.26 85.64 ± 1.86 80.32 ± 1.06 84.17 ± 2.36 91.24 ± 1.39 95.85 ± 2.23 98.13 ± 0.97 91.67 ± 2.78 98.41 ± 0.14 99.80 ± 0.11
16 99.71 ± 0.18 99.82 ± 0.18 97.53 ± 0.78 98.66 ± 0.94 99.94 ± 0.24 99.77 ± 0.02 99.94 ± 0.02 99.94 ± 0.05 98.27 ± 0.39 99.94 ± 0.04 100.00 ± 0.00 99.94 ± 0.02

OA 90.01 ± 0.46 91.17 ± 1.37 92.69 ± 0.59 91.48 ± 1.21 92.77 ± 0.28 93.58 ± 0.78 95.87 ± 0.25 98.98 ± 0.58 98.90 ± 0.54 97.91 ± 0.87 99.38 ± 0.25 99.80 ± 0.20
Kappa 88.84 ± 0.52 90.13 ± 0.11 91.84 ± 0.45 90.48 ± 0.98 91.93 ± 0.31 92.83 ± 0.55 95.40 ± 0.19 98.87 ± 0.50 98.78 ± 0.34 97.68 ± 0.76 99.31 ± 0.31 99.78 ± 0.22

Table 8. Classification Accuracy(%) of the comparison and proposed algorithms in Glycine ussuriensis Dataset.

NO. ELM KELM KSVM CNN MELM DKELM ELM-GFFPC KELM-GFFPC KSVM-GFFPC CNN-GFFPC MELM-GFFPC DKELM-GFFPC

1 80.73 ± 1.81 80.01 ± 0.27 79.59 ± 0.95 80.65 ± 0.79 79.96 ± 2.67 83.30 ± 0.70 92.33 ± 0.69 92.74 ± 0.76 94.62 ± 0.70 93.69 ± 1.19 94.17 ± 0.75 96.34 ± 0.55
2 75.94 ± 2.90 77.35 ± 1.54 84.33 ± 1.48 82.58 ± 0.95 81.18 ± 1.75 82.64 ± 0.31 92.74 ± 0.31 95.02 ± 0.79 94.36 ± 0.75 94.75 ± 0.49 96.24 ± 0.25 97.80 ± 0.14
3 64.73 ± 1.90 84.26 ± 0.95 75.48 ± 0.80 77.37 ± 0.66 86.22 ± 2.74 86.65 ± 0.28 91.54 ± 0.95 92.06 ± 0.19 95.54 ± 1.28 97.39 ± 0.59 92.13 ± 0.51 96.76 ± 0.15
4 77.56 ± 2.12 85.26 ± 3.57 85.23 ± 1.14 83.55 ± 1.35 84.04 ± 1.39 86.52 ± 0.46 93.27 ± 0.30 95.77 ± 0.49 95.45 ± 1.68 95.48 ± 0.43 96.11 ± 0.70 97.09 ± 0.26

OA 76.50 ± 0.63 80.79 ± 0.95 83.78 ± 0.42 82.56 ± 0.84 82.36 ± 0.65 84.38 ± 0.71 92.85 ± 0.44 94.94 ± 0.45 95.38 ± 0.66 95.04 ± 0.59 95.77 ± 0.89 97.30 ± 0.44
Kappa 62.16 ± 0.97 69.16 ± 0.96 74.18 ± 0.91 72.09 ± 0.93 71.55 ± 0.71 74.85 ± 0.28 88.60 ± 0.38 91.93 ± 0.65 91.81 ± 1.16 94.94 ± 0.22 93.26 ± 0.96 95.70 ± 0.25

Table 9. Training time (In second) of different algorithms based on four datasets.

