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Abstract: A high-resolution three-dimensional (3D) image reconstruction method for a spinning
target is proposed in this paper and the anisotropy is overcome by fusing different observation
information acquired from the radar network. The proposed method will reconstruct the 3D scattering
distribution, and the mapping of the reconstructed 3D image onto the imaging plane is identical to the
two-dimensional (2D) imaging result. At first, the range compression and inverse radon transform
is employed to produce the 2D image of the spinning target. In addition, the process of mapping
the spinning target onto the imaging plane is analyzed and the mapping formulas which are to
map the point onto the 2D image plane are derived. After the micro-Doppler signature about which
every reconstructed point in 2D imaging result is extracted by the Radon transform, the extended
Hough transform is adopted to calculate an important parameter about the micro-Doppler signature,
and the 3D image reconstruction model for the spinning target is constructed based on the radar
network. Finally, the algorithm for solving the reconstruction model is proposed and the 3D image of
the spinning target is obtained. Some simulation results are given to illustrate the effectiveness of
the proposed method, and results show that the mean square error (MSE) relatively holds a steady
trend when the signal-to-noise ratio (SNR) is higher than −10 dB and the MSE of the reconstructed
3D target image is less than 0.15 when SNR is at the level of −10 dB.

Keywords: radar network; three-dimensional (3D) image reconstruction; inverse synthetic aperture
radar (ISAR); mapping; hough transform

1. Introduction

High-resolution radar imaging based on inverse synthetic aperture radar (ISAR) technology
is a significant investigation and recognition measure for air-maneuvering targets and sea-surface
targets, and it can extract the shape structure information of the targets [1,2]. Sadjadi proposed
a classification method for small boats using polarimetric ISAR imagery [3], and motion-induced
distortions in polarimetric ISAR imagery are removed by several enhancement methods. Furthermore,
high-resolution two-dimensional (2D) imaging with the wide-band transmitted signal and larger
coherent accumulation angle can produce the 2D image which, is the mapping of the air-maneuvering
target on the imaging plane [4]. The imaging plane is constituted by the direction of translational
motion and radar line of sight (LOS). The mapping result would be different when the target is
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mapped on the different imaging plane [5]. Therefore, the 2D imaging result could not represent the
true information of the target. To overcome this limitation, the high-resolution three-dimensional
(3D) imaging which can represent the true characteristic and extract more information about the
target has been explored and employed [6]. The commonly known techniques for forming 3D image
mainly contain 3D ISAR imaging [7], ISAR movie [8], “snapshot” 3D imaging [9], interferometric
ISAR technique [10,11], etc., but most of them are not suitable for the spinning target which possesses
translational motion and micromotion.

Recently, many researchers have attempted to address high-resolution 3D imaging for the
target with micromotion, and the existing 3D imaging techniques for micromotion target can be
classified into two categories, i.e., the nonparametric methods and the parametric methods [12].
Among them, the nonparametric methods fall into the following categories: (1) scattering center
trajectory association-based imaging; and (2) interferometric technique. Bai et al. proposed a
nonparametric 3D-imaging method based on scattering center trajectory association [13], and
the matrix completion method based on the Riemannian manifold optimization was designed.
Sun et al. proposed a time-varying interferometric 3D imaging method for space rotating targets
based on stepped-frequency chirp signal [14]. In addition, the parametric methods for forming 3D
image of micromotion target mainly include 3D imaging of spinning targets based on the fixed
scattering center model and imaging of smooth precession cones based on the sliding scattering center
model [15–18]. However, the scattering center trajectory association is not easy to accomplish due
to the shadowing effect, limited range resolution, and small angular extent; the interferometric 3D
imaging method needs a more complex hardware structure; and the parametric methods have to face
a large amount of unknown parameters in imaging the artificial metallic target [19–21]. Furthermore,
the anisotropy is usually ignored in the process of the 3D imaging for the air target, especially in the
monostatic radar system [22]. Therefore, it is necessary for the anisotropy problem to fuse different
observation information acquired from a multistatic radar system and to design the corresponding 3D
image reconstruction technique for the spinning target based on the multistatic radar system.

Just like a mirror or flat metal sheet may reflect more strongly when viewed straight on than from
an oblique angle, the anisotropy is the problem that the scattering intensity is varied as the observation
perspective changing and depends on the scattering behavior on observation perspective [23,24].
Kim et al. proposed a general characterization of anisotropy based on a sub-aperture pyramid in
synthetic aperture radar (SAR) imagery [25], and how anisotropy attribution might be conducive to the
recognition problem is explored. Even though a monostatic radar may observe the air target for a long
time, the radar observation perspective is limited and the available scattering information about the
target would normally be incomplete [26]. On account of the anisotropy, it is tough for a monostatic
radar with the limited scattering information to reconstruct the whole 3D scattering distribution of
the air target. One of method to overcome the anisotropy is to employ the radar network consisting
of multiple dispersed radars to observe the target from the different perspectives. The complete
scattering information of the target would be acquired by fusing all the observation information in the
different perspectives.

In addition, the change in viewing angle, which results from the relative motion between the target
and the radar, is indispensable to ISAR imaging [27]. Sometimes the viewing angle does not change
over observation time so that the ISAR image cannot be produced, especially when the target is moving
along the radar LOS [28,29]. As mentioned above, the radar network can observe the air target from the
different perspectives, thus at least one radar in the radar network could produce the 2D imaging result
of the target, regardless of the fight direction of the target. Moreover, 3D imaging method must extract
the multidimensional characteristics about the target to produce the 3D image [30]. The monostatic
radar can only extract the limited target characteristics, while the radar network can extract more
characteristics about the target by observing from the different perspectives [31,32]. Therefore, for the
radar network, the anisotropy problem could be solved by fused the observation data in the different
perspectives and any target could be detected and imaged. Above all, the radar network should have
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the potential to form the 3D image and the observation information from the different perspectives
would be used to form the 3D image.

