
remote sensing  

Article

Monitoring Land-Use/Land-Cover Changes at a
Provincial Large Scale Using an Object-Oriented
Technique and Medium-Resolution
Remote-Sensing Images

Kaisheng Luo 1,* , Bingjuan Li 2,3 and Juana P. Moiwo 4

1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and
Technology, Nanjing 210044, China

2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; bjli@issas.ac.cn
3 University of Chinese Academy of Sciences, Nanjing 210008, China
4 Department of Agricultural Engineering, School of Technology, Njala University, Freetown, Sierra Leone;

jupamo2001@yahoo.com
* Correspondence: 002872@nuist.edu.cn; Tel.: +86-188-6095-7185

Received: 30 October 2018; Accepted: 8 December 2018; Published: 12 December 2018
����������
�������

Abstract: An object-based image analysis (OBIA) technique is replacing traditional pixel-based
methods and setting a new standard for monitoring land-use/land-cover changes (LUCC). To date,
however, studies have focused mainly on small-scale exploratory experiments and high-resolution
remote-sensing images. Therefore, this study used OBIA techniques and medium-resolution Chinese
HJ-CCD images to monitor LUCC at the provincial scale. The results showed that while woodland
was mainly distributed in the west, south, and east mountain areas of Hunan Province, the west
had the largest area and most continuous distribution. Wetland was distributed mainly in the
northern plain area, and cultivated land was distributed mainly in the central and northern plains
and mountain valleys. The largest impervious surface was the Changzhutan urban agglomerate in
the northeast plain area. The spatial distribution of land cover in Hunan Province was closely related
to topography, government policy, and economic development. For the period 2000–2010, the areas of
cultivated land transformed into woodland, grassland, and wetland were 183.87 km2, 5.57 km2,
and 70.02 km2, respectively, indicating that the government-promoted ecologically engineered
construction was yielding some results. The rapid economic growth and urbanization, high resource
development intensity, and other natural factors offset the gains made in ecologically engineered
construction and in increasing forest and wetland areas, respectively, by 229.82 km2 and 132.12 km2

from 2000 to 2010 in Hunan Province. The results also showed large spatial differences in change
amplitude (LUCCA), change speed (LUCCS), and transformation processes in Hunan Province.
The Changzhutan urban agglomerate and the surrounding prefectures had the largest LUCCA
and LUCCS, where the dominant land cover accounted for the conversion of some 189.76 km2 of
cultivated land, 129.30 km2 of woodland, and 6.12 km2 of wetland into impervious surfaces in
2000–2010. This conversion was attributed to accelerated urbanization and rapid economic growth in
this region.

Keywords: HJ-CCD images; object-based image analysis; change monitoring; provincial scale

1. Introduction

Land-use/land-cover change (LUCC) is one of the most direct signals used to determine the
impact of anthropogenic activity on the ecosystem, and it also provides the link between human
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socioeconomic activities and natural ecological processes [1,2]. This process is closely related to
the processes of terrestrial surface material cycle and life and has a direct impact on the biosphere,
atmosphere interaction, biological diversity, surface radiation force, biogeochemical cycle, and the
sustainable utilization of resources and the environment [3–5]. Therefore, LUCC has become the focus
of research on global climate and environmental change [6,7].

Remote-sensing technology has developed rapidly because of its macroscopic, rapid, and
abundant information capture ability, and it is widely used in the dynamic monitoring of LUCC [8].
Technically, LUCC monitoring methods based on remote sensing are divided into a traditional
pixel-based method and an object-based image analysis (OBIA) method [9]. Remote-sensing monitored
change is accomplished by (1) LUCC classification and comparison of classified results; and (2)
LUCC detection and classification of detected change [10]. The traditional pixel-based method
fully excavates and uses spectral features of images, exploring a series of algorithms, which include
the maximum likelihood, minimum distance, Markova distance, parallel hexahedron, K-neighbor,
K-mean value, iterative self-organizing data analysis, and newly emerging support vector machines
algorithms. Breakthroughs are difficult to achieve, however, in monitoring accuracy using the
traditional pixel-based method and determining the level of noise because of high spectral similarity.
The traditional pixel-based method mainly uses spectral information, other than a portion of texture
information, and cannot fully mine the shape, spatial position, and spatial structure of remote-sensing
data. In many cases, more information than pixels can be obtained only when the image is segmented
into homogeneous objects, which can further improve the monitoring accuracy [11,12].

The OBIA technique is based on the smallest processing unit object (i.e., a set of adjacent
homogeneous pixels), which has revolutionized the traditional pixel-based method [8]. The OBIA
technique not only uses spectral features of ground objects but also makes full use of spatial features,
texture, spatial structures, shape, and other characteristics during monitoring of LUCC. To a large
extent, it overcomes the “salt and pepper” effect caused by spectral similarity and image noise and
also improves monitoring accuracy [12]. According to the literature, land cover monitoring accuracy
from the OBIA technique is higher than that from the traditional pixel-based method, and boundary
conditions are more consistent with ground conditions [13–15]. The OBIA technique is replacing
traditional pixel-based LUCC monitoring and is becoming the new standard [16–20].

Previous research on OBIA mainly focused on high-resolution remote-sensing images, such as
WorldView-2, QuickBird, GeoEye-1, and IKONOS images [18]. By using the OBIA technique,
high-resolution images can be used to monitor LUCC daily because of their abundant information.
Due to the high price of high-resolution images, however, the research area has to be relatively
small, mostly exploratory, and small scale in nature, which limits the large-scale application of
the OBIA technique. LUCC is a global issue that requires the large-scale study and monitoring
of dynamic LUCC [21,22]. It is almost impossible to monitor dynamic LUCC at the regional scale
using high-resolution remote-sensing images because of the high costs. Additionally, low-resolution
images are too rough to ensure high accuracy. Thus, using medium-resolution remote-sensing images
is the best available choice. Object-oriented LUCC change monitoring using medium-resolution
remote-sensing images is scarce. How can we use OBIA technology for the large-scale monitoring
of LUCC based on medium-resolution remote-sensing images? What are the feasible processes and
methods? How effective is the use of the OBIA technique and medium-resolution remote-sensing
images for large-scale LUCC monitoring? To answer these questions, it is necessary to apply the OBIA
technique to a medium-resolution remote-sensing image (such as HJ-CCD image or Landsat TM) to
verify OBIA performance and results in the large-scale monitoring of LUCC.

