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Abstract: As the global population increases, we face increasing demand for food and nutrition.
Remote sensing can help monitor food availability to assess global food security rapidly and
accurately enough to inform decision-making. However, advances in remote sensing technology are
still often limited to multispectral broadband sensors. Although these sensors have many applications,
they can be limited in studying agricultural crop characteristics such as differentiating crop types
and their growth stages with a high degree of accuracy and detail. In contrast, hyperspectral data
contain continuous narrowbands that provide data in terms of spectral signatures rather than a
few data points along the spectrum, and hence can help advance the study of crop characteristics.
To better understand and advance this idea, we conducted a detailed study of five leading world
crops (corn, soybean, winter wheat, rice, and cotton) that occupy 75% and 54% of principal crop areas
in the United States and the world respectively. The study was conducted in seven agroecological
zones of the United States using 99 Earth Observing-1 (EO-1) Hyperion hyperspectral images
from 2008–2015 at 30 m resolution. The authors first developed a first-of-its-kind comprehensive
Hyperion-derived Hyperspectral Imaging Spectral Library of Agricultural crops (HISA) of these
crops in the US based on USDA Cropland Data Layer (CDL) reference data. Principal Component
Analysis was used to eliminate redundant bands by using factor loadings to determine which
bands most influenced the first few principal components. This resulted in the establishment of
30 optimal hyperspectral narrowbands (OHNBs) for the study of agricultural crops. The rest of the
242 Hyperion HNBs were redundant, uncalibrated, or noisy. Crop types and crop growth stages
were classified using linear discriminant analysis (LDA) and support vector machines (SVM) in the
Google Earth Engine cloud computing platform using the 30 optimal HNBs (OHNBs). The best
overall accuracies were between 75% to 95% in classifying crop types and their growth stages,
which were achieved using 15–20 HNBs in the majority of cases. However, in complex cases (e.g.,
4 or more crops in a Hyperion image) 25–30 HNBs were required to achieve optimal accuracies.
Beyond 25–30 bands, accuracies asymptote. This research makes a significant contribution towards
understanding modeling, mapping, and monitoring agricultural crops using data from upcoming
hyperspectral satellites, such as NASA’s Surface Biology and Geology mission (formerly HyspIRI
mission) and the recently launched HysIS (Indian Hyperspectral Imaging Satellite, 55 bands over
400–950 nm in VNIR and 165 bands over 900–2500 nm in SWIR), and contributions in advancing
the building of a novel, first-of-its-kind global hyperspectral imaging spectral-library of agricultural
crops (GHISA: www.usgs.gov/WGSC/GHISA).
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1. Introduction

Increasing global populations, trends toward urbanization, and changes in dietary preferences
necessitate rapid monitoring of global agricultural croplands and their characteristics [1].
Remote sensing has made such monitoring possible, and advances in remote sensing technology
facilitate global assessment. For example, WorldView-4, launched on 11 November 2016, has a spatial
resolution of 1.24 m (0.30 m in the panchromatic band), with four multispectral bands in the visible
and near infrared regions. Additionally, the combined use of Landsat and Sentinel imagery allows for
an increase in temporal resolution. Recently, there have also been advances in spectral resolutions of
multispectral sensors, including WorldView-3 [2] and Sentinel-2 [3]. However, hyperspectral data take
it to the next level where spectral data points are replaced by spectral signatures, as demonstrated in
several vegetation studies [4–6]. Even high spatial resolution multispectral data underperform when
compared with hyperspectral data [7,8]. This is because multispectral data are limited in two ways.
Firstly, they have few broad bands over a wide spectral range that lead to gaps in spectral coverage.
Secondly, these bands average spectral information over a large spectral region, masking narrow
spectral features.

In contrast, hyperspectral sensors have 100s to 1000s of narrow wavebands providing continuous
coverage across the spectral profile. Such hyperspectral data have been used for many applications,
including invasive species control [9–11], biodiversity estimation [12], vegetation/land cover/crop
residue classification [13–20], biochemical characteristics modeling [21], pollution assessment [22–24],
and various agricultural applications [25–27].

Although recently decommissioned, the hyperspectral Hyperion satellite provided data at a spatial
resolution of 30 m and spectral resolution of 242 bands (220 of which are unique and radiometrically
calibrated) globally from 2001 to 2016. Over 70,000 Hyperion images are freely available through the
USGS EarthExplorer and have been used for several applications including classification of land cover
classes [28–30], alteration minerals [31], rocks and land formations [32], plant and tree species [29,33–37]
including invasive species [38,39], and vegetation functional types [40]. Additionally, these data have
been used to monitor mine waste [41], estimate foliar nutrition [42] and photosynthetic activity [43],
and assess fire danger and post-fire effects [44,45]. Agricultural studies using Hyperion data include
classification of crop residue [46,47], crops and crop varieties [48,49], crop planting area [50], and crop
conditions after harvest [51]. These data have also been used to assess tillage intensity [47], and crop
biophysical and biochemical characteristics [8,52–55]. Nevertheless, these studies almost always use
one or a few Hyperion images at most, with each Hyperion image being 7.5 km by 100 km. In contrast,
in this research we implement a comprehensive, country-wide assessment of Hyperion images in
different agroecological zones (AEZs) of the US.

Hyperspectral narrowbands have out-performed multispectral broadbands in crop productivity
estimation [55], crop type discrimination [8], and biomass variability assessment [29]. However,
these large datasets can be challenging to preprocess, process, and analyze. These challenges are
ameliorated through the use of machine learning and cloud computing. The Google Earth Engine
(GEE) cloud computing platform [56], which has already ingested most Hyperion images, in WGS84
projection, allows a user to work with hundreds of Hyperion images without having to download them
on a personal computer. The image collection can quickly be filtered and processed using Google’s
processing power. Codes can quickly be shared for debugging and collaboration.

Thus, the overarching goal of this research was to use 30 m EO-1 Hyperion hyperspectral data in a
comprehensive study of agricultural crops, specifically classifying and separating crop types and crop
growth stages of five leading world crops (corn, soybean, winter wheat, rice, and cotton) that occupy
approximately 75% of the US principal cropland area and 54% of the world’s principal cropland area
(Table 1). Specific objectives of the research were to:

1. Develop a Hyperspectral Imaging Spectral library of Agricultural crops (HISA), of five principal
crops of the US, using Hyperion satellite data.
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2. Establish optimal hyperspectral narrowbands (OHNBs) of Hyperion to study agricultural crops in
the US and to overcome data redundancy.

3. Classify the five leading principal crops in the US using multiple Hyperion images from distinct
AEZs to determine the strengths and limitations of OHNBs in classifying crop types and crop
growth stages.

4. Demonstrate the power of computing large volumes of Hyperion data on the GEE cloud computing
platform. Although much research has been done on determining best bands for studying crops,
this study contributes unique knowledge due to its use of 99 Hyperion images throughout different
AEZs in the US to study five globally dominant crops. The results from this research will help us
prepare for processing large datasets that will be generated by upcoming hyperspectral satellites
like EnMAP and the Surface Biology and Geology mission (formerly HyspIRI mission) [57], as well
as the DLR Earth Sensing Imaging Spectrometer (DESIS) which is already on the ISS-MUSES
platform [58], and automating that processing in a cloud-computing platform. This will enable us
to study and characterize agricultural crops and advance their modeling and mapping, which in
turn will help in advancing food security analysis.

