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Abstract: The efficient use of nitrogen fertilizer is a crucial problem in modern agriculture. 

Fertilization has to be minimized to reduce environmental impacts but done so optimally without 

negatively affecting yield. In June 2017, a controlled experiment with eight different nitrogen 

treatments was applied to winter wheat plants and investigated with the UAV-based hyperspectral 

pushbroom camera Resonon Pika-L (400–1000 nm). The system, in combination with an accurate 

inertial measurement unit (IMU) and precise gimbal, was very stable and capable of acquiring 

hyperspectral imagery of high spectral and spatial quality. Additionally, in situ measurements of 

48 samples (leaf area index (LAI), chlorophyll (CHL), and reflectance spectra) were taken in the 

field, which were equally distributed across the different nitrogen treatments. These measurements 

were used to predict grain yield, since the parameter itself had no direct effect on the spectral 

reflection of plants. Therefore, we present an indirect approach based on LAI and chlorophyll 

estimations from the acquired hyperspectral image data using partial least-squares regression 

(PLSR). The resulting models showed a reliable predictability for these parameters (R2LAI = 0.79, 

RMSELAI [m2m−2] = 0.18, R2CHL = 0.77, RMSECHL [µg cm−2] = 7.02). The LAI and CHL predictions were used 

afterwards to calibrate a multiple linear regression model to estimate grain yield (R2yield = 0.88, 

RMSEyield [dt ha−1] = 4.18). With this model, a pixel-wise prediction of the hyperspectral image was 

performed. The resulting yield estimates were validated and opposed to the different nitrogen 

treatments, which revealed that, above a certain amount of applied nitrogen, further fertilization 

does not necessarily lead to larger yield. 
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1. Introduction 

Efficient food production requires a balance between the minimization of environmental 

damage and the maximization of yield [1]. Extensive use of nitrogen (N) for fertilization is one of the 

key problems in today’s agriculture. Unused N leaches into groundwater and therefore endangers 

the quality of drinking water. Furthermore, polluted groundwater drains into rivers and lakes, 

contributing to the eutrophication of these water bodies [2]. 

From the farmer’s perspective, the most important economic parameter is achieved yields. An 

overdose of N fertilizer, within the legal limits, results higher costs without adding value in terms of 
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additional yield. Further possible regulations for the application of fertilizers should only have a 

limited negative impact on yields. With controlled experiments, directly comparing the harvested 

yield resulting from different N applications, one can identify the effects of reduced fertilization. 

Moreover, new concepts of monitoring these effects during vegetative growth enables the 

development of precision farming applications, especially created for efficient N fertilization [3]. 

Remote sensing technology at various scales has often proved to be a suitable tool for 

agricultural crop monitoring [4]. In particular, UAV-supported remote sensing enables very precise 

monitoring of individual areas through lower flight altitudes and high-resolution data [5]. In recent 

years, the development of UAV-based hyperspectral recording systems has made rapid progress [6]. 

In comparison to manned aircraft based systems, the sensors are smaller, lighter, and less costly 

during acquisition and processing [7]. The great potential of this technology has been demonstrated 

[8]. 

Hyperspectral snapshot camera systems are frequently used, as they are easier to handle in 

comparison to pushbroom cameras, especially when mosaicking images [6]. Another problem is the 

orthorectification of the lines of a pushbroom camera during preprocessing, as the quality of the raw 

data highly depends on the measurement accuracy of the inertial measurement unit (IMU), the 

overall stability of the gimbal, and wind conditions [6]. Many studies have already shown the 

capabilities and constraints of these datasets [9–13]. Once these obstacles have been overcome, 

pushbroom scanner systems are able to record substantially less noise-affected spectra with higher 

resolution (spatial and spectral) than snapshot systems due to their narrower line-shaped camera 

aperture and higher sensor resolution [6]. 

Since grain yield has no direct influence on the reflectance of crops, it should be derived 

indirectly by estimating other biophysical parameters [14]. Although [15–18] could show that an 

estimation of grain yield directly from reflection spectra is statistically possible, it was finally 

determined that this relationship can only be explained indirectly by biophysical and biochemical 

properties. Among other plant properties, chlorophyll content (CHL) and leaf area index (LAI) 

correlated with grain yield [19], which can be estimated reliably from remote sensing data of different 

scales and platforms [4]. Furthermore, soil mineral nitrogen naturally has strong effects on plant 

development and thus on the production of chlorophyll and leaf area, and therefore, these parameters 

can also be taken as indicators for plant uptake of nitrogen [20]. 