A province is an administrative area in China that is fairly large and therefore can represent
a large-scale area. LUCC monitoring at the provincial scale is an important requirement for the
implementation of specific measures at the provincial level. Dynamic LUCC information is quite
important for policymakers, because this information is often urgently needed for given periods
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and spatial expanses, including changes in quantity and spatial patterns, to formulate policy
measures [23,24].

On the basis of this need, we used China’s medium-resolution HJ-CCD image and the OBIA
technique to monitor dynamic LUCC information in Hunan Province for the period 2000–2010. The aim
of the study was to clarify spatiotemporal changes in LUCC for the period 2000–2010, analyze the LUCC
transformation process, and further discusses the internal mechanisms of LUCC in the study area.

2. Materials

2.1. Study Area

The study area is Hunan Province, one of the 34 provinces in China. Hunan Province lies in the
south of the middle reaches of Yangtze River, north of Nanling Mountains, between 39◦24′–30◦08′N
and 108◦47′–114◦15′E. The land area of the province is 211,800 km2, with rich and diverse land
resources, mountains, hills, and plains accounting for 56%, 24%, and 20% of the area, respectively.
Hunan Province is in the transition zone of the second and third steppes in China with an altitude
of 3–1925 m. The terrain is surrounded largely by mountains in the east, west, and south, with a
plain in the middle and land that is slightly open to the north. The climate belongs to the subtropical
monsoon climate zone, with an average temperature of 15–17 ◦C (maximum of 39 ◦C and minimum
of 3.2 ◦C) and annual rainfall of 800–1600 mm. The main soil types include red soil, yellow soil,
yellow-brown soil, and dark-brown soil [25]. Hunan Province has a population of 7.32 × 107 people
and ranks seventh among Chinese provinces. The gross domestic product (GDP) of Hunan Province
in 2017 was 4.46 × 1012 RMB, ranking ninth among all of the provinces in China. Hunan is a large
agricultural province, in which the yield of rice is the largest in the country. Hunan Province consists
of 14 prefectures, with strong human activities, and complex and broken landscapes (Figure 1).
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of the province (plate on the right) depicting land surface elevation.

From 2000 to 2010, Hunan Province in China was strongly affected by intensive anthropogenic
activity, characterized by rapid economic growth and accelerated urbanization with a significant
impact on LUCC [26,27]. To improve the ecological environment and protect woodlands, grasslands,
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and wetlands in the region, the government successively carried out major ecological projects,
including “Returning Farmland to Woodland or Grassland”, “Natural Forest Protection” and
“Returning Farmland to Lake” [26,27]. Under such conditions, questions have been raised about
the effectiveness of these ecological projects and about the changes that have taken place in LUCC
in Hunan Province under the effect of climate change and human activities. Answers are needed
urgently, and therefore, the selection of Hunan Province as a research area has typical and important
reference value.

2.2. Satellite Imagery

In this study, we used China’s HJ-CCD satellite image Landsat TM as the main remote-sensing
data source. We used the HJ-CCD image to map land use information for 2010 and used the Landsat
TM image for reconstruction land use information for 2000. Because Landsat TM and HJ-CCD images
have the same bands (including red band, green band, blue band, and near infrared band), spatial
resolution and similar image features, we used both images to detect changes that occurred between
2000 and 2010. HJ satellites, including the A satellite and B satellite, were launched successfully in
September 2008. The satellites are equipped with CCD cameras of four bands with a spatial resolution
of 30 m and a revisit period (temporal resolution) of 2–3 days. The main parameters of the HJ-CCD
images are shown in Table 1 [28]. Considering the obvious seasonal changes of vegetation and the need
for improved classification, we used HJ-CCD images for spring, summer, and winter. To avoid the
effect of cloudy weather in southern China on the image quality, we selected 30 clear images, including
12 scenes in spring, 10 scenes in summer, and 8 scenes in winter. In the 30 image scenes, 14 were
from the A satellite (HJA-CCD) and 16 were from the B satellite (HJB-CCD) (Table S1). The HJ-CCD
images were downloaded from the China Centre for Resources Satellite Data and Application at
http://www.cresda.com/CN/. The experimental images included 24 scenes of Landsat TM images
for 2000, which come from the Geospatial Data Cloud of China (http://www.gscloud.cn/).

Table 1. List of the main parameters of China’s HJ-CCD image.

Spectral Band Spatial Resolution Spectral Range

Band 1: blue 30 m 0.43–0.52 µm
Band 2: green 30 m 0.52–0.60 µm
Band 3: red 30 m 0.63–0.69 µm
Band 4: near infrared 30 m 0.76–0.90 µm

2.3. Field Data

We conducted field sampling in 2010 and used the collected field data to verify the results of the
classified land uses in the study area (Figure 2). We conducted the field sampling three times across
Hubei province: in spring (March), summer (June), and winter (December), with each period lasting
for one month. In this study, we used stratified random sampling to collect field samples. In the field
sampling route design, we considered image characteristics and traffic accessibility. The whole field
sampling work is based basically on the random sampling of ground objects within a 2-km range
along the road. According to the area ratio based on historical data, a number of field samples for
each land cover type is obtained. In addition, to maintain a uniform distribution of samples in each
region, we guaranteed that the route of each sample was different. On the basis of the complexity and
dispersity of environmental elements, the complex environment needed additional sample points,
so the distribution of samples was denser in areas with complex and fragmented landscapes. During
field sampling, we first used handheld GPS devices to locate the latitude and longitude of the sample
scene, and then we measured the various attributes of the scene, including land cover type, tree species,
and slope degree of the area. We collected a total of 1644 field samples, with 158 samples in spring,
347 samples in summer, and 1139 samples in winter.

http://www.cresda.com/CN/
http://www.gscloud.cn/
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Figure 2. Field sample and sampling route in spring, summer, and winter.

2.4. Reference Data

Auxiliary data mainly included a digital elevation model (DEM), slope degree map, Landsat TM
images, Google Earth images, and a boundary vector map of Hunan Province. DEM data with a 30 m
resolution came from the Geospatial Data Cloud of China (http://www.gscloud.cn/). The slope map
was generated in ERDAS 9.2 software using the DEM. The boundary vector map of Hunan Province
came from the China Resources and Environment Data Cloud Platform (http://www.resdc.cn/).
We used the Landsat TM images as the reference images for geometric correction of the HJ-CCD images.