2. Materials and Methodology

2.1. Study Area

We focused on the US in this study because of the availability of the high quality training and
validation data from the US Department of Agriculture Cropland Data Layer (CDL), a wall-to-wall
high spatial resolution dataset on crop type and location. This dataset was used as a reference while
compiling HISA. We selected 7 study areas in 7 AEZs (Figure 1) based on crop distribution, and the
availability of cloud-free time series Hyperion images during the growing season. We used AEZs as
defined by the Food and Agriculture Organization (FAO) [59], and selected one study area in each of
7 AEZs.

Figure 1. Study areas throughout the US in various agroecological zones (AEZs). US study areas,
named according to AEZs in which they are located. AEZs as defined by Food and Agriculture
Organization (FAO) [59].
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2.2. Datasets

2.2.1. Reference Data of Agricultural Crops in the US

The USDA CDL dataset [60] is available for the entire US from 2008 to present, from which
reference training and validation data were gathered. We focused on five principal crops (corn, cotton,
rice, soybean, and winter wheat) because these are the dominant crops within the US and the world
(Table 1). The USDA CDL is the gold standard for crop maps, with wall-to-wall coverage of the US at
high spatial resolutions with high classification accuracies (Table 2) [61]. Given these high accuracies,
the USDA CDL is a highly reliable and respected reference data source.

Table 1. Principal crops of the world. Five leading world crops that also occupy an overwhelming
proportion of the principal cropland areas of the US (Sources: US data from [62], area planted in 2017.
World data derived from [54], area harvested in 2000).

Crop US Area Portion of US Crops World Area Portion of World Crops
Acres (Hectares) % Acres (Hectares) %

Corn 90,886,000 28.6 561,176,321 12.7
(36,780,259) (227,099,999)

Cotton 12,055,000 3.8 131,954,274 3.0
(4,878,485) (53,400,000)

Rice 2,562,000 0.8 483,338,126 10.9
(1,036,804) (195,599,999)

Soybean 89,513,000 28.1 229,066,689 5.2
(36,224,625) (92,700,000)

Wheat * 46,012,000 14.5 995,340,477 22.5
(18,620,395) (402,800,000)

Principal Crops ** 318,184,000 75.8 3,061,635,676 54.3
(128,764,496) (1,238,999,999)

* These statistics are for wheat in general, not winter wheat in particular. ** Principal crops are those
defined as such by USDA NASS, and include corn, sorghum, oats, barley, rye, winter wheat, Durum wheat,
other spring wheat, rice, soybeans, peanuts, sunflower, cotton, dry edible beans, potatoes, canola, proso millet,
and sugarbeets [63].

Table 2. Cropland Data Layer (CDL) Accuracies. USDA Cropland Data Layer accuracies for
agroecological zones (AEZs), years, and crops of interest in this study.

AEZ Years Crop Accuracies

Overall (%) Producer’s (%) User’s (%)

2 2011–2012 All 86.0
Cotton 96.1 94.9

5 2013–2015
All 80.5

Cotton 93.2 88.3
Winter Wheat 92.7 88.2

6 2011–2014
All 79

Corn 95.4 94.4
Soybean 95.2 95.6

7 2012
All 83.7

Corn 89.3 89.0
Rice 99.5 98.6

8 2008–2014 All 87.2
Corn 95.7 94.0

9 2008–2015

All 83.4
Corn 88.5 89.1

Cotton 85.5 81.1
Soybean 80.3 78.8

Winter Wheat 93.5 93.1

10 2009–2015
All 94.6

Corn 97.6 97.7
Soybean 96.3 96.4
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Overall, we used a total of 99 Hyperion images (Table 3) spread across seven AEZs [59].
These images cover the five principal crops (Table 3) of the US.

Table 3. Hyperion images in 7 AEZs and the leading world crops within these images. We used a total
of 99 Hyperion hyperspectral images spread across 7 agroecological zones (AEZs) from 2008 to 2015 in
the US. The dominant leading world crops in each of these images are also shown.

AEZ ** Number of Hyperion Images * Years Crops
Crop Type-Discrimination Crop Growth Stage-Discrimination

2 0 4 2011–2012 Cotton
5 1 12 2013–2015 Cotton, Winter Wheat
6 3 14 2011–2014 Corn, Soybean
7 2 2 2012 Corn, Rice
8 0 25 2008–2014 Corn
9 2 19 2008–2015 Corn, Cotton, Soybean, Winter Wheat
10 3 23 2009–2015 Corn, Soybean

Total 11 99 2008–2015 Corn, Cotton, Rice, Soybean, Winter Wheat

* Original Hyperion images contain 242 bands, 220 of which are unique and radiometrically calibrated.
Out of these, 198 are available in GEE. After removing problematic bands most affected by atmospheric
noise, we retained 131 bands from 356 nm to 2577 nm. ** AEZs based on Food and Agriculture Organization
(FAO) [59].

2.2.2. Preprocessing Hyperion Images: Steps Used in This Study

There are several steps recommended for preprocessing Hyperion data (Figure 2) [64]. We first
separated the visible and near-infrared (VNIR) data from the shortwave infrared (SWIR) data because
they are collected from two different spectrometers and have different calibration requirements.
Then digital numbers (DNs, unitless) were converted to radiance (W m−2 sr−1 mm−1) by dividing
VNIR DN by 40 and SWIR DN by 80, as described by several researchers including [65,66].
Atmospheric correction was done to convert radiance (W m−2 sr−1 mm−1) to surface reflectance
(%). Problematic bands were then removed based on literature [29,55,67–69] and the authors’
observations of noisy bands. Bands at wavelengths from 427–925, 973–1104, 1165–1326, 1508–1770,
and 2052–2355 nm were retained. All of these steps were coded and run in GEE, using the
JavaScript API.

Figure 2. Hyperion hyperspectral datacubes. (a) Earth Observing-1 (EO-1) Hyperion image over Ponca
City, Oklahoma, USA, 2 September 2010, false color composite of RGB 844, 569, 529 nm; (b) locator map,
with red rectangle showing location of Hyperion image; (c) datacube illustrating 198 bands available in
Google Earth Engine (GEE) Hyperion data; (d) datacube illustrating 30 optimal hyperspectral narrowbands
for studying globally dominant agricultural crops. Numerous band combinations are possible and
important when using hyperspectral data. Here, we used 844 nm, 569 nm, and 529 nm. This is because,
844 nm is a center of NIR shoulder, 569 nm is at a point of steep slope within the green region, and 529 is
at minimum slope, which allowed us to highlight the visual contrasts across different classes.
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2.2.3. Atmospheric Correction of Hyperion Images

Atmospheric correction was done using the SMARTS model [70,71] and Equations (1)–(4) reported
below. This model has been found to be 25 times faster than the 6S model, with only a 5% difference
in results for satellite data processing [72]. Surface reflectance was calculated using Equation (1) [73],
where L is at-satellite radiance in W m−2 sr−1 mm−1, θv is viewing angle in radians, Esun is solar
irradiance in W m−2 sr−1 mm−1, θz is zenith angle in radians, T is transmittance (unitless) affected
by various atmospheric elements, and Edown is diffuse downwelling radiance. Transmittance was
calculated using Equation (2) [71], where TRλ is Rayleigh transmittance (unitless) dependent on
wavelength, λ, Toλ is ozone transmittance (unitless), Tnλ is nitrogen dioxide transmittance (unitless),
Tgλ uniformly mixed gas transmittance (unitless), Twλ is water vapor transmittance (unitless), and Taλ

is aerosol transmittance (unitless). These transmittance components were calculated using equations
described by [70,71]. Edown was calculated using Equation (3), where τD was calculated using
Equation (4) [74]. Some of these equations require site-specific information, such as relative humidity,
site-level pressure, and visibility. Visibility data were taken from the National Oceanic and Atmospheric
Administration (NOAA) Integrated Surface Hourly (ISH) data [75]. Relative humidity and site-level
pressure data were taken from University of Idaho’s Gridded Surface Meteorological (GRIDMET)
dataset [76] and NASA’s North American Land Data Assimilation System 2 (NLDAS-2) data [75]
respectively. GRIDMET and NLDAS-2 data are readily available in GEE.