LAI is one of the most important parameters to describe plant conditions in agriculture. It can 

be used, for example, to derive information on biomass, nutrient supply, growth stage, and yield 

estimation [21]. The possibilities of hyperspectral remote sensing data for the assessment of LAI have 

already been carried out in various studies on different scales. By using hyperspectral field 

spectrometers [22–25], could determine the good predictability of LAI. Airborne hyperspectral 

imagers have also been successfully used to predict LAI [25–27]. Many recent publications using 

UAV-supported systems have frequently relied on multispectral sensors to derive LAI. However, the 

use of UAV-based hyperspectral sensors has only been efficiently possible for a couple of years, 

which is why only a few studies are available that estimate LAI from such data. Reference [28] used 

a hyperspectral snapshot camera (450–950 nm) on a UAV to estimate the winter wheat LAI across 

different growth phases. For this purpose, various indices were calculated from the spectra combined 

with height information, and the LAI was estimated with the help of partial least-squares regression 

(PLSR) or random forest regression, leading to mediocre results (R2 = 0.59). Another study from [29] 

compared different regression and sampling techniques to predict the LAI of soybeans with data 

from the same hyperspectral snapshot camera. They obtained similar robust results (R2 = ~0.70) for 

all methods, using measurements gained throughout the whole phenology. On the contrary, working 

with data taken only once during growth phase, significantly weaker models were produced. 

CHL concentration is an extremely important biochemical parameter, since it is a direct indicator 

for plant health, availability of nutrients, and plant stress [30]. This parameter has been extensively 

investigated with hyperspectral remote sensing on the field [22,27,28,31,32] and airplane level 

[25,27,30], while derivation of CHL from UAV-based hyperspectral data is relatively rare due to it 

being fairly new technology. Reference [33] acquired hyperspectral snapshot data from spring wheat 
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and predicted chlorophyll contents with a least-squares regression approach, resulting in models of 

medium quality. They also compared these results with predictions from regular RGB imagery and 

could not find a large advantage for the use of hyperspectral data. 

As the derivation of both parameters, to our knowledge, has so far only been investigated to a 

limited extent applying a high-resolution UAV-based hyperspectral pushbroom scanner, the aim of 

this study was to investigate the potential of such data for the estimation of CHL and LAI of winter 

wheat. Hence, we studied whether the aforementioned obstacles could be overcome with UAV-based 

hyperspectral pushbroom scanners and what data quality could be expected from this technology. 

Furthermore, the indirect derivation of grain yield was reliably possible from estimated CHL and 

LAI. Finally, the effect of different N fertilization on these estimations and on grain yield within the 

study site was examined. 

2. Materials and Methods 

2.1. Study Area and Crop Management 

The field data for winter wheat were collected within an existing field trial (small area around 

830 m2) of Osnabrück University of Applied Sciences in Belm (52.31°N, 8.11°E), northwestern 

Germany. The initial aim of the trial was to evaluate the impact of different N-fertilization strategies 

on drinking water quality. The terrain is very flat, ranging from around 110 m above sea level 

(m.a.s.l.) in the northeast to 109 m.a.s.l. in the southeast. Climate conditions are temperate oceanic 

(Cfb) [34] with a mean annual precipitation of 883 mm and a mean annual air temperature of 9.4 °C 

[35]. Table 1 summarizes the main crop management operations. 

Table 1. Crop management experimental season 2016/2017. DAS: days after sowing. 

 Winter Wheat 

Sowing date 14.10.2016 

Variety Anapolis 

Seeding rate 300 grains m−2 

Harvest date 31.07.2017 (290 DAS) 

Soil type Stagnic Anthrosol 

Soil mineral nitrogen before sowing 49 kg ha−1 

N-Application 

First 152 DAS (tillering)  

Second 187 DAS (stem elongation)  

Third 220 DAS (booting) 

The experimental setup comprised eight treatments with a total of six N fertilization levels in 

three replications (Table 2, Figure 1). The optimal treatment (“opt”) followed the official regional 

recommendations by the Chamber of Agriculture [36], whereas the reduced optimal treatment (“opt–

“) reflected the fertilizer limitation for groundwater protection (Table 2, Figure 1). All other N 

fertilization levels were chosen equidistantly between 0 and 150 kg ha−1. 