3. Methods

In this study, we first pre-processed the HJ-CCD images and other spatial data and classified the
2010 land cover using OBIA. Next, we detected changes using the 2000 Landsat TM and 2010 HJ-CCD
images to identify areas that experienced change. After that, we transformed the land use results for
2010 into samples with a corresponding category and classified the area of change for 2000 according
to the most adjacent OBIA classifier. We updated the classification results of the area of change in
2000 to the land cover map for 2010 to reconstruct the 2000 land cover map for Hunan Province.
We superimposed the land cover maps for 2000 and 2010 to obtain land cover changes that occurred
in Hunan Province between 2000 and 2010. A detailed flowchart of the research process is given in
Figure 3.

http://www.gscloud.cn/
http://www.resdc.cn/
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3.1. Data Preprocessing

The data preprocessing mainly included projection, transformation, mosaicking, clipping,
geometric correction, atmospheric correction, and image segmentation. We used the WGS84 coordinate
system and UTM projection for the spatial data. Since Landsat TM images from the Geospatial Data
Cloud of China (http://www.gscloud.cn/) have been geometrically refined, we used the Landsat
TM images as reference data. Specially, we randomly selected the corresponding position point in
Landsat TM as the ground control points, and then we used quadratic polynomial transformation and
bilinear interpolation to carry out geometric correction. To ensure the accuracy of geometric correction,
we controlled the root mean squared error value at around 0.5. We corrected the geometric precision
of the HJ-CCD images using the geometric correction module of ERDAS 9.2 software. Since the
HJ-A/B satellites have 360 km coverage, a small sub-satellite error point, and a large surrounding
deformation, the HJ-CCD images for the mountain areas needed additional ortho-rectification using
DEM. Using the calibration parameters provided by the China Resources Satellite Application Center,
we successfully calibrated all of the images [29]. Considering the processing power of the computer
and the characteristics of the underlying surface, we divided and coded the pre-processed HJ-CCD
data for Hunan Province into 28 small images. On the basis of the latitude and longitude coordinates,
we input the field samples into ArcGIS to convert the samples into a point vector map and then
converted the collected attributes of the sample data into corresponding auxiliary data. We obtained
the data for the research area by clipping along the administrative boundary of Hunan Province.

3.2. Object-Based Image Analysis Technique

The OBIA used in this study was based on the smallest unit: in this case, an object with physical
meaning, which is a set of adjacent pixels with homogeneity [17]. The basic process of OBIA includes
image segmentation and then classification or change detection.

3.2.1. Image Segmentation

In this study, we used a region-merging algorithm that is based on the principle of least
heterogeneity to segment images. The basic concept of this algorithm is to assemble adjacent pixels

http://www.gscloud.cn/
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with similarity into polygons. This method first identifies a seed pixel in an area of interest and
then splits this pixel as a starting point in the growth. Then, the seed pixel is merged to an adjacent
pixel with homogeneity. Next, the new pixels are used as a new seed to repeat this process, until no
pixel meets the defined conditions [18], which terminates the segmentation scale [17]. The larger
the segmentation scale, the smaller the number of objects obtained and vice versa. Because of the
difference in land features, structures, and landscape fragmentation, the appropriate segmentation
scale for each type of land cover in the different study areas was different [22]. When the segmentation
scale is too large, small grounds are likely to be submerged and to become non-extractable. If the
segmentation scale is too small, the computer becomes burdened and produces results with high
“salt and pepper” noise [17]. The trial-and-error method is widely used to determine the appropriate
segmentation scale. Through repeated attempts, we determined the appropriate segmentation scale
for each small section of the image of Hunan Province (Table S2).

3.2.2. 2010 Land Cover Classification

This research adopted the land cover classification system of the Intergovernmental Panel on
Climate Change (IPCC). Land cover included woodland, grassland, wetland, farmland, impervious
surface, and bare land. In this study, we used a binary decision tree to classify land cover in Hunan
Province for 2010 (Figure 4). First, we divided the images into wetland and non-wetland using the
near infrared band of HJ-CCD images in the summer. Then, we divided the non-wetland normalized
difference vegetation index (NDVI) into vegetation and non-vegetation areas. The farmland slope
in Hunan Province is no more than 25◦ and the soil-adjusted vegetation index (SAVI) can eliminate
the effect of soil on the NDVI index (Table 2). Therefore, we divided the vegetation into farmland
and non-farmland using SAVI and slope indicators of the summer images. We again divided the
non-farmland into woodland and non-woodland (grassland in the study area) based on differences in
biomass. We used NDVI to characterize the biomass, but it was difficult to distinguish two categories
based only on the biomass in a single season. To widen the distinction, we used cumulative NDVI
(ACNDVI) or the sum of three seasons to measure the annual biomass. At the same time, we found
that while the distribution of woodland in the study area was closely related to elevation, the texture
of grassland in the HJ-CCD image was much rougher than that of woodland. Therefore, we made
comprehensive use of ACNDVI, DEM, and texture indicators to distinguish woodland from grassland.
The degrees of brightness of impervious surface and bare land were different, and the impervious
surface object in the HJ-CCD image was more compact than the bare land. Thus, we comprehensively
used brightness and compactness to distinguish these two attributes.
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Table 2. Extraction features of the binary decision tree used to process the remote-sensing images for
the Hunan Province study area. NDVI: normalized difference vegetation index; SAVI: soil-adjusted
vegetation index; ACNDVI: cumulative NDVI; DEM: digital elevation model.

Land Cover Index Threshold Note

Wetland Band 4s Band 4s ≤ 1350~1403
Band 4s are the fourth

band of HJ-CCD in
summer

Non-wetland Band 4s Band 4s > 1350~1403 Same as above

Vegetation NDVIs NDVIs ≥ 0.32~0.42 NDVI is the NDVI value
of HJ-CCD in summer

Non-vegetation NDVIs NDVIs < 0.32~0.42 Same as above

Farmland SAVIs and slope SAVIs ≤ 0.76~0.83 and
Slope ≤ 22◦~27◦

SAVIs is the SAVI value
of HJ-CCD in summer

Non-farmland SAVIs and slope SAVIs > 0.76~0.83 or
Slope > 22◦~27◦ Same as above

Woodland ACNDVI, DEM and
texture (GCLM-A)

ACNDVI ≥ 1.38~1.43
and DEM ≥ 600 m and
0.21~0.31 ≤ GCLM-A ≤

0.35~0.41

ACNDVI is the sum of
NDVI in spring, summer
and winter, GCLM-A is
gray-level co-occurrence
matrix for all directions

Non-woodland
(grassland)

ACNDVI, DEM and
texture (GCLM-A)