SR =
π × L

cos(θv)× (Esun × cos(θz)× T + Edown)
(1)

T = TRλ × Toλ × Tnλ × Tgλ × Twλ × Taλ (2)

Edown = Esun × τD (3)

τD = 0.2710 − (0.2939 × T) (4)

2.2.4. Distribution of Data into Training and Validation Datasets

In total, 99 Hyperion images across seven AEZs in the US from 2008 to 2015 were selected based
on image availability, crop distribution, and AEZ delineations (Figure 1, Table 3). Of the 99 Hyperion
images, 11 images from 5 AEZs (Table 3) were used for crop type classifications and analysis because
these images were acquired mostly during late vegetative or critical growth stages, when crops are best
able to be classified. In AEZ 5, one image was used to differentiate cotton from winter wheat. In AEZs
6 and 10, three images each were used to differentiate corn from soybean. In AEZ 7, two images were
used to differentiate corn from rice. Lastly, in AEZ 9, two images were used to differentiate corn,
cotton, soybean, and winter wheat.

All 99 images across all seven AEZs were used for differentiating crop growth stages (Table 3).
Out of these, 81 images in AEZs 6, 8, 9, and 10 were used to differentiate among corn growth stages
(Table 3). Similarly, 56 images in AEZs 6, 9, and 10 were used to differentiate soybean growth stages.
For cotton growth stage differentiation, 35 images in AEZs 2, 5, and 9 were used. For winter wheat,
31 images in AEZs 5 and 9 were used. Lastly, for rice, the 2 images from AEZ 7 were used.

Within the images, samples for data extraction were selected by overlaying Hyperion images on
the USDA CDL in ArcMap and in GEE. Sufficiently rich and robust samples were selected for each
crop, focusing on fields that had the same crop over multiple years. This enabled studies across years.
Within those fields, a sample pixel was randomly selected, away from the edge to avoid edge effects.
This was also done to take into account any issues in positional accuracy. The USDA CDL after 2005
inherits the positional accuracy of the image(s) used to derive the layer, including Landsat 4, 5, and 8,
DEIMOS-1, DMC-UK 2, ESA Sentinel-2, and ISRO ResourceSat 2 LISS-3 [77]. When coordinates of
specific features were compared between the CDL and Hyperion data, the difference was less than
one pixel (i.e., <30 m). Once samples were selected, they were extracted from the surface reflectance
image in GEE. Spectra were then smoothed in R using a moving average over 3 bands with the
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movav function in the Prospectr package [78], and compiled into a Hyperspectral Imaging Spectral
library of Agricultural crops (HISA). There were three distinct Hyperion hyperspectral datasets that
were obtained using the 99 images (Table 3). Within each dataset, 75% of samples were randomly
selected in R for training, while the remaining 25% were used for validation. Classification accuracies
achieved using linear discriminant analysis (LDA) and support vector machine (SVM) were all based
on the independent validation samples. These validation samples were random, rich (collected
across different AEZs for various crops throughout multiple years), and independent of training data.
Since the samples were not used for training, they were ideal to validate the classification models.
These datasets are discussed below.

Reference Training and Validation Datasets from Hyperion Images for Crop Type Linear Discriminant
Analysis (LDA)

Crop type reference training and validation data (Table 4) were gathered from 11 images across
5 AEZs for the 5 crops using USDA CDL data for reference (Table 3). Overall, there were 2876 samples
for training and 969 for validation. Across images, corn had 1104 training and 372 validation samples.
Soybean had 1087 training and 366 validation samples. Winter wheat had 551 training and 184 validation
samples. Rice had 86 training and 30 validation samples. Finally, cotton had 48 training and 17 validation
samples. Illustrations of HISA for example Hyperion images, with spectral averages by crop type are
included in Figure 3. These data were used for crop type separation using LDA.

Table 4. Samples for crop type discrimination. Training and validation sample sizes for crop type
discriminant analyses and image classification analyses; “other” only for image classification.

AEZ Hyperion Image Crop Type Total Sample Size Training Sample Size Validation Sample Size

5 Image 1
Cotton 34 25 9

Winter Wheat 96 72 24
Other 260 195 65

6

Image 1
Corn 103 77 26

Soybean 183 137 46
Other 377 283 94

Image 2
Corn 196 147 49

Soybean 90 67 23
Other 310 232 78

Image 3
Corn 184 138 46

Soybean 95 71 24
Other 320 240 80

7

Image 1
Corn 34 25 9
Rice 65 48 17

Other 200 150 50

Image 2
Corn 31 23 8
Rice 51 38 13

Other 200 150 50

9

Image 1

Corn 97 72 25
Cotton 31 23 8

Soybean 187 140 47
Winter Wheat 360 270 90

Other 1100 825 275

Image 2

Corn 81 60 21
Soybean 90 67 23

Winter Wheat 279 209 70
Other 936 702 234

10

Image 1
Corn 270 202 68

Soybean 282 211 71
Other 350 262 88

Image 2
Corn 252 189 63

Soybean 278 208 70
Other 350 262 88

Image 3
Corn 228 171 57

Soybean 248 186 62
Other 350 262 88
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(a) HISA for cotton and winter wheat in
one Hyperion image from AEZ 5.

(b) HISA for corn and soybean in one
Hyperion image from AEZ 6.

(c) HISA for corn and rice in one Hype-
rion image from AEZ 7.

(d) HISA for corn, cotton, soybean, and
winter wheat in one Hyperion image
from AEZ 9.

(e) HISA for corn and soybean in one
Hyperion image from AEZ 10.

(f) US map showing locations of study
areas.

Figure 3. Illustration of Hyperspectral Imaging Spectral library of Agricultural crops (HISA) of the
US for 5 crops. HISA illustrated for 5 crops in certain agroecological zones and certain growth stages.
N is number of spectra included in the average. HISA is part of the Global Hyperspectral Imaging
Spectral-Library of Agricultural-crops (GHISA) (www.usgs.gov/WGSC/GHISA).

www.usgs.gov/WGSC/GHISA
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Reference Training and Validation Datasets from Hyperion Images for Crop Growth Stage
Differentiation Using LDA

Crop growth stage reference training and validation data (Table 5) were gathered from
99 Hyperion images in seven AEZs (Table 3) for the 5 crops using USDA CDL data for reference.
Overall, there were 5184 samples for training and 1739 for validation. Corn had 6 growth stages
represented, with a total of 1916 training and 641 validation samples. Soybean had all 6 growth
stages represented, and 1563 training and 523 validation samples. Winter wheat had 4 growth stages
represented with 6188 training and 2076 validation samples. Cotton had 5 growth stages represented,
with 615 training and 208 validation samples. Lastly, Rice had 2 of the 6 growth stages represented,
with 86 training and 30 validation samples. An illustration of the Hyperion hyperspectral profiles
averaged by crop growth stages is shown in Figure 4. These data were used for crop growth stage
separation using LDA. A great strength of developing the global hyperspectral imaging spectral-library
of agricultural-crops (GHISA) is shown in Figure 5. Late growth stage corn crop spectral signatures in
AEZ10 during two years (2013 and 2014) with similar Julian Days show substantial spectral similarity.
As a result of a 17-day difference in collection dates, we see some small differences in magnitude of
the spectra at certain wavelengths. Corn spectra in the late growth stage from two different AEZs
(AEZ10 and AEZ9) also show substantial similarities in the shape. However, since the two images were
collected 26 days apart, we see differences in the magnitude of the spectral signatures, especially in the
SWIR range. These results clearly demonstrate that it is possible to build a hyperspectral library of
agricultural crops such as GHISA that has thousands of spectral signatures with such labels as “corn,
late vegetative, irrigated, AEZ10”. These spectra can then be used to train models to classify satellite
images in terms of crop types, their growth stages, their growing conditions, and a host of other factors
(e.g., irrigation, N application, genome).