Table 2. Split fertilizer application rates in kg ha−1 N according to different treatments. m: mineral 

fertilization (calcium ammonium nitrate, 27% N), o: organic fertilization (pig manure, 4.52% N), opt: 

optimal N fertilizer rate calculated following official recommendations; opt–: opt reduced by 10%. 

N level 0 50 100 125 (opt–) 141 (opt) 150 

N type m m m m m + o m m + o m 

First application - 29 29 50 47 + 20 54 47 + 20 43 

Second application - 21 43 25 38 + 20 33 47 + 27 64 

Third application - - 28 50 - 54 - 43 

Soil mineral nitrogen 49 49 49 49 49 49 49 49 

Sum 49 99 149 174 174 190 190 199 
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Figure 1. Overview of the study site; each plot colorized by treatment, numbered, and labeled with 

applied N amounts and N types. m: mineral, o: organic. 

2.2. Data and Preprocessing 

2.2.1. Field Data 

During a field campaign on 20 June 2017 (252 DAS), 48 CHL and LAI measurements were taken, 

two from each plot of the field experiment (Figure 1). Therefore, 10 equally distributed CHL and 5 

equally distributed LAI measurements within a 0.25-m2 area were averaged on each location. The 

CHL measurements were conducted with a SPAD-502 Plus chlorophyll meter from Konica Minolta. 

The SPAD measurements were done at 10 fully developed uppermost leaves in each plot. Afterwards, 

the SPAD values were converted into µg cm−2 CHL according to Markwell [37]. LAI measurements 

were taken with a LAI-2200C plant canopy analyzer from Li-Cor. Furthermore, each plot was 

observed with the field spectrometer SVC HR-1024i mounted on a tripod. 

For fresh biomass determination, the 24 plots were harvested at physiological maturity by hand 

cutting of whole plants in four randomly selected 0.25 m2 areas within each plot. These areas did not 

match with the locations of the previously mentioned sampling locations. Harvest of the core plots 

(14.7 m2) was done with a Hege experimental combine. Grain yield data is presented at 86% dry 

matter. 

2.2.2. Hyperspectral UAV Image Data 

In this study, a radiance calibrated Resonon Pika-L hyperspectral pushbroom scanner was used. 

The sensor has 900 spatial pixels each with 281 spectral channels covering a spectral range from 400 

to 1000 nm. The maximum spectral resolution is 2.1 nm. The equipped objective lens has a field of 

view of 17.6°. The camera was mounted on a DJI S1000+ octocopter with a three-axis gimbal and the 

Ellipse-N IMU from SBG Systems with an accuracy of 0.1° for roll and pitch and 0.5° for heading 

(Figure 2). The complete UAV system weighed 11.2 kg and allowed an overall flight time of about 7 

min. 
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(a) (b) 

Figure 2. Octocopter with mounted camera (a) and close up of the three-axis gimbal with camera 

system and inertial measurement unit (IMU) (b). 

The image data acquisition was conducted on 19 June 2017 under cloudless weather conditions. 

Three 0.25m2 reference panels with different brightness (95% white, 40% grey, and 5% black) were 

placed within the study area for postprocessing and measured with the field spectrometer SVC HR-

1024i. With a flight height of 100 m, a ground swath of 31 m was achieved. This resulted in an initial 

spatial resolution of roughly 3 cm, which was reduced to 10 cm during orthorectification. The image 

was then georeferenced using in-field targets. All preprocessing steps are illustrated in Figure 3. Since 

the camera system in combination with the three-axis gimbal proved to be very reliable and stable, 

the image geometry of the raw data was already close to the real situation (Figure 4).  

 

Figure 3. Overview of each performed step during preprocessing and analysis. 



Remote Sens. 2018, 10, 2000 6 of 18 

 

  
(a) (b) 

Figure 4. Raw geometry of imagery (a) and orthorectified imagery (b). 