ELM KELM KSVM CNN MELM DKELM

10%Indian 2.59 0.07 406.80 246.7 5.18 0.60
5%Pavia 1.42 0.31 446.91 847.06 5.09 2.85

5%Salinas 1.37 0.62 2094.14 679.35 3.10 5.02
5%Glycine ussuriensis 6.91 1.51 4927.52 966.41 7.67 13.52

Remote Sens. 2018, 10, 2036 18 of 22

To illustrate the merits of our proposed classification framework and the spatial filter from the
perspective of visualization, Figures 15–18 demonstrate the classification maps. Clearly, compared with
the groundtruth shown in Figures 6–9, the classification maps obtained by our proposed framework are
the smoothest and clearest. Besides, the classification maps achieved with GFFPC spatial filter are more
distinct than without evidently. In particular, the border pixels and the boundaries of different classes
in DKELM-GFFPC are more distinct. Compared with other classification methods, our proposed
framework is better because of less salt-an-pepper noise contained in the classification maps.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 15. Classification maps of the (a) ELM, (b) ELM + GFFPC, (c) KELM, (d) KELM + GFFPC,
(e) KSVM, (f) KSVM + GFFPC, (g) CNN, (h) CNN + GFFPC, (i) MELM, (j) MELM + GFFPC, and the
proposed (k) DKELM, and (l) DKELM + GFFPC for the Indian Pines.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 16. Classification maps of the (a) ELM, (b) ELM + GFFPC, (c) KELM, (d) KELM + GFFPC,
(e) KSVM, (f) KSVM + GFFPC, (g) CNN, (h) CNN + GFFPC, (i) MELM, (j) MELM + GFFPC, and the
proposed (k) DKELM, and (l) DKELM + GFFPC for the University of Pavia.

Remote Sens. 2018, 10, 2036 19 of 22

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 17. Classification maps of the (a) ELM, (b) ELM + GFFPC, (c) KELM, (d) KELM + GFFPC,
(e) KSVM, (f) KSVM + GFFPC, (g) CNN, (h) CNN + GFFPC, (i) MELM, (j) MELM + GFFPC, and the
proposed (k) DKELM, and (l) DKELM + GFFPC for the Salinas dataset

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 18. Classification maps of the (a) ELM, (b) ELM + GFFPC, (c) KELM, (d) KELM + GFFPC,
(e) KSVM, (f) KSVM + GFFPC, (g) CNN, (h) CNN + GFFPC, (i) MELM, (j) MELM + GFFPC, and the
proposed (k) DKELM, and (l) DKELM + GFFPC for the Glycine ussuriensis dataset.

Remote Sens. 2018, 10, 2036 20 of 22

6. Conclusions

In this work, the MELM algorithm is investigated and firstly applied to hyperspectral classification.
Then, a DKELM-GFFPC framework is proposed consisting of the GFFPC for enhancing spatial features
and the DKELM, a kernel version of MELM. Experimental results demonstrate that it can outperform
other traditional algorithms, especially, DKELM-GFFPC can improve the accuracy of those classes
with small-size samples in a different degree for each dataset. Moreover, compared with Gaussian
filter, the proposed GFFPC can play an important role in enhancing hyperspectral classification
performance. Finally, our proposed classification framework takes much lowest computation cost to
achieve the highest classification accuracy. Based on the above-mentioned advantages, we believe
that the proposed hyperspectral classification framework based on the novel DKELM and GFFPC
is more suitable to process hyperspectral data in practical applications with low cost of computing,
furthermore, in real-time application.

Author Contributions: J.L. and Q.D. conceived and designed the study; B.X. performed the experiments; G.R.
and R. S. shared part of the experiment data; J.L. and Y.L. analyzed the data; J.L. and B.X. wrote the paper. Y.L.,
Q.D. and R. S. reviewed and edited the manuscript. All authors read and approved the manuscript.

Acknowledgments: This work was partially supported by the Fundamental Research Funds for the Central
Universities JB170109, General Financial Grant from the China Postdoctoral Science Foundation (no. 2017M623124)
and Special Financial Grant from the China Postdoctoral Science Foundation (no. 2018T111019). It was also
partially supported by the National Nature Science Foundation of China (no. 61571345, 91538101, 61501346 and
61502367) and the 111 project (B08038).

Conflicts of Interest: The authors declare that we have no financial and personal relationships with other people or
organizations that can inappropriately influence our work and this paper was not published before, the founding
sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing
of the manuscript, and in the decision to publish the results.