Table 5. Training and validation samples for crop growth stage discrimination. Training and validation
sample sizes for discriminant analyses across crop types in 7 agroecological zones (AEZs) using
Hyperspectral Imaging Spectral library of Agricultural crops (HISA) of the US for each crop in each of
the 6 growth stages, where present, derived from Hyperion data.

Crop Type AEZ Number of Hyperion Images Growth Stage Sample Size (N)

Total Training Validation

Corn 6, 8, 9, and 10 48

Emerge_VEarly 190 142 48
Early_Mid 265 198 67

Late 696 522 174
Critical 779 584 195

Mature_Senesc 499 374 125
Harvest 128 96 32

Cotton 2, 5, and 9 25

Emerge_VEarly 215 161 54
Early_Mid 316 237 79

Critical 197 147 50
Mature_Senesc 81 60 21

Harvest 14 10 4

Rice 7 2 Early_Mid 65 48 17
Late 51 38 13

Soybean 6, 9, and 10 36

Emerge_VEarly 132 99 33
Early_Mid 581 435 146

Late 291 218 73
Critical 815 611 204

Mature_Senesc 183 137 46
Harvest 84 63 21

Winter Wheat 5 and 9 24

Emerge_VEarly 760 570 190
Late 37 27 10

Critical 70 52 18
Mature_Senesc 474 355 119
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(a) HISA of corn growth stages in AEZ
9.

(b) HISA of cotton growth stages in
AEZ 9.

(c) HISA of rice growth stages in AEZ
7.

(d) HISA of soybean growth stages in
AEZ 9.

(e) HISA of winter wheat growth stages
in AEZ 9.

(f) US map showing locations of study
areas.

Figure 4. Illustration of HISA of the US for 5 crops. Hyperspectral Imaging Spectral library of
Agricultural crops (HISA) illustrated for 1 crop in 2 growth stages in AEZ 7, and 4–6 growth stages
for the other crops in AEZ 9. N is number of spectra included in the average. HISA is part of
the Global Hyperspectral Imaging Spectral-Library of Agricultural-crops (GHISA) (www.usgs.gov/
WGSC/GHISA).

www.usgs.gov/WGSC/GHISA
www.usgs.gov/WGSC/GHISA
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(a)

(b)

Figure 5. Spectral matching of corn crop using EO-1 Hyperion data within and across agroecological
zones (AEZs). Spectral matching of EO-1 Hyperion data taking corn crop spectra for the late growth
stage: (a) within AEZ 10 for Julian Day 193 of year 2013 versus Julian Day 210 of year 2014; (b) across
AEZs (AEZs 9 and 10) for Julian Day 210 of year 2014 in AEZ 10 versus Julian Day 184 of year 2014 in
AEZ 9. N is number of samples used to calculate each average spectral profile.

Reference Training and Validation Datasets from Hyperion Images for Crop Type Image Classification
and Mapping Using Support Vector Machines (SVM) in GEE

Crop type reference training and validation data (Table 4) were also gathered for 5 crops from
the 11 images for Hyperion image classification using a pixel-based Support Vector Machines (SVMs)
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machine learning supervised classification algorithm run on the GEE cloud computing platform.
Reference samples were collected from the same locations as those used for crop type discriminant
analyses mentioned earlier, with the addition of an “other” class. This “other” class encompassed
samples from non-croplands as well as crops other than the 5 included in this study. With this “other”
class, there were 6439 training and 2159 validation samples. These spectra were extracted directly
from the images and not smoothed. For each image, 75% of reference data were used for training the
SVM, which was used to classify the entire image. The remaining 25% of data, not used in training,
were used to assess classification accuracy.

2.3. Selection of OHNBs by Data Mining and Overcoming Data Redundancy

The best bands need to be selected to overcome data redundancy and autocorrelation, as well
as issues related to the Hughes Phenomenon, which occurs because as the number of bands
increases, the sample size also needs to increase to maintain statistical confidence in analyses [79].
Numerous dimensionality reduction methods and approaches were explored, including Principal
Component Analysis (PCA, also used for data compression), Stepwise Discriminant Analysis (SDA),
and Lambda-by-Lambda correlation plots [80,81] to name a few commonly used techniques. Several new
techniques have recently been introduced to better handle non-linear [82] and dynamic [83] dimension
reduction. It is clear from these studies that all methods have their strengths and limitations in agricultural
studies [81]. We selected PCA because it is easy to implement, interpret, and understand, widely used [84],
good with numerical variables [83], and successful at identifying the most important variables [85].
However, we encourage readers to explore multiple methods and approaches outlined in [80,81].

We conducted PCAs on spectra collected in late and critical growth stages of corn, cotton, rice,
soybean, and winter wheat. Separate PCAs were run in R for the two growth stages and for the
five crops. Enough principal components were retained to explain at least 98% of variability. Then,
the ten most important bands were selected for each principal component based on factor loadings.
Variables with the greatest absolute value of factor loadings are deemed most influential to a principal
component. The overall 30 most important bands were then sequentially selected based on factor
loadings, avoiding subsequent bands that were close to already-selected bands (Table 6).

Out of these 30 bands, the most important 5, 10, 15, 20, 25, and 30 bands were selected (Table 7).
These subsets were based on the frequency of the bands’ occurrence in the PCA results and on the
region of the spectral profile in which these bands were located. The spectral profile was divided into
five sections: visible, red edge, near-infrared, water-absorption, and shortwave-infrared. The top 5
bands had one band from each of these regions. When there were no bands left to select in a region,
a band that had highest factor loading from another region was selected.

2.4. LDA for Classifying Crop Types

LDAs are often used to maximize class separability [86]. LDA uses training data for feature
selection and model building, and uses that model to classify validation data [86]. LDA was run for
analyzing point spectra, those extracted from images and compiled into HISA. Specifically, LDA was
run in R for crop type discrimination using training and validation data shown in Table 4. Crop types
were differentiated in 11 specific images in 5 AEZs: AEZ 5 (cotton and winter wheat), AEZ 6 (corn and
soybean), AEZ 7 (corn and rice), AEZ 9 (corn, cotton, soybean, and winter wheat), and AEZ 10 (corn
and soybean) (Table 4). LDA was run in each of these images to separate crop types using the best 5,
10, 15, 20, 25, and 30 bands until the accuracies reached a peak and any further increases were minimal.
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2.5. LDA for Classifying Crop Growth Stages

Similarly, LDAs were run on the point spectra to differentiate growth stages (Table 5) using 5,
10, 15, 20, 25, and 30 bands (Table 7) until the accuracies plateaued. LDAs were run to differentiate
six growth stages (1. emergence and very early vegetative (Emerge VEarly), 2. early and mid
vegetative (Early Mid), 3. late vegetative (Late), 4. critical, 5. maturing and senescence (Mature
Senesc), and 6. harvest) for each of the five crops where those growth stages were present in the images
included in this study.