In this paper, a novel 3D scattering distribution reconstruction method for the spinning target
based on the monostatic radar is proposed without regarding to the anisotropy problem. On this
basis a strategy for the 3D image reconstruction for the spinning target based on the radar network
is proposed and the anisotropy problem is overcome by fusing the observation information from
the different perspectives. Firstly, the range compression and inverse Radon transform is applied to
form 2D image of the spinning target. Considering that the 2D image is the mapping of the spinning
target on the imaging plane, the process of mapping the spinning scatterers onto the imaging plane
is analyzed. After that, the requisite coordinate systems are built and the mapping formulas which
provide the mapping from the spinning scatterers to 2D image of the target are derived. For the
air points, their mappings on the imaging plane constitute an image which is named the mapping
image. When the absolute error between the target imaging result and the mapping of the points
is small enough, these points is regarded as the reconstructed scatterers, then the reconstructed 3D
image is obtained. Therefore, a novel scattering distribution reconstruction model based on the
monostatic radar is constructed to generate partial scattering distribution at first and the goal of
the model is to minimize the absolute error between the imaging result and the mapping image.
In the process of solving the model, the Radon transform is applied to extract the micro-Doppler
signature of every reconstructed point in 2D imaging result and the extended Hough transform (EHT)
is adopted to calculate the parameters of the micro-Doppler signature. Then the spinning target
3D image reconstruction model based on the radar network is constructed, where the observation
information acquired by the scattering distribution reconstruction models about the different radars are
fused to overcome the anisotropy problem. Finally, the algorithm for solving the reconstruction model
are proposed and the 3D image of spinning target is obtained by the proposed method. In general,
the contributions of this paper are as follows: (1) the mapping formulas are derived to produce the
mapping image. (2) the scattering distribution reconstruction model and the spinning target 3D image
reconstruction model are constructed. (3) the algorithm for solving the reconstruction model and the
concrete steps are proposed.

The organization of this paper is as follows. 2D ISAR imaging method for spinning target is
introduced in Section 2. In Section 3, geometric model and mapping process is presented. In Section 4,
a 3D image reconstruction model is constructed, and the corresponding algorithm is proposed.
The experiment results are shown in Section 5. Finally, the discussion and the conclusions are
given in Sections 6 and 7, respectively.

2. 2D ISAR Imaging Method for Spinning Target

Unlike the motion of the rigid-body target, the motion of the spinning target consists of two
components, i.e., translational motion and spinning motion. The additional spinning motion may
induce additional time-varying frequency modulations and can be referred to as micromotion
dynamics. For the scatterers with spinning motion, the conventional imaging algorithms are invalid to
produce the 2D image because of violating the rigid-body assumption. When the wide-band radar is
applied to imaging the spinning target, the micro-Doppler signature induced by the spinning scatterer
has sinusoidal modulus and phase in the range-slow time domain, which is equivalent to the Radon
transform of the distribution function of the spinning scatterer. Therefore, the inverse Radon transform
can be adopted to reconstruct the 2D image of the spinning target. The 2D ISAR imaging method
for the spinning target mainly comprises two steps: (1) range compression and (2) inverse Radon
transform [27]. The following discussions are based on two assumptions: (1) the translational motion
has been compensated and (2) the target rotates around a fixed axis with a constant frequency in the
imaging interval.
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Suppose that the radar transmits linear frequency modulated (LFM) signal to achieve high range
resolution. The transmitted signal is expressed as follows:

s(t̂, tm) = rect(
t̂

Tp
) exp(j2π( fct +

1
2

γt̂2)) (1)

where rect( t̂
Tp
) =

{
1, −Tp/2 ≤ t̂ ≤ Tp/2

0, others
denotes the window function. t̂ and tm are the fast-time

variate and slow time variate, respectively. Tp, fc, and γ are the pulse width, the carrier frequency, and
the chirp rate, respectively. Therefore, the expression of the radar echo is determined by

s(t̂, tm) =
P
∑

i=1
σi exp

[
j2π fc(t̂− 2ri(tm)

c ) +jπγ(t̂− 2ri(tm)
c )

2
]

, t̂ ∈
[
− Tp

2 , Tp
2

] (2)

where σi, c, and p are the scattering coefficient of the i-th scatterer, the speed of light, and the number
of the scatterers, respectively. ri(tm) is the distance between the i-th scatterer and the radar.

After performing the range compression in the fast-time domain and neglecting the migration
through the range cell, the radar echo in frequency and slow time domain can be written as:

sr( fr, tm) = Tp
P
∑

i=1
σi sin c(Tp( fr − 2γ

c · R∆i(tm)))

· exp(−j 4π
c fc · R∆i(tm))

(3)

where R∆i(tm) = Rre f (tm)− ri(tm), Rre f (tm) is defined as the distance between the imaging center
point P and the radar. The imaging center point only possesses translational motion and its range
profile is a straight line. The micro-Doppler signature of the spanning scatterer in the fr − tm domain
is sinusoid which is identical to the Radon transform of its distribution function.

For the imaging plane, suppose that the imaging center point locates at the origin of the coordinate
system and the distribution function of the i-th scatterer is δ(x− xi, y− yi). When the inverse Radon
transform is employed to obtain the 2D image of the spinning target, Equation (3) can be expressed as
follows:

sr(ρ, θ) = Tp
P
∑

i=1
σi sin c( 2B

c (ρ− R∆i(θ)))

· exp(−j 4π
c fc · R∆i(θ))

(4)

where B = Tpγ is the signal bandwidth and ρ = c
2γ fr is the range variate. Because the imaging center

point is the origin of the coordinate system in the imaging plane, R∆i(θ) is expressed as follows:

R∆i(θ) = xi cos θ + yi sin θ (5)

Therefore, the fr − tm domain is transformed to the ρ− θ domain. The rotation radius of the i-th

scatterer Ri =
√

x2
i + y2

i and the support range of ρ in (4) is [−Ri, Ri]. Therefore, the modulus of (4)
is transformed to the 2D image of the spinning target by performing the inverse Radon transform.
The filtered back-projection algorithm is often applied to realize the inverse Radon transform [8]. After
performing the filtered back-projection algorithm to the modulus of (4), the reconstructed 2D image is
expressed as follows:

I(x, y) =
σTp

2π

p

∑
i=1

∫ π

0
Gi(s, θ) ∗

{
ai(s) sin c(

2B
c

s)
}

dθ (6)
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with

Gi(s, θ) = 2π2 sin c(s− R∆i(θ))−
16
π2 sin c2(

s− R∆i(θ)

2
) (7)

and

ai(s) =

{
1, |s| ≤ Ri
0, |s| > Ri

(8)

3. Geometric Model and Mapping Process

As mentioned above, the proposed method to produce the 3D image of the spinning target is
aimed at minimizing the absolute error between the 2D image and the mapping image. After the 2D
image is obtained by the range compression and inverse Radon transform, the next task is to produce
the mapping image. In this section, the geometry model for the radar network imaging is analyzed at
first. Then, the process of mapping the spinning scatterers onto the imaging plane is analyzed and the
mapping formulas are derived.