ACNDVI < 1.38~1.43 or
DEM< 600 m or

GCLM-A < 0.21~0.31 or
GCLM-A > 0.35~0.41

Same as above

Impervious surface Brightness and
compactness

Brightness ≥ 960~1500
and compactness ≥

0.27~0.32

Bare land Brightness and
compactness

Brightness ≥ 960~1500
or compactness ≥

0.27~0.32

3.2.3. Land Cover Change Detection

We used the vector similarity function of OBIA to detect the changes in HJ-CCD images in
2010 and 2000 and obtained the area of change from differences in the object characteristics for the
different periods. We took the image of the base period T1 and the image of the change period T2

as an n-dimensional feature vector, and each band/feature as the dimension [30]. The segmentation
object of the image in the T1 period is represented by vector X, where Xn is the nth feature value of any
segmented object in the image. Similarly, any object on the image in the T2 period is represented by
vector y, where yn is the value of the nth feature value of any segmented object in the remote-sensing
image. From the principle of vector similarity, the smaller the angle between vectors and the closer the
magnitude is, the more similar the two vectors are [30].

x =



x1

x2

x3

.

.
xn


y =



y1

y2

y3

.

.
yn


. (1)

The vector similarity function is constructed to measure the similarity. The functions are
as follows:
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f (xy) =
cos θ

||x| − |y|| . (2)

To limit the range of change, the following formula is obtained after normalization treatment of
Equation (1):

f (xy) =
cos θ

cos θ+||x|−|y|| (3)

where f (xy) is vector similarity; |x| and |y| are the eigenvectors of the objects in the base period and
the change period, respectively; and θ is the angle between eigenvectors for two period. The function
f (xy) has a range of 0–1. The smaller f (xy) is, the less similar the image object is; the greater the
difference, the more likely the object is to change.

3.3. Land Cover Map Reconstruction for 2000

After obtaining the change area, we automatically classified the area using the nearest neighbor
classifier of OBIA. Then, we updated the resulting map of regional classification of change in 2000 to
the land cover classification map for 2010 in ArcGIS. We then used this map to reconstruct the land
cover map of Hunan Province for 2000. We used the nearest neighbor classifier of OBIA to identify the
closest samples for each object based on distance and assigned the objects to a category. This distance
was the characteristic parallel distance or Mahalanobis distance. The feature of the nearest neighbor
classifier is shown as Table 2.

3.4. Accuracy Verification

We used the confusion matrix method (Table 3) to evaluate the accuracy of the results of the
land cover classification for 2010 against the field samples. The extraction of change area was similar
to the classification of the remote-sensing images and the difference was the two classes across the
image: changed class and unchanged class. We used the overall accuracy (OA) and Kappa coefficient
to quantify the accuracy of the result [14,31]. The higher the OA and Kappa values (KV), the higher
the accuracy of the results.

OA =
n

∑
i=1

pii/N (4)

KV =

N
r
∑

i=1
xii −

r
∑

i=1
(xi+ + x+i)

N2 −
r
∑

i=1
(xi + x+i)

(5)

where r is the total number of columns (total number of categories) of the confusion matrix, xii is the
number of objects on the ith row and ith column in the error matrix (number of correct classifications),
xi+ and x+i are the number of the ith row and ith column, respectively, and N is the total number of
field samples used for accuracy evaluation.

Table 3. Confusion matrix.

Measured Data Type
Classification Data Type

Sum of Measured Data
1 2 . . . . . . n

1 p11 p21 . . . . . . pn1 p+1
2 p12 p22 . . . . . . pn2 p+2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
n p1n p2n . . . . . . pnn p+n

Sum of classification p1+ p2+ . . . . . . pn+ N
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3.5. Speed and Amplitude of Land Cover Change

We further quantified the LUCC using the indices of LUCC amplitude (LUCCA) and change speed
(LUCCS). The calculation formulas of LUCCA and LUCCS are shown in Equations (6) and (7) [32]:

S =

{
∑n

ij
∣∣∆sij

∣∣
Si

}
× 100% (6)

S =

{
∑n

ij
∣∣∆sij

∣∣
TSi

}
× 100% (7)

where Si is the percentage of the ith class of land cover in the total study area at the initial stage; ∆Sij is
the sum of the area of class i converted into other classes from the beginning to the end of the study
period; and T is the length of the period (if expressed in years, then the number is years).

4. Results

4.1. Classification Results and Accuracy

As in Figure 5, the classification map for 2010 and the reconstructed one for 2000 using OBIA
were relatively smooth and compact and apparently not broken. Therefore, the map maintained a
high distribution consistency with the actual ground conditions. The differences among the different
categories were obvious and the boundary shapes of the different categories were relatively clear,
which was consistent with the distribution of terrain in the study area (Figures 1 and 5).
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Figure 5. Reconstructed land cover map for 2000 (a) and the classification results of land cover for 2010
(b) for Hunan Province study area.

We evaluated the accuracy of the land cover classification results for 2010 using 1644 field samples.
For 2010, the overall accuracy of the land cover classification results for Hunan Province was 93.10%
with a Kappa coefficient of 0.89. We evaluated the accuracy of the change detection using 200 sample
points. The overall accuracy and the Kappa coefficient of the detected changes were 86.42% and 84.32%,
respectively. This showed that the accuracy of the results was high and fully met both research and
practical needs.
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In 2010, the area of woodland was largest (133,103.62 km2), accounting for 62.49% of Hunan
Province. The next largest was the farmland area (63,572.75 km2), accounting for 29.86% of the total
area of the province. The next largest was the wetland, which covered some 7891.48 km2, accounting
for 3.71% of the total area of the province. The impervious surface was relatively large, with an area
of 5308.29 km2, accounting for 2.49% of the total area of the province. Grassland and bare land had
the smallest areas, with 2578.32 km2 (1.21%) and 516.09 km2 (0.24%), respectively, of Hunan Province.
In 2000, the areas of woodland, farmland, wetland, impervious surface, grassland, and bare land
were, respectively, 133,285.08 km2 (62.60%), 63,995.79 km2 (30.06%), 7976.29 km2 (3.75%), 4634.09 km2

(30.06%), 2570.68 km2 (1.21%), and 460.77 km2 (0.22%).

4.2. Land Cover Pattern in Hunan Province

Woodland in Hunan Province was distributed mainly in the mountain areas in the west, south,
and east, and the distribution was continuous. Wetlands were concentrated in the northern plains of
Hunan Province, with other wetland areas relatively scattered and small. Farmland was distributed
widely in the study area but was mainly in the central and northern plains of the province and
the valleys in mountain areas. Impervious surfaces were scattered with relatively small patches.
The largest area was the Changzhutan urban agglomerate in the northeast plains. The areas of
grassland and bare land were among the smallest areas and were scattered throughout the study area.

