
remote sensing  

Article

Mapping Root-Zone Soil Moisture Using a
Temperature–Vegetation Triangle Approach with an
Unmanned Aerial System: Incorporating Surface
Roughness from Structure from Motion

Sheng Wang 1,* , Monica Garcia 1,2,*, Andreas Ibrom 1, Jakob Jakobsen 3,
Christian Josef Köppl 1, Kaniska Mallick 4 , Majken C. Looms 5 and Peter Bauer-Gottwein 1

1 Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
anib@env.dtu.dk (A.I.); chkop@env.dtu.dk (C.J.K.); pbau@env.dtu.dk (P.B.-G.)

2 International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades,
New York, NY 10027, USA

3 National Space Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; jj@space.dtu.dk
4 Department of Environmental Research and Innovation, Unit ENVISION, Luxembourg Institute of Science

and Technology, L-4422 Belvaux, Luxembourg; kaniska.mallick@gmail.com
5 Department of Geosciences and Natural Resource Management, University of Copenhagen,

1165 Copenhagen, Denmark; mcl@ign.ku.dk
* Correspondence: swan@env.dtu.dk (S.W.); mgarc@env.dtu.dk (M.G.)

Received: 8 October 2018; Accepted: 29 November 2018; Published: 7 December 2018
����������
�������

Abstract: High resolution root-zone soil moisture (SM) maps are important for understanding the
spatial variability of water availability in agriculture, ecosystems research and water resources
management. Unmanned Aerial Systems (UAS) can flexibly monitor land surfaces with thermal
and optical imagery at very high spatial resolution (meter level, VHR) for most weather conditions.
We modified the temperature–vegetation triangle approach to transfer it from satellite to UAS
remote sensing. To consider the effects of the limited coverage of UAS mapping, theoretical
dry/wet edges were introduced. The new method was tested on a bioenergy willow short
rotation coppice site during growing seasons of 2016 and 2017. We demonstrated that by
incorporating surface roughness parameters from the structure-from-motion in the interpretation
of the measured land surface-atmosphere temperature gradients, the estimates of SM significantly
improved. The correlation coefficient between estimated and measured SM increased from not
significant to 0.69 and the root mean square deviation decreased from 0.045 m3·m−3 to 0.025 m3·m−3

when considering temporal dynamics of surface roughness in the approach. The estimated SM
correlated better with in-situ root-zone SM (15–30 cm) than with surface SM (0–5 cm) which is
an important advantage over alternative remote sensing methods to estimate SM. The optimal
spatial resolution of the triangle approach was found to be around 1.5 m, i.e. similar to the length
scale of tree-crowns. This study highlights the importance of considering the 3-D fine scale canopy
structure, when addressing the links between surface temperature and SM patterns via surface energy
balances. Our methodology can be applied to operationally monitor VHR root-zone SM from UAS in
agricultural and natural ecosystems.

Keywords: Thermal and optical remote sensing; Tree height; Very high spatial resolution; Surface
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1. Introduction

Soil moisture (SM) is a key variable that controls the energy, water and carbon exchange between
the land surface and the atmosphere [1]. Quantification of SM is of critical importance for agriculture
and hydrological management [2,3]. Root-zone SM maps at very high spatial resolution (meter
level, VHR) are essential for monitoring vegetation growth and are beneficial to support irrigation
management [4].

In-situ methods, e.g., gravimetric, time domain reflectometry (TDR), or neutron probes, provide
accurate measurements of SM in one location, but are difficult to extrapolate to regional scales due
to the high spatial variability of SM [5]. The rapid development of remote sensing techniques, e.g.,
microwave, optical and thermal infrared, significantly promotes the ability to monitor SM at regional
to global scales; however, each technique has specific advantages and limitations [6–8]. Microwave has
an all-weather capability and can penetrate clouds to monitor SM at few centimeter depth. Satellite
passive microwave SM products have a coarse spatial resolution, e.g., AMSR-E, SMOS, and SMAP
(3–36 km), which limits their usefulness to assess SM at the farm scale. Contrarily, active microwave
sensors (SAR, ERS, and ENVISAT) have higher spatial resolution (10–100 m), but long repeat intervals
(16–25 days), and are not ideal for continuous SM monitoring. Further, SAR backscatter signals are
prone to roughness induced noise and hence provide less accurate surface SM estimates for vegetated
or cropped fields [9]. Besides, microwave remote sensing only has the capability to quantify SM in
first few (5–10) centimeters of soil [10], which may be decoupled from dynamics of SM in the root
zone. Combination of optical and thermal remote sensing observations from moderate to high spatial
resolution remote sensing satellites, e.g., MODIS (1 km), Landsat (100 m) and Sentinel 2 (10–60 m), can
infer SM in the root zone by detecting the vegetation temperature and estimating the transpiration
rate [11]. However, a major drawback of satellites is that they cannot provide optical and thermal
observations during cloudy conditions. This is an important issue for high latitude and tropical regions,
where cloudy and overcast conditions are prevalent during growing seasons [12].