3.1. Geometry Model

The geometry model for the radar network imaging is shown in Figure 1, where three radars will
simultaneously and independently observe the target from different angles and the target is located in
the far field. The observation data in the different perspectives will be fused to overcome the anisotropy
problem. A local Cartesian coordinate (R1, U, V, W) is defined, where the origin R1 is the location
of Radar 1. The coordinate system (P, X, Y, Z) move along with the translational motion direction
and the origin P is the imaging center point. The axis U, V, and W are parallel with the axis X, Y,
and Z, respectively.
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Figure 1. The radar network imaging geometry.

Suppose the point Q is a scatterer. The vector matrix Rro, r = (rX , rY, rZ), and ω = (ωX , ωY, ωZ)

denote the rotation matrix, coordinates of the scatterer, and angular velocity vector with respect to
the coordinate system (P, X, Y, Z), respectively. The vector v = (vu, vv, vw) is defined as the velocity
vector of the translational motion with respect to the coordinate system (R1, U, V, W). Among them,
the rotation matrix Rro is determined by

Rro(t) = exp(Ωω̂′t)
= I + ω̂′ sin(Ωt) + ω̂′2(1− cos(Ωt))

(9)
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where Ω = ‖ω‖2, ω′ = ω/Ω = (ω′X , ω′Y, ω′Z)

ω̂′ =

 0 −ω′Z ω′Y
ω′Z 0 −ω′X
−ω′Y ω′X 0

 (10)

To analyze the mapping process, it is effective to analyze the 2D imaging principle. The diagram
of the spinning target in the imaging scene is shown in Figure 2. The spinning scatterers incorporate the
micromotion and translational motion, while the imaging center point incorporates the translational
motion. Therefore, the distance between the radar and the spinning scatterer is calculated as follows:

ri(tm) = ‖R0 + v · tm + Rro(tm) · r‖2 (11)

and the distance between the radar and the imaging center point is calculated as follows:

Rre f (tm) = ‖R0 + v · tm‖2 (12)

where R0 = P0 − R1 is the vector from the radar 1 to the imaging center point with respect to the
coordinate system (R1, U, V, W) at the imaging initial moment. P0 = (u0, v0, w0) is the coordinates of
the imaging center point and R1 = (ur, vr, wr) is the coordinates of the radar 1.
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Figure 2. The diagram of the spinning target in the imaging scene.

Support the point O′ is the mapping of the point P on the spinning plane and the line PO′ is
parallel with the spinning axis. Thus, the line PO′ is perpendicular to the spinning plane and is parallel
with the bulk-motion direction. The line G H ′ is parallel with the line PH which is the extension cord
of the line R1P and the point O′ is the intersection between the line PO′ and the line G H ′. Therefore,
the plane HPG H ′ is the imaging plane. The axis x′ is defined as the intersection between the plane
HPG H ′ and the spinning plane, and the axis y′ constrained on the spinning plane is perpendicular
to the axis x′. Support the point Q is a scatterer and the line Q Q ′ is perpendicular to the axis x′.
Because the line Q Q ′ is perpendicular to the axis x′ and the line PO′, respectively, the line Q Q ′ is
perpendicular to the plane HPG H ′ and the point Q ′ is the mapping of the scatterer on the imaging
plane. Let the line H H ′ be perpendicular to the line PH and the point Q ′ be the intersection between
the line H H ′ and the axis x′. Because the line G H ′ is perpendicular to the line Q Q ′ and the line
Q ′ H ′, the line G H ′ is perpendicular to the line Q H ′.
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According to the geometrical relationship, the relative distance between the scatterer Q and the
imaging center point can be calculated. The point Q ′ is located on the axis x′, and the coordinates of
the point Q ′ is defined as (x′Q, 0) with respect to the coordinate system (O,x′, y′). Considering that
the target is located in the far field, the approximate solution of the relative distance R∆Q(tm) will be
determined by

R∆Q(tm) = rQ(tm)− Rre f (tm) ≈ lPH = lG H ′
= cos(ϕ) · x′Q + lGO′

(13)

where cos(ϕ) and lGO′ are the constant, as shown in Figure 2. For the spinning scatterer Q, the
coordinate x′Q is a sinusoidal function of time. Therefore, the micro-Doppler signature is a sinusoidal
function of frequency due to the coordinate x′Q.

3.2. Analysis of the Mapping Process

Because the scatterer spins around and around, when the spinning scatterer is mapped onto
the imaging plane is not clear. Therefore, it is necessary to deduce the mapping moment when the
spinning target is mapped onto the imaging plane.

In the 2D continuous space, the Radon transform of the image I(x, y) over the axis ρ at a given
angle θ is

g(ρ, θ) =
x

I(x, y)δ(x cos θ + y sin θ − ρ)dxdy (14)

For the distribution function δ(x− xr, y− yr), its Radon transform can be expressed as follows:

gr(ρ, θ) =
s

δ(x− xr, y− yr) · δ(x cos θ + y sin θ − ρ)dxdy
= δ(xr cos θ + yr sin θ − ρ)

(15)

Therefore, the Radon transform of the distribution function of a point in the ρ− θ domain satisfies

xr cos θ + yr sin θ = ρ (16)

As usually reported, ρ is the length of the apothem associated with the chord formed when
a straight line secant to the spinning scatterer, and θ is the angle between the x axis and the line
perpendicular to the chord. For the fixed point, xr and yr are the constant, and the gr(ρ, θ) is a sinusoid
in the ρ− θ domain. The inverse Radon transform of gr(ρ, θ) is the reconstructed distribution function
δ(x− xr, y− yr).

Let a spinning point Ps rotate clockwise around the origin of the coordinate system like the
spinning scatterer, as shown in Figure 3. The coordinates of the spinning point Ps are (xs, ys) and the
angle between the line PsO and the x axis is α at the initial time. After the point Ps spins by γ degree,
the coordinates about the x axis can be calculate as follows:

x′s =
√

xs + ys · cos(α− γ)

=
√

xs + ys · (cos γ · cos α + sin γ · sin α)

=
√

xs + ys · (cos γ · xs√
xs+ys

+ sin γ · ys√
xs+ys

)