The spectral quality of the hyperspectral imagery was evaluated by calculating the mean 

distances between field and image spectra of the observed 0.25-m2 plots. Initially, the white reference 

panel was used to convert the radiance data into reflection. Comparing image and field spectra 

showed relatively high differences between 400 and 450 nm and beyond 900 nm (Figure 5a) due to 

noise in the image data. This indicated the necessity of excluding certain bands of the image data at 

the beginning and end of the observed spectral range and a radiometric correction. Furthermore, for 

radiometric correction, an empirical line correction [38] was performed using the image and field 

spectra of the reference panels and wheat measurements. To reduce noise, the spectral data was 

limited to a spectral range from 450 to 900 nm and binned to 106 spectral channels each with 4 nm. 

Since the spectra were still affected by some noise, a minimum noise fraction transformation (MNF) 

[39] was performed and inverted with the first 14 MNF bands. These performed steps resulted in a 

less noisy and smaller deviations from field spectra (Figure 5b, please consider the different scaling 

of the Y-axis compared to Figure 5a). Spatially, the image data were reduced to the true extent of the 

study area (Figure 1), excluding the walkway in the middle and protective wheat plants around the 

experiment. Also, one line of pixels from the borders of the investigated plots was excluded for the 

further analysis to avoid spectrally mixed pixels. 

  
(a) (b) 

Figure 5. Mean distances between field and raw image spectra for each band (a) and mean distances 

between field and noise-reduced image spectra for each spectral band (b). 
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2.3. Methodology 

In the first step, the spectra from the 0.25-m2 sampled areas from each of the 48 plots were 

extracted from the image using the coordinates from LAI measurements. These spectra were 

averaged, leading to a set of 48 image spectra corresponding to the LAI and CHL measurements. 

Two PLSR models [40] were calibrated using the extracted spectra with LAI and CHL 

measurements, respectively. Since each nitrogen treatment was applied on three plots, one of these 

plots was excluded from model calibration and used for an independent validation. The validation 

plot was always the one with the largest spatial distance to the other two. This resulted in 32 samples 

for calibration and 16 for validation. A maximum of 10 latent variables was included into the models, 

using R2 and root-mean-square error (RMSE) as quality measures. The resulting best performing 

models with the lowest RMSE were afterwards verified with the validation samples. The residuals 

were tested on normal distribution and significance with a one-sample t-test. To receive estimations 

for the complete study site, the models were used to predict CHL content and LAI for the complete 

image. 

Since the grain yield information was only available as a single value for each plot, the LAI and 

CHL estimations from image data were averaged for each of these. After that, a multiple linear 

regression (MLR) [41] was performed predicting the grain yield from LAI and CHL. In this case, 

leave-one-out cross validation (LOOCV) was used to validate the model, since the number of samples 

(n = 24) was too small for independent validation. LOOCV excludes each sample once from the PLSR 

model calibration (n-1) and is instead predicted from the model as a quality measure [42]. The model 

was applied on every individual pixel of the image data to predict the grain yield for each pixel in 

the image. All described steps were performed using the R statistical environment [43]. A stepwise 

illustration of the methodology is shown in Figure 3. 

3. Results 

3.1. Data Analysis 

The investigated 48 wheat plots showed relatively low LAI ranging from 1.13 to 2.70 with a mean 

of 2.17 and a standard deviations (SD) of 0.42. CHL had a larger variety from 19.82 to 77.18 µg cm−2. 

On average, the CHL content was 46.02 and with an SD of 15.59 µg cm−2. The 24 grain yield samples 

ranged from around 18.61 to 62.71 dt ha−1 with a mean of 46.94 dt ha−1 and an SD of 12.30 dt ha−1. The 

variety of grain yield was significantly influenced by the amount of applied nitrogen fertilizer (Figure 

6). Both measurements for CHL and LAI showed high positive correlations with the measured grain 

yields (CHL/yield = 0.79, LAI/yield = 0.90). Therefore, both parameters were considered to be highly 

suitable for yield prediction. 
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Figure 6. Mean harvest results (three samples each) for six N levels with grain yield at 86% dry matter. 

Error bars indicate standard error of the mean. 