2.6. Hyperion Image Classification for Establishing Crop Types

Several machine learning classification algorithms are commonly used in the analysis of remote
sensing data, including Neural Networks (NNs), Decision Trees (DTs), Random Forests (RFs), k-Nearest
Neighbors (k-NNs), and Support Vector Machines (SVMs) [87], and many of these algorithms are
available in GEE. We selected SVMs because they have been found to outperform other algorithms [88].
The authors also compared RF and SVM results for a few Hyperion images, and found that SVMs
outperformed RFs. This may be due to the lower sensitivity of SVMs to overall sample size as
well as unbalanced sampling between classes [87]. This unbalance was unavoidable, as sample
size in a particular class heavily depended on the presence of that crop class in a particular image.
Other researchers have also found that SVM performs well when training data consist of small,
well-selected samples [89].

SVM analyses were run in GEE because SVMs perform well, the SVM algorithm was already
available in GEE, and LDA was not available in GEE. Before conducting classifications, cross-validation
needed to be done for parameter optimization. To do this, half of the training data (Table 4) were used
to assess accuracy with different C and γ values, using methods described by [90]. C is cost, or the
penalty parameter, and γ (Gamma) is the kernel parameter [90]. The radial basis function kernel was
also selected as recommended by [90].

Initially, we used up to 30 Hyperion HNBs in SVM classification. However, we found that
in most cases, optimal accuracies for crop classification were achieved with 15 HNBs. Therefore,
we used 15 HNBs to classify 11 Hyperion images (Table 3) for determining crop types and assessing
their accuracies.

3. Results

3.1. Establishing OHNBs

Of the 242 Hyperion bands, 212 (87%) were either uncalibrated or found to be noisy or redundant
in the study of agricultural crop types and their characteristics like crop growth stages, as established by
the methods described above. Thirty non-redundant OHNBs were retained for the study of agricultural
crop characteristics (Table 6). These 30 OHNBs in the 356–2577 nm range of Hyperion were wavebands
(each with 10-nm bandwidth) centered at: 447, 488, 529, 569, 681, 722, 763, 803, 844, 923, 993, 1033, 1074,
1175, 1215, 1255, 1316, 1528, 1568, 1609, 1649, 1699, 1760, 2063, 2103, 2163, 2204, 2254, 2295, and 2345 nm
(Table 6, Figure 6). Out of these 30 bands, 5 were in the visible region (356–700 nm), 1 in the red-edge
region (701–760 nm), 3 along the near-infrared (NIR) shoulder region (761–920 nm), 2 along the water
absorption region of the NIR shoulder (921–1000 nm), 5 along the far-NIR region (1001–1300 nm),
and 14 in the shortwave infrared region of Hyperion (1301–2577 nm).

Comparing these bands with corresponding OHNBs found in earlier literature [54,79], 19 were
within 10 nm of previously identified OHNBs, 8 were similar but more than 10 nm from the previously
identified bands, and 3 were newly discovered in this study. Table 6 summarizes the importance of
each waveband in the study of agricultural crops.
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Table 6. Optimal Hyperion Hyperspectral Narrowbands (OHNBs) in agricultural studies. OHNBs based on Hyperion study of crops and growth stages, established by
studying five leading agricultural crops in the US. Optimal bands found in this study are similar to those found to be important in studies by [54,79], thus re-affirming
the importance of these non-redundant 30 OHNBs in studying agricultural crops. Feature descriptions adopted and modified from [79].

Number This Study Thenkabail et al. (2014) Thenkabail et al. (2013) Feature

1 447 None 450 Nitrogen, Senescing: sensitivity to changes in leaf nitrogen. reflectance changes due to pigments is moderate to low. Sensitive to senescing (yellow
and yellow green leaves).

2 488 * 490 490 Carotenoid, Light use efficiency (LUE), Stress in vegetation: Sensitive to senescing and loss of chlorophyll\browning, ripening, crop yield, and
soil background effects.

3 529 531 531 Light use efficiency (LUE), Xanthophyll cycle, Stress in vegetation, pest and disease: Senescing and loss of chlorophyll\browning, ripening, crop
yield, and soil background effects.

4 569 570 570 Pigments (Anthrocyanins, Chlorophyll), Nitrogen: negative change in reflectance per unit change in wavelength is maximum as a result of
sensitivity to vegetation vigor, pigment, and N.

5 681 * 682 687 Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination.
6 722 * 720 720 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies.
7 763 * None 760 Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total chlorophyll.
8 803 None None Water absorption band.
9 844 855 855 Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total chlorophyll.

10 923 910 None Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total chlorophyll.
11 993 970 970 Moisture, biomass, and protein: peak NIR reflectance. Useful for computing crop moisture sensitivity index.

12 1033 None 1045 Biophysical and biochemical quantities: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total
chlorophyll, anthocyanin, carotenoids.

13 1074 1075 None Biophysical and biochemical quantities: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total
chlorophyll, anthocyanin, carotenoids.

14 1175 1180 1180 Water absorption band.
15 1215 None None Water sensitivity: water band index, leaf water, biomass. Reflectance peak in 1050–1300 nm.
16 1255 1245 1245 Water sensitivity: water band index, leaf water, biomass. Reflectance peak in 1050–1300 nm.
17 1316 None None Water sensitivity: water band index, leaf water, biomass. Reflectance peak in 1050–1300 nm.
18 1528 1518 None Moisture and biomass: A point of most rapid rise in spectra with unit change in wavelength in SWIR. Sensitive to plant moisture.
19 1568 None 1548 Moisture and biomass: A point of most rapid rise in spectra with unit change in wavelength in SWIR. Sensitive to plant moisture.

20 1609 None 1620 Heavy metal stress, Moisture sensitivity: Heavy metal stress due to reduction in Chlorophyll. Sensitivity to plant moisture fluctuations in ESWIR.
Use as an index with 1548 or 1620 or 1690 nm.

21 1649 1650 1650 Heavy metal stress, Moisture sensitivity: Heavy metal stress due to reduction in Chlorophyll. Sensitivity to plant moisture fluctuations in ESWIR.
Use as an index with 1548 or 1620 or 1690 nm.

22 1699 None 1690 Lignin, biomass, starch, moisture: sensitive to lignin, biomass, starch. Discriminating crops and vegetation.

23 1760 None 1760 Water absorption band: highest moisture absorption trough in FSWIR. Use as an index with any one of 2025 nm, 2133 nm, and 2213 am. Affected
by noise at times.

24 2063 None 2050 Water absorption band: highest moisture absorption trough in FSWIR. Use as an index with any one of 2025 nm, 2133 nm, and 2213 am. Affected
by noise at times.

25 2103 2133 2133 Litter (plant litter), lignin, cellulose: typically highest reflectivity in FSWIR for vegetation. Litter-soil differentiation.
26 2163 None 2173 Litter (plant litter), lignin, cellulose: typically highest reflectivity in FSWIR for vegetation. Litter-soil differentiation.

27 2204 2205 2205 Litter, lignin, cellulose, sugar, starch, protein; Heavy metal stress: typically, second highest reflectivity in FSWIR for vegetation. Heavy metal
stress due to reduction in Chlorophyll.

28 2254 2260 None Moisture and biomass: moisture absorption trough in far shortwave infrared. A point of most rapid change in slope of spectra based on land
cover, vegetation type, and vigor.