= xs cos γ + ys sin γ

(17)
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By contrasting (16) and (17), it is found that the variable ρ, θ and the constant xr, yr are equivalent
to the variable x′s, γ and the constant xs, ys, respectively. By analogy, the point distribution function
δ(x− xs, y− ys) can be regarded as the result of the inverse Radon transform in the x′s − γ domain.
Suppose the spinning point Ps is a scatterer, Equation (17) should become the micro-Doppler signature
of the spinning scatterer, and its micro-Doppler signature can be roughly depicted as Figure 4a.
Therefore, we can infer that, by performing the inverse Radon transform to the micro-Doppler signature,
it is transformed to the distribution function δ(x− xs, y− ys) on the imaging plane. The distribution
function indicates the coordinates of the spinning scatterer at the spinning initial time. The spinning
initial time can be considered as the imaging initial time.
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Micro-Doppler signature induced by micromotion is the imaging result in range-slow time domain
or frequency-slow time domain. For the spinning scatterer in the imaging scene, the amplitude of
the micro-Doppler signature will vary as the variable x′Q change, as shown in (13). There is a linear
relationship between the relative distance R∆Q(tm) and the coordinate x′Q, thus the R∆Q(tm) − tm

relation curve (i.e., micro-Doppler signature) can be roughly depicted as Figure 4b. Because the angle
ϕ is determined by the initial coordinates of the scatterer in the x′ − y′ domain, the initial phase of the
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micro-Doppler signature is also determined by the initial coordinates. The sinusoidal curve in the
x′′ − θQ domain generated with the scatterer rotation is identical to the micro-Doppler signature (as
shown in Figure 4b), where the coordinate x′′Q is the linear transform of the variable x′Q like (13) and
the angle θQ is the rotation angle of the scatterer. After performing the inverse Radon transform to
the sinusoidal curve in the x′′ − θQ domain, the transform results is the distribution function of the
spinning scatterer in the x′′ − y′ domain and the distribution function indicates the scatterer position
at the imaging initial time. Then, the distribution function of the scatterer in the x′ − y′ domain can be
obtained by performing the linear transform to the coordinate x′′Q. Considering that the coordinate
system (O′,x′, y′) is on the spinning plane, we define the 2D image plane as the spinning plane.
Therefore, the 2D image obtained by the range compression and the inverse Radon transform can be
regarded as the mapping of the spinning scatterer on the 2D image plane. The imaging initial time is
the mapping time. After the linear transform in the x′ domain, the mapping will be equivalent to the
2D image.

3.3. Mapping Formulas and Mapping Image

Let the vector n1 and n2 denote the normal vector perpendicular to the plane HPG H ′ and the
spinning plane, respectively. Among them, the vector n1 is the cross product between the vector R0

and v, while the vector n2 is parallels with the vector v. The vector n1 and n2 are expressed as follows:

n1 = R0 × v =

∣∣∣∣∣∣∣
i j k

u0 − ur v0 − vr w0 − wr

vu vv vw

∣∣∣∣∣∣∣ (18)

n2 = v = (vu, vv, vw) (19)

where i, j, and k are the unit vector of the axis with respect to the coordinate system (R1, U, V, W).
Because the axis x′ is perpendicular to the vector n1 and n2, the normal vector nx′ of the axis x′ will
be calculated by the cross product operation. The normal vector ny′ of the axis y′ is the cross product
between the vector nx′ and v. Thus, the vector nx′ and ny′ are expressed as follows:

nx′ = n1 × n2 (20)

ny′ = nx′ × n2 (21)

The Q′′ is selected as a spinning point which will be mapped onto the 2D image plane.
Suppose the coordinates of the point Q′′ is

(
uQ′′ , vQ′′ , wQ′′

)
with respect to (R1, U, V, W). Therefore,

the plane Sb which is the spinning plane of the point Q′′ and is perpendicular to the vector n2 can be
expressed as follows:

n2 · (Sb −Q′′ )T = 0 (22)

where the Sb is the coordinates of the point on the plane Sb. Let the point O ′ be the mapping of the
imaging center point on the 2D image plane. The mapping line through the imaging center point and
perpendicular to the 2D image projection plane is expressed as follows:

l0 = n2 · t + P0 (23)

where l0 is the coordinates of the mapping line with respect to the real variate t. The mapping of the
imaging center point is the intersection of the plane Sb and the mapping line. Substitute the formula of
the mapping line into the formula of the plane Sb, we can gain the expression as follows:

n2 · (n2 · t + P0 −Q′′ )T = 0 (24)
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Equation (24) can be written as:

t = −
(

n2 · (P0 −Q′′ )T
)

/‖n2‖2
2 (25)

The coordinates of the point O ′ with respect to (R1, U, V, W) will be calculated as follows:

O′ = (uO′ , vO′ , wO′) = −n2 ·
(

n2 · (P0 −Q′′ )T
)

/‖n2‖2
2 + P0 (26)

Depending on the normal vector nx′ , ny′ , and the coordinates O′, the coordinate system
( O ′ ,x′, y′) is built on the 2D image plane.

The coordinates of the point Q ′′ in the x′ − y′ domain can be calculated by

x′Q′′ =
cos
〈
O′Q′′ , nx

〉∣∣cos
〈
O′Q′′ , nx

〉∣∣ · ∣∣O′Q′′ ∣∣ sin
〈
O′Q′′ , ny

〉
(27)

y′Q′′ =
cos
〈
O′Q′′ , ny

〉∣∣cos
〈
O′Q′′ , ny

〉∣∣ · ∣∣O′Q′′ ∣∣ sin
〈
O′Q′′ , nx

〉
(28)

where the vector O′Q′′ is (uQ′′ − uO′ , vQ′′ − vO′ , wQ′′ − wO′). As shown in Figure 2, the constant
cos(ϕ) and lGO can be calculated as follows:

cos(ϕ) = cos〈R0, nx〉 (29)

lGO = cos〈R0, n2〉 · ‖O′ − P0‖2 (30)

Therefore, after the linear transform, the coordinates of the point Q′′ in the x′′ − y′ domain can be
calculated as follows:

x′′ p = cos〈R0, nx〉 · x′Q′′ + cos〈R0, n2〉 · ‖O′ − P0‖2 (31)

y′p = y′Q′′ (32)

So far, the formulas for mapping the spinning point Q′′ onto the 2D image plane are presented.
As mentioned above, the proposed method makes use of the similarity of the imaging result with the
mapping on the 2D image plane to reconstruct the target 3D image. The air point whose mapping on
the 2D image plane coincides with the reconstructed point in the 2D imaging result could be a scatterer
and its position in 3D Cartesian space would contain a scatterer. Taking the imaging result minus the
mapping image of the air point is a way to determine the scatterer distribution. Therefore, it needs to
form the mapping image which has the same resolution unit with the 2D imaging result. The mapping
image can be achieved by using the mapping coordinates of the air points.