4.3. Land Cover Change in 2000–2010

4.3.1. Change Characteristics

From 2000 to 2010, the trends in woodland, wetland, and farmland decreased, whereas those
in impervious surface, grassland, and bare land increased. The variation of impervious surface in
Hunan Province was the largest, increasing by 674.20 km2. The next largest was farmland, which fell
by 423.05 km2 in 2000–2010. The third largest was woodland, falling by 229.82 km2 in 2000–2010.
Wetland shrank by 84.80 km2 and grassland experienced the smallest change, increasing by 7.62 km2.

The LUCCA and LUCCS of LUCC in Hunan Province for 2000–2010 were 1.30% and 0.12%,
respectively. Although LUCCA and LUCCS in the whole study area were not very large,
large differences existed among the different types of land use/cover. The LUCCA and LUCCS of the
bare land were highest, at 19.28% and 1.75%, respectively. The second highest was the impervious
surface, with a LUCCA of 15.16% and LUCCS of 1.38%. The third highest was wetland, with a LUCCA
of 2.85% and LUCCS of 0.26%. Because of the wide area and large base, the LUCCA and LUCCS of
woodland were relatively small at 0.53% and 0.05%, respectively.

4.3.2. Transfer Process

As shown in Table 4, although 183.87 km2 of farmland was converted into woodland, 200.98 km2

of woodland was converted into farmland. Thus, the direction of the net conversion after being offset by
the conversion of other directions of the study period was from woodland into farmland. Additionally,
214.39 km2 of woodland was converted into impervious surfaces, significantly reducing woodland
area and rapidly increasing impervious surfaces. Although 70.02 km2 of farmland was converted
into wetland, a large portion of wetland was converted into farmland, woodland, and impervious
surface, resulting in a net decrease of 132.12 km2 in wetland. Along with increasing urbanization,
industrialization, and economic development, the area of impervious surface rapidly expanded.
This increase in impervious surface occurred separately from other land cover types in the study area,
among which was the conversion of 445.74 km2 of farmland (the largest).

As shown in Figure 6a, the distribution pattern of LUCC for 2000–2010 in Hunan Province was
greater in the western region than in the eastern region, greater in the northern region than in the
south, greater in the plain area than in the mountain area, and largest in the northeast plain region.
The impervious surface throughout the study area had characteristic expansion. This expansion
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not only reflected an increase in land traffic, but also reflected the expansion of cities, among which
impervious surface in the Changzhutan urban agglomerate in the northeast plain area experienced
rapid expansion. Change in farmland in the mountain areas was more moderate than in the plain
areas. In addition, large areas of wetlands in the northern part of the study area were converted
into farmland.

Table 4. Conversion of land cover in Hunan Province for the period 2000–2010. Unit: km2.

Land Cover Woodland Grassland Wetland Farmland Impervious
Surface Bare Land Transfer

Woodland - 15.62 18.19 200.98 214.39 22.20 471.38
Grassland 4.56 - 0.02 1.93 0.51 0.01 7.03
Wetland 34.94 1.47 - 66.76 24.58 4.37 132.12

Farmland 183.87 5.57 70.02 - 445.74 17.68 722.88
Impervious surface 1.28 0.08 1.55 6.62 - 0.04 9.57

Bare land 12.77 0.33 5.35 18.55 7.52 - 44.52
Transferred into 237.42 23.07 95.13 294.84 692.74 44.30 -
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Figure 6. Spatial distribution of (a) land cover conversion in Hunan Province in 2000–2010, and (b) the
rate and range of land use change at prefectural level. Note: The numbers 1, 2, 3, 4, 5, and 6
represent woodland, grassland, wetland, farmland, impervious surface, and bare land, respectively.
The combination of the two numbers is the conversion category of LUCC. For example, the code “1–2”
denotes conversion of woodland to grassland.

4.3.3. Spatial Pattern at Prefecture Level

As shown in Figure 6b, a large spatial variation occurred in LUCCA and LUCCS in Hunan
Province for 2000–2010. In general, the change in the east was greater than that in the west of
Hunan Province. The Changzhutan urban agglomerate (including Chasha, Zhuzhou, and Xiangtan
prefectures) and the surrounding Yueyang and Changde prefectures had the largest LUCCA and
LUCCS. Changsha prefecture had the largest LUCCA and LUCCS in Hunan Province in 2000–2010,
with values of 2.61 and 0.24, respectively. This was followed by Xiangtan Prefecture, with a LUCCA
and LUCCS of 1.04 and 0.09, respectively. The third largest was Yueyang, with a LUCCA of 0.91 and
LUCCS of 0.08. Zhuzhou ranked fourth with a LUCCA of 0.82 and LUCCS of 0.07. The LUCCA
and LUCCS in Changede were 0.82 and 0.07, respectively, ranking fifth. There were diminishing
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ranks of LUCCA and LUCCS for Chenzhou, Hengyang, Yongzhou, Yiyang, Loudi, Jishou, Zhangjiajie,
Shaoyang, and Huaihua.

As shown in Figure 7, the highest transformation of LUCC was for impervious surface,
by converting farmland into impervious surface (158.24 km2), followed by woodland conversion
into impervious surface (74.18 km2), then farmland conversion into farmland (42.75 km2), farmland
conversion into forest land, and bare land conversion into impervious surfaces. For Xiangtan Prefecture,
the top five transformations from largest to smallest were woodland conversion into impervious
surface (20.87 km2), farmland into impervious surface (15.75 km2), woodland into farmland (8.47 km2),
wetland into impervious surface (1.27 km2), and farmland into woodland (1.24 km2). For Zhuzhou
Prefecture, the top five LUCC from largest to smallest were woodland conversion into impervious
surface (34.25 km2), woodland into farmland (22.41 km2), farmland into impervious surface (15.77 km2),
farmland into bare land (5.67 km2), and woodland into wetland (2.58 km2). The 189.76 km2 of arable
land in the Changsha–Zhuzhou–Xiangtan urban agglomerate consisted of 129.30 km2 forest land and
6.12 km2 wetland.
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Figure 7. The top five land cover transformations in Changzhutan urban agglomerate, including
(a) Changsha Prefecture; (b) Zhuzhou Prefecture; (c) Xiangtan Prefecture; and (d) the surrounding
Yueyang and (e) Changde Prefecture. Note: The numbers 1, 3, 4, 5, and 6 represent woodland, wetland,
farmland, impervious surface, and bare land, respectively. The combination of the two numbers
is the conversion category of LUCC. For example, the code 4–5 denotes conversion of farmland to
impervious surface.
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The areas of 189.76 km2 farmland, 129.30 km2 woodland, and 6.12 km2 wetland in the
Changzhutan urban agglomerate were converted into impervious surface, most of which was from
farmland in Changsha and Xiangtan and woodland in Zhuzhou. At the same time, 73.63 km2 of
woodland was converted into farmland in the Changzhutan urban agglomerate; with convertion areas
in Changsha, Zhuzhou, and Xiangtan of 42.75 km2, 22.41 km2, and 8.47 km2, respectively.