References

1. Shan, J.; Zhao, J.; Liu, L.; Zhang, Y.; Wang, X.; Wu, F. A novel way to rapidly monitor microplastics
in soil by hyperspectral imaging technology and chemometrics. Environ. Pollut. 2018, 238, 121–129.
doi:10.1016/j.envpol.2018.03.026. [CrossRef]

2. Liu, K.; Su, H.; Li, X. Estimating High-Resolution Urban Surface Temperature Using a Hyperspectral
Thermal Mixing (HTM) Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 804–815.
doi:10.1109/JSTARS.2015.2459375. [CrossRef]

3. Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote Estimation of Crop Chlorophyll Content
Using Spectral Indices Derived From Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437.
doi:10.1109/TGRS.2007.904836. [CrossRef]

4. Pike, R.; Lu, G.; Wang, D.; Chen, Z.G.; Fei, B. A Minimum Spanning Forest-Based Method for
Noninvasive Cancer Detection With Hyperspectral Imaging. IEEE Trans. Biomed. Eng. 2016, 63, 653–663.
doi:10.1109/TBME.2015.2468578. [CrossRef]

5. Li, W.; Du, Q.; Zhang, F.; Hu, W. Collaborative-Representation-Based Nearest Neighbor Classifier for
Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 389–393. doi:10.1109/LGRS.2014.2343956.
[CrossRef]

6. Rankin, B.M.; Meola, J.; Eismann, M.T. Spectral Radiance Modeling and Bayesian Model Averaging
for Longwave Infrared Hyperspectral Imagery and Subpixel Target Identification. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 6726–6735. doi:10.1109/TGRS.2017.2731955. [CrossRef]

7. Zhang, Y.; Cao, G.; Li, X.; Wang, B. Cascaded Random Forest for Hyperspectral Image Classification. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1082–1094. doi:10.1109/JSTARS.2018.2809781. [CrossRef]

8. Melgani, F.; Bruzzone, L. Support vector machines for classification of hyperspectral remote-sensing images.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. doi:10.1109/IGARSS.2002.1025088. [CrossRef]

9. Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2005, 43, 1351–1362. doi:10.1109/TGRS.2005.846154. [CrossRef]

https://doi.org/10.1016/j.envpol.2018.03.026
http://dx.doi.org/10.1016/j.envpol.2018.03.026
https://doi.org/10.1109/JSTARS.2015.2459375
http://dx.doi.org/10.1109/JSTARS.2015.2459375
https://doi.org/10.1109/TGRS.2007.904836
http://dx.doi.org/10.1109/TGRS.2007.904836
https://doi.org/10.1109/TBME.2015.2468578
http://dx.doi.org/10.1109/TBME.2015.2468578
https://doi.org/10.1109/LGRS.2014.2343956
http://dx.doi.org/10.1109/LGRS.2014.2343956
https://doi.org/10.1109/TGRS.2017.2731955
http://dx.doi.org/10.1109/TGRS.2017.2731955
https://doi.org/10.1109/JSTARS.2018.2809781
http://dx.doi.org/10.1109/JSTARS.2018.2809781
https://doi.org/10.1109/IGARSS.2002.1025088
http://dx.doi.org/10.1109/TGRS.2004.831865
https://doi.org/10.1109/TGRS.2005.846154
http://dx.doi.org/10.1109/TGRS.2005.846154

Remote Sens. 2018, 10, 2036 21 of 22

10. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. doi:10.1109/JSTARS.2014.2329330.
[CrossRef]

11. Li, B.; Dai, Y.; He, M. Monocular depth estimation with hierarchical fusion of dilated CNNs and
soft-weighted-sum inference. Pattern Recognit. 2018, 83, 328–339. doi:10.1016/j.patcog.2018.05.029.
[CrossRef]

12. Makantasis, K.; Doulamis, A.D.; Doulamis, N.D.; Nikitakis, A. Tensor-Based Classification Models
for Hyperspectral Data Analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6884–6898.
doi:10.1109/TGRS.2018.2845450. [CrossRef]

13. Li, B.; Shen, C.; Dai, Y.; van den Hengel, A.; He, M. Depth and surface normal estimation from monocular
images using regression on deep features and hierarchical CRFs. In Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA , 7–12 June 2015 ; pp. 1119–1127.
doi:10.1109/CVPR.2015.7298715. [CrossRef]

14. Özdemir, A.O.B.; Gedik, B.E.; Çetin, C.Y.Y. Hyperspectral classification using stacked autoencoders
with deep learning. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; pp. 1–4.
doi:10.1109/WHISPERS.2014.8077532. [CrossRef]

15. Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C. Learning to Diversify Deep Belief Networks for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. doi:10.1109/TGRS.2017.2675902.
[CrossRef]

16. Lee, H.; Kwon, H. Going Deeper With Contextual CNN for Hyperspectral Image Classification. IEEE Trans.
Image Process. 2017, 26, 4843–4855. doi:10.1109/TIP.2017.2725580. [CrossRef]

17. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral
Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
doi:10.1109/TGRS.2016.2584107. [CrossRef]

18. Lin, Z.; Chen, Y.; Zhao, X.; Wang, G. Spectral-spatial classification of hyperspectral image using autoencoders.
In Proceedings of the 2013 9th International Conference on Information, Communications Signal Processing,
Tainan, Taiwan, 10–13 December 2013; pp. 1–5. doi:10.1109/ICICS.2013.6782778. [CrossRef]

19. Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. doi:10.1109/JSTARS.2015.2388577.
[CrossRef]

20. Li, J.; Xi, B.; Li, Y.; Du, Q.; Wang, K. Hyperspectral Classification Based on Texture Feature Enhancement and
Deep Belief Networksk. Remote Sens. 2018, 10, 396. doi:10.3390/rs10030396. [CrossRef]

21. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image
Classification. J. Sens. 2015, 2015, 1–12. doi:10.1155/2015/258619. [CrossRef]

22. Li, J.; Zhao, X.; Li, Y.; Du, Q.; Xi, B.; Hu, J. Classification of Hyperspectral Imagery Using a
New Fully Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 292–296.
doi:10.1109/LGRS.2017.2786272. [CrossRef]

23. Huang, G.; Zhu, Q.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70,
489–501. doi:10.1016/j.neucom.2005.12.126. [CrossRef]

24. Li, J.; Du, Q.; Li, W.; Li, Y. Optimizing extreme learning machine for hyperspectral image classification.
J. Appl. Remote Sens. 2015, 9, 097296. doi:10.1117/1.JRS.9.097296. [CrossRef]

25. Jiang, M.; Cao, F.; Lu, Y. Extreme Learning Machine With Enhanced Composite Feature for Spectral-Spatial
Hyperspectral Image Classification. IEEE Access 2018, 6, 22645–22654. doi:10.1109/ACCESS.2018.2825978.
[CrossRef]

26. Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral
Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. doi:10.1109/TGRS.2014.2381602.
[CrossRef]

27. Zhou, Y.; Peng, J.; Chen, C.L.P. Extreme Learning Machine With Composite Kernels for Hyperspectral
Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2351–2360.
doi:10.1109/JSTARS.2014.2359965. [CrossRef]

https://doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/JSTARS.2014.2329330
https://doi.org/10.1016/j.patcog.2018.05.029
http://dx.doi.org/10.1016/j.patcog.2018.05.029
https://doi.org/10.1109/TGRS.2018.2845450
http://dx.doi.org/10.1109/TGRS.2018.2845450
https://doi.org/10.1109/CVPR.2015.7298715
http://dx.doi.org/10.1109/CVPR.2015.7298715
https://doi.org/10.1109/WHISPERS.2014.8077532
http://dx.doi.org/10.1109/WHISPERS.2014.8077532
https://doi.org/10.1109/TGRS.2017.2675902
http://dx.doi.org/10.1109/TGRS.2017.2675902
https://doi.org/10.1109/TIP.2017.2725580
http://dx.doi.org/10.1109/TIP.2017.2725580
https://doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2016.2584107
https://doi.org/10.1109/ICICS.2013.6782778
http://dx.doi.org/10.1109/ICICS.2013.6782778
https://doi.org/10.1109/JSTARS.2015.2388577
http://dx.doi.org/10.1109/JSTARS.2015.2388577
https://doi.org/10.3390/rs10030396
http://dx.doi.org/10.3390/rs10030396
https://doi.org/10.1155/2015/258619
http://dx.doi.org/10.1155/2015/258619
https://doi.org/10.1109/LGRS.2017.2786272
http://dx.doi.org/10.1109/LGRS.2017.2786272
https://doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1117/1.JRS.9.097296
http://dx.doi.org/10.1117/1.JRS.9.097296
https://doi.org/10.1109/ACCESS.2018.2825978
http://dx.doi.org/10.1109/ACCESS.2018.2825978
https://doi.org/10.1109/TGRS.2014.2381602
http://dx.doi.org/10.1109/TGRS.2014.2381602
https://doi.org/10.1109/JSTARS.2014.2359965
http://dx.doi.org/10.1109/JSTARS.2014.2359965