3.2. PLSR and MLR 

The independently validated PLSR model for LAI resulted in a R2 = 0.79 with an RMSE of 0.182 

(Figure 7). The regression line was close to the 1:1 line with a slope close to 1. Residuals were normally 

distributed (pLAI = 0.41) and t-tests on the residuals showed no significant difference from zero (pLAI 

= 0.26). Over- and underestimations amounted to a maximum of around 0.5. The LAI measurements 

of the plots without any fertilization were far below the remaining measurements and therefore had 

a considerable influence on the model quality. However, one of the plots showed an LAI close to 2. 

Plots with higher fertilization had relatively similar LAI values between 2 and 2.5. According to the 

PLSR loadings, the most relevant wavelengths ranges were located at the red edge between 710 and 

760 nm (loadings at ~0.2). The infrared plateau (760–900 nm) was also considered as an important 

wavelength range from the model (loadings at ~0.15). The visual part of the spectrum contributed 

less relevantly to the resulted model (loadings at ~0.05). 

 

Figure 7. Scatterplot of independently validated partial least-squares regression (PLSR) models for 

leaf area index (LAI) with the regression line (continuous) and the 1:1 line (dashed). 
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The model for CHL was calibrated with an R2 of 0.77 and a RMSE of 7.016 µg cm−2 (Figure 8). 

The CHL observations were spread equally across the observed data range. Over- and 

underestimations were at a maximum of around 20 µg cm−2. A slope of 0.87 and an offset of 8.77 

indicated an overestimation of lower values, while higher CHL values above of 70 µg cm−2 tended to 

be underestimated. A normal distribution of the residuals (pCHL = 0.96) was given and the t-test on 

the residuals also showed no significant difference from zero (pCHL = 0.08). The PLSR loadings showed 

significant wavelengths in blue (450 nm) and red (660 nm) parts of the electromagnetic spectrum. 

Both areas showed loadings at around 0.18. The green area (550 nm) was not relevant for the model. 

The red-edge and infrared plateau also had no significant relevance and showed noisy oscillation 

below and above loadings of 0. 

 

Figure 8. Scatterplot of independently validated PLSR models for chlorophyll (CHL) with the 

regression line (continuous) and the 1:1 line (dashed). 

The prediction for LAI across the entire study area (Figure 9) showed replicable results. Very 

low LAI values close to zero mostly occurred on the narrow lanes between the plots and areas where 

no wheat plants pullulated. Due to the influence of the neighboring pixels for these lanes, LAI values 

still slightly greater than zero were estimated. LAI estimations lower than one were located in the 

areas with no additional fertilization (plot nos. 3, 17, and 21). Values between one and two 

predominantly occurred at the plots with 50 kg ha−1 of applied N fertilizer (plot nos. 4, 9, and 14). 

Most of the other plots had an LAI between two and three. Plots with 125 and 141 kg ha−1 mineral 

and organic fertilizer mixtures (plot nos. 5, 7, 13, 15, 16, and 19) had lower LAI values than pure 

minerally fertilized plots with similar amounts. In general, LAI estimations tended to increase with 

larger amounts of applied fertilizer. LAI estimations higher than three were located in plots with 

mineral fertilizer applications from 125 to 150 kg ha−1, slightly increasing with larger amounts. 

Overall, even under the controlled conditions of this experiment, some plots were noticeably 

heterogeneous (for example, plot no. 16). There was also a slight difference in LAI predictions 

between the western and the eastern half of the study site, even within the same treatment classes. 

For example, plot number 22 with 100 kg ha−1 showed higher LAI estimations then plot numbers 11 

and 12 with identical nitrogen treatment. 

The predictions of CHL (Figure 10) for the different plots were overall more distinctive than for 

LAI and showed a noticeable heterogeneity within the plots of the same treatment. The lowest CHL 

predictions (0–20 µg cm−2) were located at the walkways between the plots. Values greater zero were 

caused by mixed spectra from the neighboring pixels. Values roughly between 20 and 40 µg cm−2 

were mostly present in the plots with no additional fertilization (plot nos. 3, 17, and 21) and plots 
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with 50 kg ha−1 applied fertilizer. Higher CHL (40–60 µg cm−2) was predicted at the 141 kg ha−1 mineral 

and organic mixture treatments (plot nos. 2, 18, and 20). The plots with the 125 kg ha−1 combined 

mineral and organic fertilizer showed lower CHL (plot nos. 5, 7, and 13) than those with the same 

amount of solely mineral fertilizer (plot nos. 1, 6, and 8). The highest CHL (>80 µg cm−2) was predicted 

within the plots with 125, 141, and 150 kg ha−1 treatments, distinguishably increasing in that order. 