29 2295 2295 2295 Stress: sensitive to soil background and plant stress.
30 2345 2359 None Cellulose, protein, nitrogen: sensitive to crop stress, lignin, and starch.

* These bands are similar to those selected for CHRIS PROBA’s Mode 4, which was selected specifically for vegetation studies.
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Figure 6. Optimal hyperspectral narrowbands (OHNBs) in the study of agricultural crops based on
Hyperion data of leading world crops in the US. The 20 best hyperspectral narrowbands (HNBs)
illustrated with spectral profiles of crops in the critical growth stage. Rice is not included because in
the Hyperion images selected, there were no rice spectra in the critical stage.

Out of these 30 OHNBs distributed throughout the spectral range (356–2577 nm) (Table 6), the five
most important bands included one best band from each of the 5 spectral regions: visible (356 nm
to 700 nm), red edge (701 to 760 nm), near-infrared (761 nm to 920 nm, and 1001 nm to 1100 nm),
water-absorption (921 nm to 1000 nm), and shortwave infrared (1100 nm to 2577 nm). Thus, the five
most important bands were 447, 722, 803, 923, and 2345 nm (Table 7). In selecting the best 10 HNBs,
we retained the best 5 and then selected the second best HNB in each of the 5 spectral regions.
Since there was only one red-edge band in the 30 most important bands, the next five consisted of
two bands from the visible region, one from the near- infrared region, one from the water-absorption
region, and one from the shortwave infrared region. Thus, the ten most important bands were 447, 488,
529, 722, 803, 844, 923, 993, 2063, and 2345 nm. There were only two water-absorption region bands
in the 30 most important bands, so the next five bands consisted of one band in the visible region,
two in the near-infrared region, and two in the shortwave infrared region. The fifteen most important
bands, then, were 447, 488, 529, 681, 722, 803, 844, 923, 993, 1033, 1074, 1316, 2063, 2295, and 2345 nm.
The next five consisted of one in the visible region, one in the near-infrared, and three in the shortwave
infrared region, so the twenty most important bands were 447, 488, 529, 569, 681, 722, 763, 803, 844,
923, 993, 1033, 1074, 1255, 1316, 1568, 2063, 2163, 2295, and 2345 nm. The remaining ten bands were
in the shortwave infrared region. The twenty-five most important bands were 447, 488, 529, 569, 681,
722, 763, 803, 844, 923, 993, 1033, 1074, 1175, 1255, 1316, 1528, 1568, 1649, 1699, 2063, 2163, 2254, 2295,
and 2345 nm. This selection is summarized in Table 7.
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Table 7. The best 5, 10, 15, 20, 25, and 30 hyperspectral narrowbands (HNBs) of Hyperion for studying
the world’s agricultural crops. The best HNBs were selected based on principal component analysis
results and occurrence of HNBs in specific wavelength regions: VIS = Visible (356–700 nm), RE = Red
Edge (701–760 nm), NIR = Near Infrared (761–920 nm and 1001–1100 nm), H20 = Water Absorption
(921–1000 nm), and SWIR = Shortwave Infrared (1100–2577 nm).

Band Frequency of Occurrence Region

447 14 VIS
722 11 RE
803 4 NIR
923 7 H20

2345 14 SWIR
488 9 VIS
844 4 NIR
993 3 H20

2063 13 SWIR
529 6 VIS

1033 2 NIR
2295 10 SWIR
681 4 VIS

1074 2 NIR
1316 9 SWIR
569 3 VIS
763 1 NIR

2163 7 SWIR
1255 5 SWIR
1568 5 SWIR
2254 5 SWIR
1175 4 SWIR
1528 4 SWIR
1649 4 SWIR
1699 4 SWIR
1609 3 SWIR
1760 2 SWIR
2103 2 SWIR
1215 1 SWIR
2204 1 SWIR

3.2. LDA Across Crop Types

LDAs across crop types were run taking the Hyperion data of 5 crops from 11 images in 5 AEZs,
using the data listed in Table 3 and illustrated for a few sample locations in Figure 3. LDA was run for
each of the 11 Hyperion images taking 5, 10, 15, 20, 25, and 30 OHNBs (Tables 6 and 7) resulting in
overall accuracy plots depicted in Figures 7–11. For example, for Hyperion Image 1 in AEZ 7 (Table 3),
overall classification accuracies from 5, 10, 15, 20, 25, and 30 HNBs were 80.8%, 88.5%, 100%, 100%,
100%, and 100% respectively for differentiating corn in the critical growth stage and rice in the early
mid growth stage, the two crops and growth stages found in this image (Figure 9). For Hyperion Image
2 in AEZ 7 (Table 3), overall accuracies were 95.2%, 90.5%, 95.2%, 95.2%, 95.2%, and 95.2% respectively
for differentiating corn in the critical growth stage and rice in the late growth stage (Figure 9).

The study area in AEZ 6 (Figure 1) is dominated by corn and soybeans. There were three Hyperion
images for this area (Table 3). The overall accuracies for Hyperion Image 1 using 5, 10, 15, 20, 25,
and 30 HNBs in classifying corn versus soybean, both in the critical growth stage, were 80.3%, 97.1%,
98.6%, 97.1%, 97.1%, and 97.1% respectively (Figure 8). For Image 2, overall accuracies were 95.8%,
97.2%, 97.2%, 98.6%, 97.2%, and 98.6% respectively for differentiating corn in the late stage and soybean
in the early mid stage (Figure 8). For Image 3, overall accuracies were 89.9%, 97.1%, 98.6%, 98.6%,
98.6%, and 98.6% respectively for differentiating corn and soybean, both in the critical growth stage
(Figure 8).
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Figure 7. Number of hyperspectral narrowbands versus classification accuracies of crop types in AEZ 5.
Number of hyperspectral narrowbands versus classification accuracies based on LDA of crop types for
AEZ 5.

Figure 8. Number of hyperspectral narrowbands versus classification accuracies of crop types in AEZ 6.
Number of hyperspectral narrowbands versus classification accuracies based on linear discriminant
analysis (LDA) of crop types for (a) AEZ 6 Image 1; (b) AEZ 6 Image 2; and (c) AEZ 6 Image 3.

Figure 9. Number of hyperspectral narrowbands versus classification accuracies of crop types in AEZ 7.
Number of hyperspectral narrowbands versus classification accuracies based on LDA of crop types for
(a) AEZ 7 Image 1 and (b) AEZ 7 Image 2.
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Figure 10. Number of hyperspectral narrowbands versus classification accuracies of crop types in
AEZ 9. Number of hyperspectral narrowbands versus classification accuracies based on LDA of crop
types for (a) AEZ 9 Image 1 and (b) AEZ 9 Image 2.

In most cases, where 2 crops were involved, fifteen bands were sufficient to reach optimal
classification accuracy (Figures 7–11). A more complex case is in AEZ 9 (Figure 1) where there were
4 crops (corn, cotton, soybean, and winter wheat). For Hyperion Image 1, overall classification
accuracies from 5, 10, 15, 20, 25, and 30 bands were 81.1%, 89.9%, 89.3%, 89.9%, 92.3%, and 91.1%
respectively for differentiating corn in the maturing and senescence stage, cotton in the critical stage,
soybean in the late stage, and winter wheat in the emergence and very early vegetative stage (Figure 10).
For Image 2, overall accuracies were 87.7%, 88.6%, 92.1%, 91.2%, 92.1%, and 91.2% respectively for
differentiating corn in the late stage, soybean in the early mid stage, and winter wheat in the maturing
and senescence stage (Figure 10). In such complex cases, more than fifteen bands are needed for
optimal classification.