5. Discussion

5.1. Issues for OBIA

In this study, the results were smooth, compact, and largely consistent with actual conditions,
without a “salt and pepper” phenomenon occurring in the results by using a traditional pixel-based
method. The main reason for this result is that OBIA is based on a set of adjacent pixels with
homogeneity, high physical significance, more available features, and boundary line matching
with ground conditions [16,33]. More important, the accuracy of our results was relatively high.
We attributed this high accuracy to the fact that OBIA not only uses spectral features of ground
objects but also uses spatial features and textures, spatial structure features, shape, and other
characteristics [1,10]. Thus, to a large extent, OBIA can overcome the negative effects of metameric
substances with the same spectrum and a metameric spectrum with the same substance caused by using
only spectrum features in traditional pixel-based methods to improve classification accuracy [11,12,22].
The OA and the Kappa coefficient of classification were 93.10% and 0.89, respectively. The OA and
the Kappa coefficient of change detection were 86.42% and 84.32%, respectively. The accuracy of the
results had high precision and a good effect. More important, the results showed that it was feasible to
use medium-resolution HJ-CCD remote-sensing images and OBIA to monitor LUCC at a large scale.
The method proposed in this study is based on medium-resolution remote-sensing images, but it can
achieve a good monitoring effect. This provides important technical support for the rapid monitoring
of regional land use change. Moreover, medium-resolution remote-sensing images are basically free of
charge, so monitoring costs can be greatly reduced.

Our study proposed a large-scale monitoring LUCC method, which also has great reference
value for the reconstruction of spatial information of land use in previous stages. Compared with
previous object-oriented monitoring methods, the most important innovation of this method is the
ability to transform the classification results of the current period (2010 year in this study) into the
large sample that is required by the change region classification and to realize the full automation and
high accuracy of the change region classification. This method can ensure that the accuracy of the land
use classification results of the current stage is relatively high, because the land use map reconstructed
in the past stages depends largely on the current map (in this study, the current stage is 2010 and the
past stage is 2000). If the accuracy of the land use classification results for the current stage is not high,
then it will directly affect the land use accuracy in the past stage and the classification results for the
changing areas. This will further affect the monitoring accuracy of LUCC. The land use classification
of the current stage has potential, and current data can be obtained for use as auxiliary information to
obtain high-precision classification results, such as field samples. This is also why we first obtained the
land use classification results in 2010, rather than in 2000, and then conducted the change monitoring.

The choice of an appropriate image segmentation scale is an important issue in large-scale LUCC
monitoring using the OBIA technique [13,15,19]. For moderate-resolution images, the segmentation
scale is too large, and many relatively small land use types and changing objects are submerged
and cannot be extracted [34,35]. The oversize segmentation scale makes the computer burden
heavier. Large-scale LUCC needs to subdivide the data in the research area into smaller data
sets, thus increasing the workload [35]. Meanwhile, excessive segmentation may lead to additional
broken patches on the image when monitoring results [34]. Some researchers have explored selection
methods for an appropriate segmentation scale in small regions, but these methods are not mature
enough to be used in large-scale LUCC monitoring [36]. Additionally, these methods are too complex,
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which greatly increases the workload of large-scale LUCC monitoring, discounting the advantages of
the rapid monitoring of remote sensing. In this study, we used the trial-and-error method to select the
appropriate segmentation scale. The research results showed that the method is relatively simple and
saves time when monitoring the LUCC on a large scale. Even if the most appropriate segmentation scale
sometimes cannot be obtained, we can still choose a relatively small segmentation scale to ensure the
accuracy of the results by weighing the impact of the segmentation scale. Of course, the trial-and-error
method requires the operator to have good expert knowledge and visual interpretation ability and to
be familiar with the land use status of the research area.

5.2. Driving Force of Land Use Pattern

The spatial distribution of land cover in Hunan Province was closely related to topography,
government policy, and economic development [6,23,37]. There are series of mountains in the west,
south, and north of Hunan Province, especially in the west region [27]. The western region of Hunan
Province is a topographic transition zone between the first steppe (Xuefeng Mountain) and second
steppe (Wushan Mountain). The south and east regions of Hunan Province include the Nanling and
Luoxiao Mountains, respectively, and the northern region has Dabie and Tongbai Mountains [27].
The mountain areas had a poor natural environment, few people, and large areas of woodland. In the
central and northern plains, especially in the Dongting Lake plain, large amounts of farmland and
wetland existed [27]. Thus, this area represented an important food production base in China. With the
rapid increase in population and economic development, farmland and impervious surfaces have
become the main land cover types in plain areas. Government policy also has a great effect on land
cover patterns in the study area, with Zhangjiajie in northwest China serving as a typical prefecture.
Forest resources in Zhangjiajie are among China’s and the world’s most famous tourism prefectures,
and the Wulingyuan scenic area is a world natural and cultural heritage site and world geological
park. Many more areas are key national scenic spots [27]. The forest was strictly protected by the
United Nations and China’s government, and thus the forest land area was large [27]. Dongting
Lake, the second largest freshwater lake in China, is in the north of Hunan Province, where strict
protection measures have been implemented by the United Nations and the Chinese government as a
key wetland reserve [38], thus providing a large wetland area.

5.3. Driving Force of LUCC Pattern

LUCC was the result of integrated action of the natural environment and human activity [2,5,39].
From 2000–2010, the government successively carried out major ecological projects, including returning
farmland to woodland or grassland, natural forest protection, and returning farmland to lake [38,40].
Under the effect of these major ecological projects, the areas of farmland converted into woodland,
grassland, and wetland in the study area in 2000–2010 were 183.87 km2, 5.57 km2, and 70.02 km2,
respectively, indicating some gains in ecological engineering construction. Rapid economic growth in
the province, increasing resource exploitation, and accelerated urbanization for the period 2000–2010
also had the highest human disturbance in the region [27,40]. This disturbance has had a significant
effect on land cover and also offset gains due to ecological engineering construction. Thus, the increases
in woodland and wetland in 2000–2010 in the province were only 229.82 km2 and 132.12 km2,
respectively. Woodland and wetland ecosystems have not improved.