Again, some plots with the same treatment showed differences according to their location within the 

experimental setup (for example, plot nos. 11 and 12 vs. 22). 

 

Figure 9. Spatial prediction for LAI based on PLSR model. 

The leave-one-out cross-validated MLR model with 24 samples (just one for each plot) indicated 

a significant predictability of grain yield predicted from LAI and CHL and grain yield determined 

by harvesting (R2 = 0.88) (Figure 11). The RMSE error of roughly four dt ha−1 proved the good 

predictability of grain yield with these two predictor variables. The regression line was very close to 

the 1:1 line with a slope close to one and a negligible offset of −0.10 dt ha−1. Over- and 

underestimations were equally distributed across the observed data range. The residuals were 

normally distributed (p = 0.18) and the t-test showed no significant difference from zero (p = 0.96). 

The application of the MLR model for grain yield prediction to the image resulted in a 

comprehensible estimation. The inner plot variability for the grain yield prediction was very 

distinctive. The increase of grain yield with higher fertilizer treatment (Figure 12) was visible in this 

prediction. Without any treatment at all, the crops delivered the lowest grain yield, with about 20 dt 

ha−1 (plot nos. 3, 17, and 21). Slightly higher yields (up to 40 dt ha−1) occurred at 50 kg ha−1 fertilizer 



Remote Sens. 2018, 10, 2000 11 of 18 

 

treatments (plot nos. 4, 9, and 14). Plots with 100 kg ha−1 applied fertilizer provided grain yields 

around 60 dt ha−1. Similar treatments, such as 125 kg ha−1 mineral (plot nos. 1, 6, and 8) and 125 kg 

ha−1 mineral plus organic (plot nos. 5, 7, and 13), showed clear differences in estimated grain yield. 

This effect was also noticeable within the 141-kg ha−1 treatments but with a higher overall grain yield. 

Highest grain yields were estimated at the 150-kg ha−1 treatments with up to 80 dt ha−1 (plot nos. 10, 

23, and 24), with a few higher estimations larger 80 dt ha−1 at single pixels in plots 23 and 24. 

 

Figure 10. Spatial prediction for CHL based on PLSR model. 
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Figure 11. Scatterplot of leave-one-out cross-validated multiple linear regression (MLR) models for 

grain yield with the regression line (continuous) and the 1:1 line (dashed). 

 

Figure 12. Spatial prediction for grain yield based on MLR model. 
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4. Discussion 

This small-scale field trial, with well documented spatial differentiation of six different N-levels, 

enabled a case study for yield estimations based on CHL and LAI predictions from UAV-based 

hyperspectral pushbroom scanner data. In comparison to other studies using similar technical 

equipment [9–13], the acquired imagery was geometrically very stable even before the 

orthorectification via IMU data. This was mostly achieved by the very stable and accurate three-axis 

gimbal and the good flight properties of the UAV platform. Even though that the pitch axis was 

theoretically obsolete in an all-time nadir adjusted camera setup, the gimbal corrections for this axis 

prevented the camera from picking up platform vibrations and therefore reduced disturbances 

within the data. 

The relatively low LAI measurements were reasonable on the investigated day after sowing 

(252), with a Zadoks’ state at around 77 [44]. Reference [45] measured similar LAI at this growth stage 

on winter wheat plants under different nitrogen treatments. LAI and CHL increased with ascending 

fertilization. These correlations were well in line with findings from [46,47]. When opposing the 

achieved grain yield (Figure 7) at each fertilization stage, on average, there was only a slight yield 

benefit beyond an applied amount of 125 kg ha−1, at least considering the mineral fertilized plots. The 

CHL of the nonfertilized plots were the lowest values observed, but they were not as remarkably 

lower than the LAI values of these plots. This can be explained, since these plants, even though they 

were undernourished, had healthy but fewer leaves, which resulted in low LAI measurements. In 

addition, the rather sparse plant population in these plots may have led to earlier maturation of the 

lower leaf levels, which may have resulted in an overall reduction of leaf area. 