Similarly, discriminant analyses were run for AEZ 5 which had cotton in the critical stage and
winter wheat in the emergence and very early vegetative stage, and for AEZ 10 which had corn and
soybeans. The resulting overall accuracies for these two AEZs are plotted in Figures 7 and 11.

Figure 11. Number of hyperspectral narrowbands versus classification accuracies of crop types in
AEZ 10. Number of hyperspectral narrowbands versus classification accuracies based on LDA of crop
types for (a) AEZ 10 Image 1; (b) AEZ 10 Image 2; and (c) AEZ 10 Image 3.
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3.3. LDA Across Growth Stages

LDAs across growth stages were run for the 5 crops in various growth stages using 99 images in
7 AEZs (Table 3). Training and validation data are listed in Table 5, and example HISA are illustrated
in Figure 4. LDAs were run for various crop growth stages (Table 5) of various crops, based on what
was present in a given Hyperion image, resulting is overall accuracies depicted in Figure 12.

For the corn growth stages, overall classification accuracies from 5, 10, 15, 20, 25, and 30 bands
were 74.9%, 80.7%, 84.5%, 89.3%, 89.5%, and 89.6% respectively when differentiating six growth
stages. For soybean growth stages, accuracies using 5, 10, 15, 20, 25, and 30 bands were 74.5%, 78.3%,
79.9%, 84.9%, 84.3%, and 84.9% respectively. Similarly, discriminant analyses were also run for cotton,
rice, and winter wheat for differentiating growth stages (Figure 12). Overall accuracies (excluding
rice which was always at 100%) with 5, 10, 15, 20, 25, and 30 bands varied between 69.6–74.9%,
75.4–80.7%, 74.9–84.5%, 77.8–90.2%, 79.7–90.2%, and 79.7–90.5% respectively. Across crops, optimal
overall accuracies in separating growth stages were often obtained when 15–20 HNBs were used
(Figure 12).

Figure 12. Number of hyperspectral narrowbands versus classification accuracies of crop growth
stages. Number of hyperspectral narrowbands versus classification accuracies determined using
discriminant analyses for 6 distinct growth stages, where present, of (a) corn; (b) cotton; (c) rice; (d)
soybean; and (e) winter wheat.
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3.4. Image Classification Using Support Vector Machine

All 11 Hyperion images (Table 3) from the 5 AEZs (Figure 1) used for crop type discriminant
analyses were classified to separate class types using SVM and training and validation data listed
in Table 4. Fifteen optimal HNBs (Table 7; Figure 6) were used for Hyperion image classification.
Illustrations of AEZ 9 Image 1 separating corn, cotton, soybean, and winter wheat using 15 and
30 bands are shown in Figures 13 and 14 respectively. Using 15 bands, this image had an overall
accuracy of 86.3% for differentiating corn, cotton, soybean, winter wheat, and other. The producer’s
and user’s accuracies were 75.0% and 81.8% respectively for corn, 25.0% and 50.0% respectively for
cotton, 70.2% and 67.4% respectively for soybean, and 82.2% and 92.5% respectively for winter wheat.
Accuracies for cotton increased substantially to 75.0% and 85.7% respectively using 30 bands.

Figure 13. Crop type classification results for AEZ 9 Image 1 using 15 bands. Crop type image
classification results using support vector machine (SVM) supervised classification in GEE for
Agroecological Zone (AEZ) 9, EO-1 Hyperion Image 1 using 15 hyperspectral narrowbands. (a) EO-1
Hyperion Image False Color Composite, RGB: 844, 569, 529 nm; (b) SVM classification results using 15
bands; (c) USDA CDL reference data; (d) close-up of SVM results, extent indicated by red box in (b);
(e) close-up of CDL reference data, extent indicated by red box in (c); (f) locator map; red rectangle
shows location of Hyperion image.
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A similar process was used to classify the other 10 Hyperion images (Table 3) using the training
data listed in Table 4. This resulted in overall accuracies that varied from 75.5 to 95.4%, with most
above 90% (Table 8). The producer’s accuracies of crops were: corn 75–98% (errors of omissions 2–25%),
cotton 25–100% (0–75%), rice 68.8–92.3% (7.7–31.2%), soybeans 59.1– 95.7% (4.3–40.9%), and winter
wheat 37–87.5% (12.5–63%) (Table 8). Most accuracies (overall, producer’s, and user’s were in the 80 to
90% range using 15 OHNBs (Table 8). When these accuracies were low, it implied that a higher number
of HNBs was required. For example, the producer’s accuracies of cotton in AEZ 9, went up from 25%
with 15 HNBs to 75% with 30 HNBs (Table 8).

Figure 14. Crop type classification results for AEZ 9 Image 1 using 30 bands. Crop type image
classification results using SVM supervised classification in GEE for Agroecological Zone (AEZ) 9,
EO-1 Hyperion Image 1 using 30 hyperspectral narrowbands. (a) EO-1 Hyperion Image False Color
Composite, RGB: 844, 569, 529 nm; (b) SVM classification results using 30 bands; (c) USDA CDL
reference data; (d) close-up of SVM results, extent indicated by red box in (b); (e) close-up of CDL
reference data, extent indicated by red box in (c); (f) locator map; red rectangle shows location of
Hyperion image.
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Table 8. Accuracies achieved in classifying crop types using Hyperion data. Summary of image classification results for 11 Hyperion images, using support vector
machine (SVM) to classify crop types with 15 optimal hyperspectral narrowbands. AEZ = Agroecological Zone.

AEZ

Corn Cotton Rice Soybean Winter Wheat

Hyperion Producer’s User’s Producer’s User’s Producer’s User’s Producer’s User’s Producer’s User’s Overall
Image Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
& Year (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

AEZ 5 Image 1 - - 100 100 - - - - 87.5 84.0 92.7
(2015)

AEZ 6 Image 1 92.3 88.9 - - - - 91.1 97.6 - - 95.4
(2011)

AEZ 6 Image 2 98.0 96.0 - - - - 86.4 90.5 - - 95.1
(2012)

AEZ 6 Image 3 95.7 89.8 - - - - 95.8 95.8 - - 95.2
(2012)

AEZ 7 Image 1 75.0 85.7 - - 68.8 100 - - - - 90.4
(2012)

AEZ 7 Image 2 87.5 53.9 - - 92.3 100 - - - - 89.9
(2012)

AEZ 9 Image 1 75.0 81.8 25.0 50.0 - - 70.2 67.4 82.2 92.5 86.3
(2010) (75.0) * (85.7) * (88.8)

AEZ 9 Image 2 90.0 90.0 - - - - 59.1 56.5 37.1 48.2 73.5
(2014) (54.3) * (55.9) * (75.5) *

AEZ 10 Image 1 95.6 98.5 - - - - 92.8 91.4 - - 93.1
(2013)

AEZ 10 Image 2 92.1 90.6 - - - - 95.7 93.1 - - 93.0
(2013)

AEZ 10 Image 3 94.6 89.8 - - - - 93.6 89.2 - - 90.1
(2015)

* Although accuracies were low using 15 bands, these accuracies were obtained using 30 bands.
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4. Discussion