Urbanization and economic development were the main causes of LUCC in the Changzhutan
urban agglomerate and the surrounding areas in 2000–2010 [5,39,41]. From 2000–2010, the population
density of the Changzhutan urban agglomerate increased rapidly [26,42]. The most obvious population
growth was in the Changsha prefecture, with an average increase in population density of 20%,
from 497 people/km2 in 2000 to 595 people/km2 in 2010 [26,43]. From 2000–2010, the average GDP of
each prefecture in the region increased and LUCCA exceeded 100% [26]. The average GDP of Changsha
increased from 5.7322 million RMB/km2 in 2000 to 17.382 million RMB/km2 in 2010, an increase
of 2.03%. The average GDP of Zhuzhou increased by 5.367 million RMB/km2 or 1.95% [26,43].
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The average GDP of Xiangtan increased by 1.84% [26,42]. With such rapid urbanization and economic
development, the LUCCA of the Changzhutan urban agglomerate was 1.61% and the LUCCA of
Changsha, Zhuzhou, and Xiangtan were 2.61%, 1.04%, and 0.82%, respectively. In this process of
change, 189.76 km2 of farmland, 129.30 km2 of woodland, and 6.12 km2 of wetland was converted
into impervious surface; Changsha and Xiangtan were mainly farmland and Zhuzhou was mainly
encroached farmland. At the same time, 73.63 km2 of woodland was converted into farmland in the
Changzhutan urban agglomerate; the converted areas in Changsha, Zhuzhou, and Xiangtan totaled
42.75 km2, 22.41 km2, and 8.47 km2, respectively. Changsha is the provincial capital of Hunan Province
and it is also at the heart of Changzhutan urban agglomerate. Thus, LUCC in 2000–2010 in the
study area was the largest in the agglomerate, with 232.42 km2 of woodland and farmland converted
into impervious surface, including 158.42 km2 of farmland and 74.18 km2 of woodland. The rapid
urbanization and economic development in the Changzhutan urban agglomerate had a larger ripple
effect on the surrounding Yueyang and Changde Prefectures. This caused the LUCC in these two
prefectures to be the largest, followed by Changzhutan urban agglomerate.

5.4. Innovative Strategies

The method proposed in this study provides technical support for the monitoring of land-use
change on a provincial or larger scale. On a large scale, it will take a great deal of staff power, material
resources, and financial resources to manually investigate land use and its changes, and remote
sensing is a cheap and fast method. Using high-resolution remote-sensing images is unlikely, however,
because large areas of high-resolution images are expensive, which is difficult for decision makers to
afford. The method we proposed is to use medium-resolution remote-sensing images, which solve
this problem. Our proposed method can be used to investigate land use change and to provide
basic information for decision-makers to determine the land use and its change situation in a region.
This information also can be used to evaluate the effect of land use planning and policy implementation
and to provide the basis for further adjustments in relevant policies.

Although the Chinese government’s ecological project has achieved certain results,
these achievements have been offset by the intensification of human activities, which eventually led to
the unhealthy development of land use changes in Hunan Province from 2000 to 2010. This requires
that we should further strengthen ecological protection and continue a series of ecological projects
and also reduce the negative impact of human activities. To be specific, first, the speed of urban
expansion needs to be controlled, especially in Changsha, Zhuzhou, and Xiangtan Prefectures. Second,
the agricultural growth mode needs to change from an extensive growth mode to an intensive growth
mode; that is, the growth of grain output mainly depends on the improvement of yield per unit
area rather than simple continuous expansion of farmland area, especially in Changde and Yueyang
Prefectures. In addition, the spatial difference of LUCC in Hunan Province from 2000 to 2010 is
relatively large, which requires us to formulate different land use policies and land use spatial
planning according to local conditions. In addition, the spatial difference of land use change needs to
be monitored in real time by means of remote sensing and a geographic information system to provide
rapid response for LUCC [37,44].

6. Conclusions

Based on the medium-resolution HJ-CCD remote sensing images, we used OBIA to monitor
LUCC at provincial level. The conclusions from the study were as follows:

1. The OA of the land cover classification results for in Hunan Province in 2010 was 93.10%,
with a Kappa coefficient of 0.89. The OA and the Kappa coefficient of detected change in the province
were 86.42% and 0.84, respectively. This result showed high accuracy and a good effect, indicating the
good performance of OBIA using HJ-CCD images. More important, the results showed that it was
fully feasible to monitor large-scale LUCC using medium-resolution HJ-CCD remote-sensing images
and OBIA;
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2. Woodland in Hunan Province was mainly distributed in mountain areas in the west, south,
and east. Wetland was distributed manly in the northern plains of the province and farmland
was distributed mainly in central and northern plain areas and in mountain valleys. The largest
impervious surface was in the Changzhutan urban agglomerate in the northeast plain area. The spatial
distribution of land cover in Hunan Province was closely related to topography, government policy,
and economic development;

3. From 2000–2010, the areas of farmland transformed into woodland, grassland, and wetland
were, respectively, 183.87 km2, 5.57 km2, and 70.02 km2, indicating some achievement by the ecological
engineering construction drive. However, rapid economic growth, urbanization, and intense resource
development offset the ecological engineering construction gains, and thus farmland and wetland
areas decreased by 229.82 km2 and 132.12 km2, respectively, in Hunan Province during 2000–2010;

4. Spatial differences in LUCCA, LUCCS, and the transformation processes of LUCC at the
prefectural level in Hunan Province were large. The Changzhutan urban agglomerate and the
surrounding prefectures, including Changsha, Xiangtan, Zhuzhou, Yueyang, and Changde, had the
largest LUCCA and LUCCS, where the dominant land cover conversion was from all of the other land
use/cover into an impervious surface. For the period 2000–2010, 189.76 km2 of farmland, 129.30 km2

of woodland, and 6.12 km2 of wetland were converted into impervious surfaces in the study area.
This conversion was attributed mainly to the acceleration of urbanization and the rapid economic
development in the above five prefectures.