Let ρr denote the range resolution and Nr signify the sampling numbers on the range direction.
Thus, the length of the range bin in the 2D image is the ρr and the sampling numbers of the 2D image
on the range direction is Nr. The plane grid for the mapping image, which is same as the grid of the
imaging result, is depicted in Figure 5. Every grid unit may be occupied by the mapping point.
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For the imaging center point, its mapping point is O′. The serial number of the grid occupied by
the point O′ in the direction of the x′ axis and y′ axis are x′′′O′ = Nr/2 and y′′′O′ = Nr/2, respectively.
Therefore, the grid serial number with respect to the mapping of the point Q′′ is determined by

x′′′Q′′ = x′′′O′ +
〈

x′′Q′′ /ρr
〉

(33)

y′′′Q′′ = y′′′O′ +
〈

y′′Q′′ /ρr

〉
(34)

where the mathematical symbol 〈·〉 is the rounding-off method. Therefore, the mapping image is
achieved by calculating the serial number about the mapping point and filling the corresponding grid
unit. To measure the similarity of two images, we can calculate the minus value between the imaging
result and the mapping image. In this way, the scattering distribution would be confirmed.

4. 3D Image Reconstruction for Spinning Target

In this section, the reconstruction method for the 3D image of the spinning target is proposed
based on the radar network. The radar network is constituted by the distributed radars and each
radar observes the target independently from different perspective. According to the anisotropy, the
available scattering information for each radar would normally be incomplete due to the limited
observation perspective, even though the monostatic radar may observe the air target for a long time.
Therefore, each radar would provide partial observation information about the target and all the
observation information should be fused to form the 3D image. In this paper, a reconstruction method
for the scattering distribution is proposed based on the monostatic radar, but the scattering distribution
is incomplete due to the anisotropy. Then, by fusing all the scattering distribution, the 3D image of the
spinning target will be reconstructed.

4.1. Scattering Distribution Reconstruction Based on the Monostatic Radar

To generate the mapping image, it needs to map the air points onto the 2D image plane. In the
process, the target area is transformed into a grid area to simplify the air point number. The grid area
is defined as the cube which is large enough to contain all the target scatterers, as shown in Figure 6.
All the scatterers are in the grid cell of the grid area. Because the resolution to recognize the flight
target is less than 0.3m as reported, the grid cell could be defined as a cube whose length is 0.25 m on
a side. When the mapping of the grid cells onto the 2D image plane coincides with the 2D imaging
result, these cells among the grid area are considered as the potential cells where the scatterers locate
with high probability. Therefore, it is feasible to construct the scattering distribution of the spinning
target by searching out the scatterers from the grid area.
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Figure 6. The air grid area. The target 3D model is constituted by the black points which are considered
as the target scatterers. All the scatterers are in the cell.

However, not all the potential cells contain the scatterers, because the point on the plane parallel
to the target’s bottom may have the same mapping as the scatterers. Therefore, for reconstructing the
3D image of the spinning target, it is necessary to determine which plane is the target’s bottom and
which cells on the plane contain the scatterers.

It is well known some target characteristics can be obtained from the micro-Doppler signatures,
thus the micro-Doppler signatures may provide the micro-Doppler feature about the target’s bottom.
Substitute the (13) into the (3), the micro-Doppler signature in the time-frequency domain can be
expressed as

sr( fr, tm) = Tp
P
∑

i=1
σi sin c(Tp( fr +

2γ
c · cos(ϕ

)
· x′Q(tm) +

2γ
c · lGO′))

· exp(−j 4π
c fc · R∆i(tm))

(35)

The time-frequency micro-Doppler signature is the sinc function and is also the range profiles of
the scatterers. The frequency value of the micro-Doppler signature is determined by the sum of the
second and third terms of the sinc function where the second term is a sinusoid with respect to the
time and the third term is a constant. Therefore, for the micro-Doppler signature, the amplitude of the
sinusoid is influenced by the second term of the sinc function and the offset distance of the sinusoid
in the frequency domain is determined by the third term. The sinusoid and the offset distance in the
frequency domain are shown in Figure 7.

1 
 

 

Figure 7. Time-frequency micro-Doppler signature. The blue line is zero frequency line and the black
dotted line is the line whose frequency is equal to the offset distance.
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Because the coordinates of the imaging center point P and the normal vector n2 are known, the
target’s bottom can be confirmed by calculating the length of the line PO′. As shown in Figure 2, the
length of the line PO′ can calculated by the length lGO′ and the angle β according to the law of Sines.
The angle β is calculated as follows:

β = arccos
|R0 · n2|
|R0| · |n2|

(36)

Because the offset distance d = 2γ
c · lGO′ , the length lGO′ can be calculated after the offset distance

d is obtained. The EHT is a method for sinusoid detection and four-parameter estimation by mapping
the sinusoid to a four-parameter space [33]. The four parameters include the angle frequency, initial
phase, maximum extent, and offset distance of the sinusoid. Therefore, the offset distance can be
calculated by the EHT and the mapped sinusoid is the micro-Doppler signature.

As mentioned above, the imaging result is identical to the mapping image, thus we attempt to
reconstruct the scattering distribution of the spinning target by using the principle. The scattering
distribution reconstruction model based on the monostatic radar for the spinning target can be
determined by

minimize ‖Fm(X)− Im‖2

s.t.

{
X(i, j, k) ∈ {0, 1}

X ∈ G′ ⊆ G
(37)

where the three-dimensional matrix X representing the grid area matrix contains only 0 or 1.
The element 1 in the matrix X, such as X(i1, j1, k1) = 1, indicates that the cell (i1, j1, k1) contains
a scatterer. The matrix set G expresses the search scope of the matrix X and the matrix set G′ expresses
a part of the matrix set G. For the matrix set G′, the cells whose offset distance of the micro-Doppler
signature are unequal to 2γ

c · lGO′ contain no scatterer. Thus, the elements corresponding to these
cells in the matrix X are always 0, and other elements may be 0 or 1. For the m-th radar in the radar
network, the function Fm(·) is the mapping formulas and the two-dimensional matrix Im is the 2D
image obtained by the range compression and inverse Radon transform. The goal of the model is to
minimize the reconstruction error.

The proposed algorithm for solving the scatterering distribution reconstruction model is depicted
in Algorithm 1. Let the optimum matrix be denoted by Xopt_m, and let Nc be the cell number on the
side of the cubic grid area.

For the situation that the scatterers are not on the same spinning plane, the reconstruction
algorithm also applies to the scattering distribution reconstruction model. For two scatterers which
have different spinning plane, their micro-Doppler signatures have different offset distance. After
performing the Radon transform to every reconstructed point in the 2D image, the micro-Doppler
signature about every point is extracted and its offset distance can be calculated by the EHT. The
different spinning plane can be distinguished by the different offset distance. For the different
spinning planes (i.e., the different length lGO′ ), their scattering distribution can be obtained by using
the reconstruction algorithm, respectively. All the scattering distribution which is observed by
the individual radar in the network would constitute the intact scattering distribution about the
spinning target.
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Algorithm 1. A reconstruction algorithm for solving the scattering distribution reconstruction model.