Over 70,000 EO-1 Hyperion images collected from 2001 to 2016 throughout the world are freely
available at the USGS EarthExplorer [91]. They provide a great opportunity to conduct various
global studies, but are rarely used. The Hyperspectral Imaging Spectral library of Agricultural crops
(HISA) developed for 5 principal crops (e.g., Figure 3) during their various distinct growth stages
(e.g., Figure 4) across several AEZs in the US (Figure 1) using Hyperion, the first public spaceborne
hyperspectral sensor, is unique and unprecedented. The research first established 30 OHNBs (Table 6)
to study agriculture and found that 63% of bands were within 10 nm from bands found to be optimal
by [54,79] using field spectroradiometer and Hyperion data. Since these overlapping or adjoining
bands are nearly 99% correlated, there is a strong match between this finding and earlier findings
by [54,79]. Earlier studies [29,55,92–94] have demonstrated the value of these and similar OHNBs
(Table 6) in a wide array of cropland studies. For example, the bands around 447 nm, 488 nm, 529 nm,
and 569 nm are useful for estimating nitrogen and thus pigment content, as well as assessing light use
efficiency and stress levels (Table 6). Reflectance at 519 nm and 569 nm were found to be important for
rice biomass [95]. Reflectance around 681 nm and around 763 nm can be used to estimate leaf area
index and biomass. Additionally, reflectance at 680 nm is important for chlorophyll estimation [69].
Similarly, reflectance at 670 nm was found to be important for estimating dry biomass for several
crop types [96]. Reflectance at 755 nm is considered important for biomass [97]. These bands are
also useful for crop type differentiation. Bands around 722 nm are important for assessing stress
and chlorophyll content. The 803 nm band indicates water absorption, as does 1175 nm. The bands
around 844 nm and 923 nm are also important for estimating leaf area index and biomass. Reflectance
around 993 nm is influenced by moisture, biomass, and protein content. Bands around 1033 nm and
1074 nm can be used to estimate biomass and pigment content. They are particularly useful for crop
type differentiation. Bands around 1215 nm, 1255 nm, and 1316 nm are useful for water band indices
and estimating biomass, as are bands near 1528 nm and 1568 nm. Reflectance around 1609 nm and
1649 nm can be used to assess heavy metal stress. The band around 1609 nm is useful for estimating
lignin, biomass, starch, and moisture content. The bands at 1760 nm and 2063 nm are water absorption
bands. Reflectance at 2204 nm is influenced by structural elements such as lignin and cellulose, as well
as sugar, starch, and protein content. This band is also important for assessing heavy metal stress.
The 2254 nm band can be used to estimate moisture and biomass. The band at 2295 nm is sensitive
to stress levels. Lastly, reflectance around 2345 nm can help estimate cellulose, lignin, starch, protein,
and nitrogen content. In this study too, an overwhelming number of the above bands appeared as
OHNBs (Table 6). Additionally, four of the seven bands selected in this study that fall within the
spectral range of CHRIS PROBA Mode 4 [98] are similar to the bands in Mode 4, specifically designed
for vegetation studies (Table 6). This further re-affirms the value of these OHNBs (Tables 6 and 7)
for studying a wide array of crop characteristics, through a comprehensive study using 99 Hyperion
images throughout several AEZs in the US for five crops in various crop growth stages.

This study also found three new important HNBs, centered at: 803, 1215, and 1316 nm.
These differences between studies may be due to research being conducted on different crops and
in different areas. For example, Thenkabail’s team conducted their study on eight leading crops
(wheat, corn, rice, barley, soybean, pulses, cotton, and alfalfa) using field spectroradiometer and
Hyperion hyperspectral data over Africa, the Middle East, Central Asia, and India [54]. The OHNBs
selected depend heavily on the research goal, for example crop classification and biomass estimation;
for these different objectives, various researchers [29,55,93] have confirmed that it is important to
identify the redundant HNBs and eliminate them to overcome data redundancy and overcome Hughes’
phenomenon. The outcome of this research contributes to this effort with a focus on crop type and
growth stage classification.

In Figures 7–12, we illustrate how overall accuracies for crop type classifications increase with
increasing number of bands. However, in most cases accuracies asymptote around 15–20 bands.
In complex cases (e.g., 4 or more crops in a single image) the accuracies keep increasing even up to
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25 to 30 bands. However, beyond 30 bands increase in accuracies is negligible in almost all cases
and any small increase is often a mathematical artifact. Using 15 of the 30 OHNBs (Tables 6 and 7),
we were able to map crop types with overall, producer’s and user’s accuracies of 80–90% or higher
in an overwhelming number of cases. In most images, the optimal classification was achieved using
15 bands. These bands collectively were able to differentiate crop types due to differences in pigment
content, biomass, water content, structural elements, and stress levels. Other research [54,79] has
shown that the 763 nm and 1699 nm bands are important for crop type differentiation. Although these
were important in this study, they were not in the 15 most important bands selected.

Crop growth stages were also able to be differentiated using at most 30 bands. In most cases,
20 bands were sufficient. Accuracies also increase substantially when we are separating fewer growth
stages. For example, when we used 3 consolidated growth stages of early, mid, and late (results not
presented here), we found the overall accuracies increased by 7% for corn, 11% for cotton, 10% for
soybean, and 1% for winter wheat; there was no difference for rice.

Crop types were differentiated using SVM image classifications conducted on Hyperion images
in GEE. High accuracies (around 90%, in most cases; Table 8) were obtained by using only 15 HNBs.
This allows for removal of a large number of redundant Hyperion bands, resulting in overcoming data
redundancy, and Hughes’ phenomenon or the curse of high dimensionality.

SVMs are powerful classification algorithms. However, they can be computationally intensive
and time-consuming due to the cross-validation needed for parameter optimization. We compared RF
results with SVM results for a few images, and found that we had lower accuracies and more omission
errors with RF than with SVM. Thus, despite greater computation intensity, we used SVM. Models were
not applied across images because variability across AEZs and years would add substantial noise.
This needs to be explored more thoroughly in future studies.

Methods and OHNBs established in this study can aid crop type and growth stage differentiation
using future hyperspectral sensors. Conducting such analyses at global extents using cloud-computing
can enable decision-making to address global food security issues in a timely manner.

5. Conclusions

Earth Observing-1 (EO-1) Hyperion images were used to study five globally dominant crops
(corn, cotton, rice, soybean, and winter wheat) and their growth stages in the United States, where they
occupy about 75% of all the cropland areas occupied by the principal crops, using the Google
Earth Engine (GEE) cloud computing platform. Hyperion images from various agroecological
zones (AEZs) were used to compile a first-of-its-kind Hyperspectral Imaging Spectral library of
Agricultural crops (HISA) of these five crop types for the United States. To reduce data dimensionality,
autocorrelation, and issues related to the Hughes’ Phenomenon or curse of high dimensionality,
we used principal component analyses to select 30 optimal hyperspectral narrowbands (OHNBs),
allowing us to overcome data redundancy. Overwhelmingly, 15–20 hyperspectral narrowbands
(HNBs) achieved about 90% overall, producer’s, and user’s accuracies in classifying crop types
and/or crop growth stages using linear discriminant analysis (LDA) and/or the support vector
machine (SVM) classifier. However, when complex situations occurred (e.g., 4 or more crops within a
Hyperion image), up to 30 HNBs were required to best classify and characterize these crops. The study
showed that hyperspectral satellite imagery, when analyzed on the GEE cloud computing platform
using machine learning algorithms like SVMs, provides a fast and accurate means of classifying
agricultural crops and their characteristics such as crop growth stages, which can help advance global
food security information derived from satellites. This study makes a significant contribution to
studying agricultural crops using data from upcoming hyperspectral missions, and in advancing the
compilation of a novel global hyperspectral imaging spectral-library of agricultural-crops (GHISA;
www.usgs.gov/WGSC/GHISA) [99].

www.usgs.gov/WGSC/GHISA
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