A key advantage of light weight Unmanned Aerial Systems (UASs) is their ability to provide high
spatial and temporal resolution optical and thermal data on cloudy and overcast conditions. In general,
most of the remote sensing methods to map SM from satellites can be adapted to light and low-cost
UAS sensors. Nevertheless, miniaturized UAS sensors have low signal-to-noise ratios. For instance,
UAS thermal sensors normally have uncooled microbolometers and result in thermal signals being
influenced by sensor body temperature. Thorough radiometric and geometric calibration of UAS
sensors are prerequisites of producing high-quality UAS imagery for environmental monitoring [13,14].
Numerous studies prove the ability of UAS optical and thermal imagery for VHR monitoring
vegetation water stress, which is closely linked to SM [14–16]. However, studies on the quantification
of SM from UAS imagery are relatively limited. Hassan-Esfahani et al. (2015, 2017) conducted
the first UAS studies to estimate SM from optical and thermal images by using an artificial neural
network [4,17]. Results indicate that SM can be retrieved with root mean square deviations (RMSDs)
equal to 0.05 m3·m−3. Wang et al. (2018) used the water deficit index approach [18] to quantify SM in
experimental plots of spring wheat [19]. With model parameter calibration, they achieved an estimated
SM with a coefficient of determination (R2) of 0.63 and RMSDs less than 0.10 m3·m−3. However, these
methods need field datasets for model training or parameter calibration. It is necessary to explore
physically-based approaches that are as independent as possible from ground calibration to estimate
SM from UAS imagery.

Optical and thermal remote sensing techniques for SM estimation can be classified as using
solely optical (e.g., vegetation index) or thermal observations (e.g., thermal inertia approach, [20]), or
both (e.g., temperature–vegetation triangle approach [21]). Optical vegetation indices (VIs) indicate
vegetation water stress and can infer SM. However, optical VIs may be a conservative indicator of
SM, since vegetation remains green after initial water stress [22]. In contrast, surface temperature
(Ts) rises rapidly with decreases in SM below the field capacity and serves as an indicator of SM [23].
The thermal inertia method, which quantifies the difference between daily maximum and minimum
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Ts, is an example to use thermal information to retrieve SM [20]. However, the thermal inertia method
is challenging in dense vegetation conditions and not suitable for cloudy skies, as the diurnal cycle of
Ts is not significant [24].

Another approach to map SM relies on the dependence of surface energy balance components
(e.g., evapotranspiration, sensible heat and Ts) on changes of SM [1]. Briefly, this approach relates
the increase in Ts with corresponding decreases in SM for a given level of vegetation fractional
cover (f c). It is based on the theory that SM influences evapotranspiration rates, which in turn
changes Ts due to evaporative cooling. Assuming the same surface net radiation, when SM is
sufficient, evapotranspiration occurs at potential rates and the soil and canopy temperatures are lower.
By contrast, evapotranspiration is reduced when SM is limiting, which also leads to an increase in the
soil and canopy temperatures. The crop water stress index (CWSI [23]) uses the canopy temperature
to represent the ratio between actual transpiration and maximum potential transpiration and has
been shown to be relatively more accurate than the thermal inertia method in the vegetated areas [24].
However, CWSI needs pure canopy temperature and is relatively less effective for the early growth
stage of vegetation and in sparsely vegetated landscapes [16,25]. To account for conditions of different
f c, the temperature–vegetation triangle or trapezoid approaches were developed as an extension of the
CWSI [18,26,27].