Algorithm for (37)

1. Define the set γ =
{

1, 2, 3, . . . , N3
c − 1, N3

c
}

as the serial number of cells of the grid area;
2. Obtain the 2D image Im with respect to the m-th radar by the range compression and inverse Radon
transform;
3. Extract the micro-Doppler signature about every reconstructed point in the 2D image by the Radon
transform;
Obtain the offset distance d by the EHT and calculate the length lGO′ = d · c

2γ ;
Set X = 0 and the set of the cells which are on the spinning plane is αm = ∅;
4. For i = 1 : N3

c
Set i is the serial number of the cell and its coordinates are ci = (ui, vi, wi) with respect to the coordinate
system (R1, U, V, W);
Calculate the distance dpi between the imaging center point and the i-the cell, i.e., dpi = ‖P0 − ci‖2;
Calculate the distance d′pi from the imaging center point to the spinning plane of the i-the cell, i.e.,

d′pi = dpi ·
|(P0−ci)·n2|
|P0−ci |·|n2| ;

Define the mapping of the imaging center point on the spinning plane of the i-the cell is O′′
i ;

According to the distance d′ pi and the angle β, the length lGO′ i can be calculated by lGO′ i = d′ pi · cos(β);
If lGO′ i = lGO′

αm = αm ∪ i;
end
end
G′ = {X|X(γ− αm) = 0 , X ∈ G};
5. Set αm is the number of the elements in the set αm;
For n = 1 :αm

Set X(αm(n)) = 1;
Calculate the mapping Fm(X) according to the mapping formulas;
Dmi = ‖Fm(X)− Im‖2;
If Dmi < ‖Im‖2
βm = βm ∪ n;
end
Set X = 0;
end
6. Set βm is the number of the elements in the set βm;
For j = 1 :βm

X(βm(j)) = 1;
end
The optimum matrix Xopt_m = X;
7. end.

4.2. 3D Image Reconstruction Based on the Radar Network

In the process of reconstructing the 3D image of the spinning target, we wish that every radar in
the radar network has the minimal error between its imaging result and its mapping image. In addition,
the reconstructed 3D image should not be constituted by superabundant scatterers. To minimize the
error and control the number of the reconstructed scatterers, the 3D image reconstruction model for
the spinning target based on the radar network is determined by

minimize ω ·
Nc
∑

i=1

Nc
∑

j=1

Nc
∑

k=1
X(i, j, k) +

M
∑

m=1
‖Fm(X)− Im‖2

s.t.

{
X(i, j, k) ∈ {0, 1}

X ∈ G′ ⊆ G

(38)
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The parameter ω is the weight coefficient of the reconstructed scatterer number. In contrast
to the scattering distribution reconstruction model in (37), the 3D image reconstruction model can
be considered as the superposition of all scattering distribution reconstruction models. Every radar
will obtain a scattering distribution which is affected by its observation perspective. Because every
scattering distribution reconstruction model has linear relation with the others in the 3D image
reconstruction model and they have no tight coupling, every reconstructed matrix Xopt_m is mutually
independent. The 3D image of the spinning target can be generated by adding up all the scattering
distribution (i.e., all the reconstructed matrix).

The concrete steps of the 3D image reconstruction for the spinning target based on radar network
are as follows:

1. Obtain the ISAR imaging results with respect to every radar by the range compression and
inverse Radon transform.

2. Extract the reconstructed points in the imaging results (i.e., the peaks in the images), and perform
the Radon transform to every reconstructed point to obtain its micro-Doppler signature.

3. Calculate the offset distance of every micro-Doppler signature by the EHT.
4. Determine the mapping formulas for every radar by (18)~(34).
5. Reconstruct the scattering distribution on every spinning plane by the scattering distribution

reconstruction method. When the scattering distribution about every radar is obtained, go to
step 6.

6. Reconstruct the 3D image of the spinning target by adding up all the scattering distribution.

4.3. Error Analysis

As shown in the algorithm flow, the main steps for reconstructing the 3D image contain ISAR
imaging, the mapping image generation, and 3D image reconstruction. Because of the resolution ρr in
ISAR imaging, the resolution of the mapping image must be equal to ρr. Therefore, in the mapping
process, the mapping result would exist the mapping error in the direction of the x′ axis and the
axis y′, and the mapping error range is −ρr/2 ∼ ρr/2 in the x′ − y′ domain. In addition, in the
process of calculating the offset distance by the EHT, the distance error would result in the part of the
reconstruction error in the direction perpendicular to the spinning plane. For any two points, suppose
the d′ and d′ + ∆d′ are the distance from the imaging center point to the spinning plane of the points,
respectively. Let the x′ and x′ + ∆x′ are the coordinates in the corresponding x′ axis, respectively.
When the inequality (39) is met, the two points have the same mapping position in the mapping image.
Thus, suppose one of the points is a scatterer, then the two points are all likely to be considered as
the scatterer.

− ρr

2
≤ cos ϕ ·

(
x′ + ∆x′

)
+ cos β ·

(
d′ + ∆d′

)
−
(
cos ϕ · x′ + cos β · d′

)
≤ ρr

2
(39)

Inequality (39) can be rewritten as:

−0.5ρr − cos β · ∆d′

cos ϕ
≤ ∆x′ ≤ 0.5ρr − cos β · ∆d′

cos ϕ
(40)

Equation (40) is also the error range of the mapping image in the direction of the x′ axis, and
we can see that the range of ∆x′ (i.e., the error range) is always ρr/cos ϕ regardless of ∆d′. Therefore,
the maximum of the reconstruction error is ρr/cos ϕ in the direction of the x′ axis, then the resolution
in this direction can be considered as ρr/cos ϕ. Because yp = y′Q′′ as shown in (32), the error range in
the direction of the y′ axis is −ρr/2 ∼ ρr/2, and the resolution in the direction is ρr.
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5. Results

In this section, we contrast the imaging results with the mapping images of the target model to
verify the validity of the mapping formulas firstly. After extracting the micro-Doppler curves and
calculating the offset distance, the scattering distribution for every radar is reconstructed and the 3D
image reconstruction is accomplished by fusing all the scattering distributions.

5.1. Comparison between the Imaging Result and the Mapping Image of the Target Model

The radar network is composed of three imaging radars which are located at [0, 0, 0] km, [10, 5, 1]
km, and [2, 20, 0] km, respectively. All the radars have the same configuration. The radar bandwidth
is 300 MHz, the range resolution is 0.5 m, and the radar pulse repeated frequency (PRF) is 1000 Hz.
The position of the imaging center point is (5, 10, 33) km at the initial moment, the velocity vector is
(−500.35,−50.35,−20) m/s, and the angular velocity vector is (2π, π/5, π/11) rad/s.