Remote Sens. 2018, 10, 2036 22 of 22

28. Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass
Classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. doi:10.1109/TSMCB.2011.2168604.
[CrossRef]

29. Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote-sensing image
classification. Remote Sens. Lett. 2013, 4, 853–862. doi:10.1080/2150704X.2013.805279. [CrossRef]

30. Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-Spatial Classification of Hyperspectral Image Based on Kernel
Extreme Learning Machine. Remote Sens. 2014, 6, 5795–5814. doi:10.3390/rs6065795. [CrossRef]

31. Tang, J.; Deng, C.; Huang, G. Extreme Learning Machine for Multilayer Perceptron. IEEE Trans. Neural Netw.
Learn. Syst. 2016, 27, 809–821. doi:10.1109/TNNLS.2015.2424995. [CrossRef]

32. Ding, S.; Zhang, N.; Xu, X.; Guo, L.; Zhang, J. Deep Extreme Learning Machine and Its Application in EEG
Classification. Math. Probl. Eng. 2015, 2015, 1–11. doi:10.1155/2015/129021. [CrossRef]

33. Ma, X.; Wang, H.; Geng, J. Spectral–Spatial Classification of Hyperspectral Image Based on
Deep Auto-Encoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4073–4085.
doi:10.1109/JSTARS.2016.2517204. [CrossRef]

34. Gao, W.; Peng, Y. Ideal Kernel-Based Multiple Kernel Learning for Spectral-Spatial Classification of
Hyperspectral Image. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1051–1055. doi:10.1109/LGRS.2017.2695534.
[CrossRef]

35. Patra, S.; Bhardwaj, K.; Bruzzone, L. A Spectral-Spatial Multicriteria Active Learning Technique for
Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5213–5227.
doi:10.1109/JSTARS.2017.2747600. [CrossRef]

36. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial
Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. doi:10.1109/JPROC.2012.2197589.
[CrossRef]

37. Kang, X.; Li, S.; Benediktsson, J.A. Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving
Filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. doi:10.1109/TGRS.2013.2264508. [CrossRef]

38. He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409.
doi:10.1109/TPAMI.2012.213. [CrossRef]

39. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network.
Comput. Sci. 2015, arXiv:1505.00853.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/TSMCB.2011.2168604
http://dx.doi.org/10.1109/TSMCB.2011.2168604
https://doi.org/10.1080/2150704X.2013.805279
http://dx.doi.org/10.1080/2150704X.2013.805279
https://doi.org/10.3390/rs6065795
http://dx.doi.org/10.3390/rs6065795
https://doi.org/10.1109/TNNLS.2015.2424995
http://dx.doi.org/10.1109/TNNLS.2015.2424995
https://doi.org/10.1155/2015/129021
http://dx.doi.org/10.1155/2015/129021
https://doi.org/10.1109/JSTARS.2016.2517204
http://dx.doi.org/10.1109/JSTARS.2016.2517204
https://doi.org/10.1109/LGRS.2017.2695534
http://dx.doi.org/10.1109/LGRS.2017.2695534
https://doi.org/10.1109/JSTARS.2017.2747600
http://dx.doi.org/10.1109/JSTARS.2017.2747600
https://doi.org/10.1109/JPROC.2012.2197589
http://dx.doi.org/10.1109/JPROC.2012.2197589
https://doi.org/10.1109/TGRS.2013.2264508
http://dx.doi.org/10.1109/TGRS.2013.2264508
https://doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1109/TPAMI.2012.213
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	ELM and KELM
	Multilayer Extreme-Learning Machines (MELM)

	The Proposed Framework for Hyperspectral Classification
	Data Normalization
	Spatial Features Enhancement
	DKELM Classification
	KELM-AE
	DKELM

	Experiments
	Hyperspectral Datasets
	Parameters Tuning and Setting

	Experimental Results and Discussions
	Discussion on the Proposed GFFPC
	Discussion on the Classification Results

	Conclusions
	References