The observed LAI measurements were correlated with the extracted corresponding image 

spectra from the same location using PLSR regression. The model achieved for LAI turned out to be 

quite robust. It has already been shown by many studies that LAI prediction from hyperspectral data 

is possible on different scales [19–25]. The most relevant wavelengths were located at the red-edge 

and infrared plateau, which is well in line with findings from [48,49]. Since there were a few lower 

LAI measurements (located in the nonfertilized plots), the prediction of these values had a strong 

influence on the model quality. The small variance of LAI predictions at the plots with higher N 

treatments (125, 141, and 150 kg ha−1) indicated that the higher amounts of plant-available N did not 

increase leaf growth significantly. Consequently, LAI alone was not capable of predicting yields for 

the different N-treated plots, since the additional nutrients were obviously mainly used to develop 

other plant parameters. Therefore, on behalf of a more reliable differentiation, CHL modelling was 

performed as well to be included in the later yield estimation. 

The PLSR model for CHL was also of high quality, which is well in line with findings from 

[25,30] working on other scales. The relevant wavelengths were identified mainly at around 450 and 

650 nm, which was expected due to the known absorption features from CHL within these areas [50]. 

Lower CHL values tended to be slightly overestimated by the model. However, compared to the LAI, 

the measurement data of the CHL were much more evenly distributed. In particular, the stronger 

differentiation between mineral plus organic and purely mineral-fertilized plots can be an important 

component with regard to yield estimation. 

The spatial prediction of the LAI allowed a very precise distinguishing between the different 

fertilizer treatments and the predicted values were reasonable. As expected, the LAI for each plot in 

the predicted image increased with ascending fertilization analogous to the developed PLSR model. 

Overall, a separation between the fertilization groups was possible in most cases. However, plots 

with very similar fertilization (for example, 125 and 141 kg ha−1 plots) were impossible to distinguish 

without any additional information. This can be explained by the very similar LAI field 

measurements for these treatments, indicating that no strong increase of the LAI can be expected 

from a fertilizer quantity of more than 125 kg ha−1. The investigation of the inner plot variability 

showed the strength of the proposed results. Some plots with the same treatment differed depending 

on their location, visualizing that, even under very controlled conditions and on a small scale, 

unintended variability occurred. The differences between the plots with 100 kg ha−1 might be an effect 

of the terrain. Since there was a slight slope to the southeast at the two neighboring equivalent plots 
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11 and 12, small amounts of nutrients might have been washed out, reducing their availability in 

comparison to plot 22 and affecting the development of plants. 

The spatial prediction of the CHL pointed out different structures and relations, therefore 

enabling a differentiation of the plots from another perspective. Plots with similar fertilization, which 

showed low variance in the LAI, such as the ones with 125 m kg ha−1 and 125 m + o kg ha−1, were 

easier to distinguish when investigating CHL. On the contrary, plots with no fertilization were harder 

to separate with relatively similar prediction, as for the 50 kg ha−1 plots. Plots with partly organic 

fertilization had less CHL than plots with full mineral fertilization. What was noticeable was the very 

low CHL of the combined mineral and organically fertilized areas (125 m + o, 141 m + o). The 

differences to the purely mineral fertilized plots of the same amount were much more pronounced 

than with LAI. Considering that organic nitrogen is not instantly fully available and has to be 

mineralized beforehand, these plants were less developed than the plants with mineral treatments 

[51]. In contrast, plots 3 and 4 showed similar CHL but differing LAI. CHL also seemed to be smaller 

at the inner sides of the plots, since at this side, the experimental plots had no protective unobserved 

area. Partly, the center of plots 18–24 had very high CHL in two linear structures ranging across the 

plots. The same structures became visible at plots 1 and 2 but were less distinct. This might have been 

caused by small inaccuracies during fertilization. 

To benefit from both of the distinct estimations for LAI and CHL, the average values of each 

parameter for each plot were used to calibrate an MLR to predict the measured grain yields. This 

model turned out to be of high quality. This result supports the findings from [19], indicating the 

predictability of grain yield from LAI and CHL. The model follows the trend shown in Figure 7, that 

stronger fertilization also tends to lead to higher yields, with a less steep increase at higher N rates. 