The radar distribution is shown in Figure 8 and the spinning target consisting of 9 ideal scatterers
is shown in Figure 9. In Figures 8 and 9, the units are in kilometers. To verify the mapping formulas,
the mapping images of the target model are compared with the imaging results. The comparison
results are illustrated in Figure 10. In this experiment process, the target containing more scatterers
would make it more convincing, thus the anisotropy problem may not be considered in this part.
Three radars image the target from the different perspectives independently and simultaneously.
The time to calculate the mapping image must be consistent with the imaging initial time. The imaging
results are illustrated in Figure 10a,c,e and the mapping images are illustrated in Figure 10b,d,f. We can
see that the mapping image of the spinning target are identical with the 2D imaging results, thus the
veracity of the mapping operation and formulas are verified.
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Figure 10. The comparison between the 2D imaging results and the mapping image. (a,c,e) are the
imaging results obtained by Radar 1, 2, and 3, respectively. (b,d,f) are the mapping image with respect
to Radar 1, 2, and 3, respectively.

5.2. 3D Image Reconstruction

Due to the anisotropy problem, any one of the radars cannot observe all the scatterers, thus we
pin our hope on the radar network which can observe the target from the different perspectives and
may observe all the scatterers. For the ideal scatterer model, we preset the scattering distribution
for every radar according to the relative position of the target and the radar, and the radar can only
observe partial target scatterers. For every radar, the scattering distribution they can observe is
illustrated in Figure 11. Radars image the target independently and the micro-Doppler signatures
obtained via the range compression are shown in Figure 12a,c,e. After performing the inverse Radon
transform to the micro-Doppler signatures, the imaging results are shown in Figure 12b,d,f. The extend
Hough transform has better performance when there is only one sinusoid curve. Therefore, to
calculate the offset distance exactly, we extract the reconstructed points in the imaging results (i.e.,
the peaks in the images), respectively. After that, for every reconstructed point, its micro-Doppler
signature is reconstructed by the Radon transform as shown in Figures 13–15. The offset distance
of the micro-Doppler signature about the reconstructed point in the 2D image can be calculated by
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the extended Hough transform. The offset distance parameters obtained via the extended Hough
transform are illustrated in Table 1. Taking advantage of the 2D imaging results, the imaging moment,
and the offset distance parameter, the scattering distribution about every radar can be reconstructed by
the scattering distribution reconstruction method. The reconstruction results are shown in Figure 16.
The 3D image of the spinning target based on the radar network is obtained by fusing all the scattering
distribution. The simulation results are shown in Figure 17. It has proven that the proposed method is
efficient to reconstruct the 3D image of the spinning target in the radar network.

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 27 

 

   

(a) (b) (c) 

Figure 11. Scattering distribution. (a–c) are the observable scattering distribution from Radar 1, Radar 
2, and Radar 3, respectively. 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 12. Micro-Doppler signature and 2D imaging results obtained by the radars. (a,b) are the 
results obtained by Radar 1. (c,d) are the results obtained by Radar 2. (e,f) are the results obtained by 
Radar 3. 

  
(a) (b) 

Figure 11. Scattering distribution. (a–c) are the observable scattering distribution from Radar 1, Radar
2, and Radar 3, respectively.

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 27 

 

   

(a) (b) (c) 

Figure 11. Scattering distribution. (a–c) are the observable scattering distribution from Radar 1, Radar 
2, and Radar 3, respectively. 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 12. Micro-Doppler signature and 2D imaging results obtained by the radars. (a,b) are the 
results obtained by Radar 1. (c,d) are the results obtained by Radar 2. (e,f) are the results obtained by 
Radar 3. 

  
(a) (b) 
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obtained by Radar 1. (c,d) are the results obtained by Radar 2. (e,f) are the results obtained by Radar 3.
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Figure 15. The micro-Doppler signatures are reconstructed by the Radon transform. (a–d) represent
the micro-Doppler signature with respect to one of the reconstructed scatterers in Figure 12f.
To evaluate the performance of the proposed algorithm quantitatively, the mean square error

(MSE) of the recovered 3D target geometry is calculated in the terms of Euler distance error. For each
signal-to-noise ratio (SNR), 500 different noise realizations are used to calculate the average MSE.
The imaging performance of the proposed method is compared with the interferometric 3D imaging
method in different SNR (as shown in Figure 18a). Unlike the interferometric 3D imaging method
which will be affected when the noise is overwhelming, the MSE of the reconstructed scatterers
obtained by the proposed method is small (as shown in Figure 18). Thus, the proposed algorithm has
very good robustness to noise. Practically, the 2D ISAR imaging method can get rid of much noise so
that the 2D imaging result is almost unaffected by noise.

The spinning scatterer with the steady angular velocity has sinusoidal modulus and phase in the
range-slow time domain, thus its micro-Doppler signature which is a sine function can be transformed
into the distribution function of the spinning scatterer by the inverse Radon transform. When the
inverse Radon transform is used to calculate the 2D image, the angular velocity, strictly speaking,
should be a constant and could not change. The situation that the angular velocity changes slightly is
analyzed by the simulation experiments to the imaging performance, and the results are as shown in
Figure 19.

Table 1. The Offset Distance.

Offset Distance (m)
(Radar 1)

Offset Distance (m)
(Radar 2)

Offset Distance (m)
(Radar 3)

Sinusoid a 1.006 1.033 0.61
Sinusoid b 1.002 1.033 0.608
Sinusoid c 0.718 0.74 0.434
Sinusoid d 0.72 0.741 0.435
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Figure 16. Scattering distribution reconstruction results. The units are in kilometers. (a–c) are the
reconstruction results obtained by Radar 1, Radar 2, and Radar 3, respectively. The asterisks and the
circles represent the target model and the reconstructed scattering distribution, respectively.