Supplementary Materials: The following is available online at http://www.mdpi.com/2072-4292/10/12/2012/
s1, Table S1: China’s HJ-CDD images used in the study. Table S2: Appropriate segmentation scale of each small
image piece.

Author Contributions: Conceptualization, K.L.; Methodology, K.L.; Software, B.L. and K.L.; Validation, B.L.
and K.L.; Formal Analysis, K.L.; Investigation, B.L.; Resources, B.L.; Data Curation, K.L.; Writing-Original Draft
Preparation, K.L.; Writing-Review & Editing, J.P.M.; Visualization, J.P.M.; Supervision, K.L.; Project Administration,
K.L.; Funding Acquisition, K.L.

Funding: This research was funded by National Natural Science Foundation of China (Grant No. 41801200),
the Foundation of Ministry of Culture and Tourism of China (Grant No. 18TAAG018), the Start-up Foundation for
Introducing Talent of NUIST (Grant No. 2017r091) and College Student’ Practice Innovation Training Program of
NUIST (Grant No. 201810300096X).

Acknowledgments: We would like to thank the China Resources Satellite Application Center for providing some
of the data. We also thank the anonymous reviewers and members of the editorial team for their comments
and contributions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, Y.H.; Zhou, Y.N.; Ge, Y.; An, R.; Chen, Y. Enhancing Land Cover Mapping through Integration of
Pixel-Based and Object-Based Classifications from Remotely Sensed Imagery. Remote Sens. 2018, 10, 77.
[CrossRef]

2. Engelen, G.; White, R. Validating and Calibrating Integrated Cellular Automata Based Models of Land Use
Change. In The Dynamics of Complex Urban Systems; Albeverio, S., Andrey, D., Giordano, P., Vancheri, A., Eds.;
Physica-Verlag HD: Heidelberg, Germany, 2008; pp. 185–211.

3. Kok, J.L.D.; Overloop, S.; Engelen, G. Screening models for integrated environmental planning–A feasibility
study for Flanders. Futures 2017, 88, 55–56. [CrossRef]

4. Soleimani, A.; Hosseini, S.M.; Bavani, A.R.M.; Jafari, M.; Francaviglia, R. Simulating soil organic carbon
stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci. Total
Environ. 2017, 599, 1646–1657. [CrossRef] [PubMed]

5. White, R.; Uljee, I.; Engelen, G. Integrated modelling of population, employment and land-use change with a
multiple activity-based variable grid cellular automaton. Int. J. Remote Sens. 2012, 26, 1256–1281. [CrossRef]

6. Batty, M.; Marshall, S. The origins of complexity theory in cities and planning. In Complexity Theories of Cities
Have Come of Age; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–45.

http://www.mdpi.com/2072-4292/10/12/2012/s1
http://www.mdpi.com/2072-4292/10/12/2012/s1
http://dx.doi.org/10.3390/rs10010077
http://dx.doi.org/10.1016/j.futures.2017.03.007
http://dx.doi.org/10.1016/j.scitotenv.2017.05.077
http://www.ncbi.nlm.nih.gov/pubmed/28535593
http://dx.doi.org/10.1080/13658816.2011.635146


Remote Sens. 2018, 10, 2012 18 of 19

7. Deng, X.Z.; Shi, Q.L.; Zhang, Q.; Shi, C.C.; Yin, F. Impacts of land use and land cover changes on surface
energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. Earth 2015, 79, 2–10.
[CrossRef]

8. Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.;
Kwast, J. Incorporating land-use mapping uncertainty in remote sensing based calibration of land-use
change. In Proceedings of the 8th International Symposium on Spatial Data Quality, Hong Kong, China,
30 May–1 June 2013; Volume XL-2/W1, pp. 7–12.

9. Jin, S.; Yang, L.; Zhu, Z.; Homer, C. A land cover change detection and classification protocol for updating
Alaska NLCD 2001 to 2011. Remote Sens. Environ. 2017, 195, 44–55. [CrossRef]

10. Hao, M.; Shi, W.Z.; Deng, K.H.; Zhang, H.; He, P.F. An object-based change detection approach using
uncertainty analysis for VHR images. J. Sens. 2016, 2016, 1–17. [CrossRef]

11. Chirici, G.; Mura, M.; Mcinerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; Mcroberts, R.E.
A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications
that use remotely sensed data. Remote Sens. Environ. 2016, 176, 282–294. [CrossRef]

12. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images:
From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]

13. Baker, B.A.; Warner, T.A.; Conley, J.F.; McNeil, B.E. Does spatial resolution matter? A multi-scale comparison
of object-based and pixel-based methods for detecting change associated with gas well drilling operations.
Int. J. Remote Sens. 2013, 34, 1633–1651. [CrossRef]

14. Sen, S.; Zipper, C.E.; Wynne, R.H.; Donovan, P.F. Identifying Revegetated mines as disturbance/recovery
trajectories using an Interannual Landsat Chronosequence. Photogramm. Eng. Remote Sens. 2012, 78, 223–235.
[CrossRef]

15. Zhai, D.L.; Dong, J.W.; Cadisch, G.; Wang, M.C.; Kou, W.L.; Xu, J.C.; Xiao, X.M.; Abbas, S. Comparison
of Pixel- and Object-Based Approaches in Phenology-Based Rubber Plantation Mapping in Fragmented
Landscapes. Remote Sens. 2018, 10, 1–20. [CrossRef]

16. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; Meer, F.V.D.; Werff, H.V.D.;
Coillie, F.V. Geographic Object-Based Image Analysis â—Towards a new paradigm. ISPRS J. Photogramm.
Remote Sens. 2014, 87, 180–191. [CrossRef] [PubMed]

17. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more:
Optimizing classification performance through feature selection in a very-high-resolution remote sensing
object-based urban application. GISci. Remote Sens. 2018, 55, 221–242. [CrossRef]

18. Ma, L.; Li, M.C.; Ma, X.X.; Cheng, L.; Du, P.J.; Liu, Y.X. A review of supervised object-based land-cover image
classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

19. Lu, L.; Tao, Y.; Di, L. Object-based plastic-mulched landcover extraction using integrated Sentinel-1 and
Sentinel-2 data. Remote Sens. 2018, 10, 1820. [CrossRef]

20. Nemmaoui, A.; Aguilar, M.; Aguilar, F.; Novelli, A.; Lorca, A. Greenhouse crop identification from
multi-temporal multi-sensor satellite imagery using object-based approach: a case study from Almería
(Spain). Remote Sens. 2018, 10, 1751. [CrossRef]
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