The highest uncertainties existed for the areas fertilized with 125 m + o kg ha−1, which were clearly 

over- or underestimated in two out of three cases. This effect can be explained by the fact that the 

PLSR model for LAI already strongly underestimated one of the 125 m + o kg ha−1 plots. Furthermore, 

the plot taken out for validation might have had effects that could not be modelled with the help of 

the two plots used for calibration. Thus, this could have been caused solely by the choice of validation 

strategy. Due to the small sample size and the strong influence of the very low grain yields, these 

results have to be handled with some caution. 

The spatial grain yield prediction enabled a very good distinguishability between all treatments. 

Plots which had similar LAI values but differing CHL values (plot nos. 5, 6, 7, and 8) and vice versa 

showed clear differences in grain yield. This showed that by combining the estimates for CHL and 

LAI, a reliable spatial estimation of yields was possible. Variability of yield within the individual 

plots also became clear at this point. Especially in the southwestern part of the study area, the yields 

in the middle of the plots were significantly higher. These effects might have been caused by the 

protective effect of the surrounding plants as well as by the already-mentioned possibility of slightly 

uneven application of the fertilizer. At the beginning of the experiment, the remaining N in the soil 

was measured with 49 kg ha−1. This value was assumed to be true for the complete study area, while 

in reality, the amounts were probably not evenly distributed and could therefore have induced 

variations in plant development as well. 

The visual comparison of the prediction maps for LAI (Figure 9), CHL (Figure 10), and grain 

yield (Figure 12), as well as the RGB representation of the hyperspectral data set (Figure 4), showed 

clear structural similarities. These were probably biophysically based. Dark green regions in the 

image data had higher LAI and CHL values than brighter areas. This is due to the fact that denser 

and multilayered foliage (higher LAI) absorbed more light than less densely vegetated parts. These 

regions consequently had higher CHL contents as well. These aspects too were finally reflected in the 

yield estimation. 

5. Conclusions 

The main insights and relevant results presented in this study are threefold. Firstly, we 

presented a UAV-based hyperspectral pushbroom scanner system that is capable of recording high-

resolution data of high spectral and spatial quality. The system is extremely suitable for 
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investigations, especially on smaller areas, like single fields in precision farming. With the presented 

hardware combination, we were able to show that the aforementioned obstacles could be overcome 

when using hyperspectral pushbroom cameras on a UAV. In addition, the strengths compared to 

snapshot camera systems could be used effectively. The Resonon Pika-L camera was able to record 

high-quality spectral signals between 450 and 900 nm. However, beyond 900 nm, the signal was noisy 

and therefore not used for this study. It was also shown that radiometric correction applying 

empirical line correction significantly improved signal quality. The collection of field spectra is 

therefore necessary for every flight. When working with hyperspectral pushbroom scanners on 

UAVs, it is recommended to pay special attention to the additional hardware components. This was 

especially critical for the used gimbal. A high-precision three-axis stabilization is important in order 

to reduce the movements of the camera to a minimum and to absorb vibrations from the UAV. In 

addition, the IMU should be attached directly to the camera within the gimbal. This allows a very 

accurate recording of the camera orientation, which is completely independent from UAV movement. 

Secondly, we showed that LAI and CHL predictions from UAV-based hyperspectral data with high 

spatial resolution were promising. Distinguishing plots with different treatments, even though they 

were partly similar, was always possible with either the LAI or the CHL prediction. With this 

approach, it is possible for phenotyping and precision farming applications to spatially predict plant 

parameters reliably. This information could be used prior to fertilization to calculate the optimal 

amount of nitrogen required and to apply it in a precise manner and therefore reduce environmental 

damages without yield loss. Thirdly, a promising grain yield prediction was realized using the 

benefits from both the LAI and the CHL predictions, which showed a strong correlation to different 

treatments. For future research, the approach can be used to investigate the most suitable point in 

phenology for grain yield predictions by acquiring dense time series. The methodology presented 

here was carried out on the basis of CHL and LAI measurements with relatively high variability due 

to different N treatments. This variability may not occur in this form under real field conditions. 

Therefore, it is important for the future to test the presented method on other, more homogeneous 

data and to adapt it if necessary. Furthermore, the used UAV and camera technology must be checked 

with regard to its applicability to larger areas. 
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