It can be seen that the 2D imaging method can produce the image with lesser error when the
angular velocity changes ten degrees per second, thus 3D image with less reconstruction error can be
obtained. While the angular velocity changes twenty degrees per second, the 2D image (i.e., Figure 19c)
exists obvious different compared to Figure 19a. We roughly estimate that the 2D imaging result starts
to deteriorate when the angular velocity changes more than ten degrees per second. The lower-quality
2D image will severely degrade performance of the 3D image reconstruction.
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Figure 17. 3D image reconstruction result of the spinning target and its three different views. The units
are in kilometers. (a) The reconstructed 3D ISAR image. (b) The reconstructed 3D ISAR image in the
plane U-V. (c) The reconstructed 3D ISAR image in the plane U-W. (d) The reconstructed 3D ISAR
image in the plane V-W. The asterisks and the circles represent the target model and the reconstructed
scattering distribution, respectively.
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6. Discussion

The greatest strength of the proposed method is to prove a method for the radar network to
reconstruct the 3D image of the spinning target, and the anisotropy problem which is caused when the
radars in the network observe the target from the different perspectives is overcome in the proposed
method. At present, interferometric technique is regarded as an effective method to reconstruct the
3D image with high precision, and there are several novel and cutting-edge papers [10,11,14,20,30]
which study the interferometric technique to reconstruct the 3D target image. In the interferometric
3D imaging method, L-shaped three-antenna configuration or the Bistatic radar configuration is
necessary to generate the interferometric signal and calculate the interferometric phase. However,
how to reconstruct 3D target image by the radar network which is constituted by several independent
imaging radars is relatively unexplored. Because the radar network possesses high flexibility in the
radar configuration, it has the potential to improve the 3D imaging quality and overcome the existing
problems in the process of the 3D imaging.

The main problem of the interferometric 3D imaging technique is the robustness to noise.
Because the noise affects the interferometric phase, the interferometric results in position will generate
deviation from the real value. Therefore, the performance of the interferometric 3D imaging method is
always affected when the noise is overwhelming. As reported in the paper [12], when SNR is higher
than 3 dB, MSE holds a steady trend which is less than about 0.3 m, and the interferometric 3D imaging
method can achieve satisfactory results. By contrast, the 3D image reconstruction method proposed in
this paper has a better robustness to noise, as shown in Figure 18. When SNR is at the level of −15
to 20 dB, the MSE of the reconstructed scatterers obtained by the proposed method is small. For the
proposed method, the primary task is to obtain the 2D imaging result of the spinning target and the
mapping of the air points. The 2D imaging method depending on the range compression can get rid of
much noise, while the mapping process does not involve noise. Therefore, the reconstructed 3D image
result obtained by the proposed method is less affected by noise.

Although the reconstruction error does not appear to be easily seen in the reconstructed 3D
image, as shown in Results, the reconstruction error is virtually existent as recited in Error analysis.
The mainly reason of the error produced is the gridding air area and the gridding imaging plane.
This kind of error can also be considered as the reconstruction resolution. There is another aspect to
the error produced: the calculation error, such as calculating the offset distance by the EHT, would
lead to the reconstruction error. However, as shown in the simulation experiment, the reconstruction
error could be small when selecting the appropriate air grid size, i.e., the appropriate resolution.

The proposed 3D image reconstruction method can overcome the anisotropy problem and the
strong noise and is appropriate for the target with slightly variational angular velocity, however, it is
evident that the full potential of radar network to reconstruct the spinning target 3D image has not
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yet been explored. A few research priorities and recommendations on the way ahead emerge from
this review:

1. As shown in the experiments, when the angular velocity changes roughly more than ten percent
per second, the 2D imaging result starts to deteriorate and it can severely degrade performance
of the 3D image reconstruction. Although the angular velocity is often considered as a constant
in current research, it is also significant to study the 3D image reconstruction for the target with
variational angular velocity. We urge future research to focus on the 2D and 3D imaging for the
spinning target with variational angular velocity.

2. The radars in network are required to observe the target from different angles simultaneously
and independently. In other words, we must use the observation data obtained by the different
radars in the same period. It obviously lacks the flexibility in the multi-radar observation. If we
can propose a radar network 3D imaging method which can adopt a flexibility observation mode,
it would have the potential to obtain a better 3D imaging result.

3. The optimal deployment problem of the radar network is an important research content in space
target surveillance and imaging task. Future research must be focused on the optimal deployment
problem of the radars to improve the performance of the 3D image reconstruction and the use of
the radar resources.

4. There is not real radar data we can use in the experiments of the 3D image reconstruction for
spinning target in radar network. On the one hand, now we indeed have no ability to set up a
real radar network experimental platform for the space target 3D image reconstruction problem.
On the other hand, there is bare minimum of available real radar data acquired by the radar
network in the field of the space target imaging research currently, especially the space spinning
target 3D imaging research. In current work [13–15], the simulation data is usually used to verify
the space target imaging method. Future work must be focused on constructing the real radar
network experimental platform and verifying the proposed method in using real radar data.

With the increasing numbers of the space targets and the enhancement of the interference in the
electromagnetic environment, it is difficult for the monostatic radar to complete all the reconnaissance
and surveillance tasks. Radar technique will surely move toward networked and intelligent. Aimed at
the networked direction, the proposed method in the paper has the potential to complete the 3D
imaging task for the air targets in future networked radar mode. In addition, the paper also has the
potential to be used in noise condition due to good robustness to noise.

7. Conclusions

In this paper, a novel 3D image reconstruction method for the spinning target based on the radar
network is proposed. The radar network composed of three dispersed imaging radars in the simulation
experiments can observe the target from the different perspectives and the anisotropy problem can be
overcome by fusing the observation information from the different perspectives. At first, the range
compression and inverse Radon transform is applied to form 2D image of the spinning target. Secondly,
the process of mapping the spinning scatterers onto the imaging plane is analyzed and the mapping
formulas to form the mapping image are derived. After the parameter (i.e., the offset distance) in the
micro-Doppler signature is calculated, the 3D scattering distribution reconstruction model based on
the monostatic radar and 3D image reconstruction model based on the radar network are constructed,
respectively. Afterwards, the algorithm for solving the scattering distribution reconstruction model
is proposed and the concrete steps of the 3D image reconstruction are given. The 3D image of the
spinning target is reconstructed by adding up all the scattering distribution observed from the different
perspectives, thus the anisotropy problem is overcome. Finally, the reconstruction error and the
resolution are analyzed, and the experimental results are presented to verify that the mapping formulas
and 3D image reconstruction method proposed in this paper are valid. In addition, the reconstruction
MSE with respect to SNR is presented. The MSE relatively holds a steady trend when the SNR is
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higher than−10 dB, while the curve of MSE steeply rise when the SNR is lower than−10 dB. However,
when SNR is at the level of −15 dB, the MSE of the recovered 3D target is less than 0.25 which is not
enormous. In conclusion, the main contribution of this paper in the field of the 3D imaging is that
it provides a 3D image reconstruction method for the radar network system to image the spinning
target and provides a novel 3D image reconstruction method by taking advantage of the similarity
of the imaging result with the mapping image. The mapping process is analyzed, and the mapping
formulas are derived. The 3D image reconstruction model is constructed and the algorithm for the
reconstruction model is proposed. Finally, the steps of the proposed method are given.
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