The temperature–vegetation triangle approach, which is based on evapotranspiration and surface
temperature, utilizes both the Ts and the vegetation fraction to estimate SM. It classifies the surface
conditions into different categories of vegetation fractions and rescales Ts at each category between the
extremely dry and wet Ts to infer SM. The triangle approach is widely applied in numerous studies
to estimate SM, evaporative fraction and vegetation drought stress across different ecosystems and
regions using satellite or airborne data but not UAS data [11,18,21,22,28,29]. It is independent of any
ground calibration and can estimate SM at the surface to root zones without employing any detailed
process-based models. However, there are three main assumptions to meet: (1) the study area should
have spatially uniform atmospheric forcing; (2) surface roughness should be homogeneous for pixels
with same vegetation cover; and (3) to retrieve dry and wet edges, the image pixels should represent a
range of surface conditions from bare soil to full vegetation cover as well as extremely dry (lowest
SM) to extremely wet (highest SM) conditions. The areas covering UAS surveys are often small and
the assumption of uniform atmospheric forcing can be guaranteed. However, the assumption of a
uniform surface roughness for pixels with similar vegetation cover can be challenging, especially under
natural conditions when the canopy height (hc) changes with the growth of trees. The influence of
surface roughness on the accuracy of the triangle approach is seldom explored. One of the main factors
affecting aerodynamic roughness is hc, which is typically assumed constant for a given vegetation
type when modeling aerodynamic resistance to heat transfer (ra) [30,31]. However, hc is an important
parameter that represents the 3D canopy effects on momentum and heat transfer using turbulent
theory. It is used to estimate area-effective surface roughness parameters that influences the mass and
energy exchanges between vegetation and the atmosphere [32]. Numerous studies have successfully
applied terrestrial or airborne LiDAR techniques to estimate surface roughness quantifying its influence
on the sensible heat transfer [32,33]. Currently, accurate digital surface models (DSMs) can also be
produced from UAS photos based on the Structure from Motion (SfM) technique [34]. For instance, a
good estimate of hc, e.g., RMSDs of 35 cm, can be achieved without any ground control points [35].
Such high-resolution DSMs provide an opportunity to consider the influence of 3D canopy effects
on the triangle approach and further to correct Ts for aerodynamic roughness effects. For the third
assumption, UAS surveys have a small coverage and retrieving dry and wet edges from statistical
regression methods [29] could be challenging. Calculating theoretical dry and wet edges based on
in-situ observations is a possible solution [36] for UAS. Therefore, this paper proposes a modified
triangle approach to be applied with UAS thermal and optical observations to map SM. This approach
considers the variability of surface roughness derived from SfM and theoretical dry and wet edges.
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Our study investigated an operational methodology to estimate SM from UAS at VHR using
optical and thermal imagery on a short rotation coppice (SRC) plantation in Denmark. The specific
objectives were: (1) to modify an existing triangle approach to account for variations in surface
roughness based on the canopy height derived from SfM; (2) to utilize UAS-based surface temperature,
vegetation fraction and canopy height with theoretical wet and dry edges to map SM; and (3) to
identify the depth of the soil layer and the spatial aggregation level that the triangle approach with
UAS observations is capable to detect.

2. Study Site

The study site is an 11-hectare short rotation coppice (SRC) willow bioenergy plantation adjacent
to the Risoe national laboratory, Roskilde, Denmark (55◦41′31.95”N, 12◦6′14.69”E). The two willow
clones of this field are Salix schwerinii × S. viminalis × S. vim. and Salix triandra × S. viminalis and are
planted in rows with 1.5 and 0.75 m distance. The site has a temperate maritime climate with a mean
annual temperature of 8.5 ◦C and precipitation about 600 mm. The soil texture is loam. In February
2016, the willow was harvested. Afterwards, the willow grew rapidly to the height of approximately
4 m during the growing seasons of 2016 and 2017. Rapeseed (Brassica napus) was grown in the nearby
field. An approximate 3 m wide path between the willow plantation and the rapeseed field was
covered by grass, as shown in Figure 1.

An eddy covariance (EC) observation system (DK-RCW) has been operated from 2012 until
now to continuously measure Ta, air pressure (Pa), relative humidity (RH), wind speed (WS), and
land surface radiation components at a height of 10 m. Components of the land surface energy
balance including incoming shortwave radiation SWin, outgoing shortwave radiation SWout, incoming
longwave radiation LWin and outgoing longwave radiation LWout were measured by a CNR4 net
radiometer (Kipp & Zonen, Delft, The Netherlands) on the flux tower. Photosynthetically Active
Radiation (PAR) measurements were obtained from ten PAR sensors (Apogee SQ-200, Apogee
Instruments Inc., Logan, UT, USA) including one sensor to measure the incident PAR above the
canopy (PARabove), one sensor to measure canopy-reflected PAR (PARreflected) and eight sensors to
measure understory PAR (PARbelow). For in-situ SM measurements, fixed dielectric probes (5TM
ECH2O probes, Decagon Inc., Pullman, WA, USA) were installed to continuously measure SM in two
soil profiles, as shown in Figure 1. Profile A has measurements at depths of 5, 15, 30 and 60 cm and
Profile B has measurements at depths of 5, 15 and 30 cm. Moreover, a portable TDR (Field Scout TDR
300 portable moisture meter, Spectrum Technologies Inc., Plainfield, IL, USA) was used to measure
SM at the layer of 0–10 cm across the willow field on 26 May 2017 (10 samples) and 18 June 2017 (27
samples) (Figure 1). To calibrate the portable TDR, 32 soil samples were taken in 0–10 cm depth in the
willow field on 17 May 2017 and the SM of these samples were measured by the gravimetric method.
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flux tower is in the middle of the willow plantation. The blue circle shows the field of view (FOV) of
CNR4 (150◦) when the willow height is 0 m. The yellow stars are the location of fixed SM sensors,
Profiles A and B. The green diamonds are the eight understory PAR sensors. The blue and orange
dots indicate the location of SM measurements with the portable TDR sensor on 18 June 2017 and
26 May 2017, respectively. The light blue zone is an example of the buffer zones (circles) around the TDR
measurements with a radius of 1.5 m. The red dash line represents the flight path of UAS campaigns.

3. Methods

3.1. Unmanned Aerial System (UAS) and Flight Campaigns

For the unmanned aerial vehicle, this study used a DJI Hexacopter Spreading Wings S900 (DJI
S900, DJI Inc., Shenzhen, China), as shown in Figure 2. DJI S900 can carry an approximate payload
weight of 1.5 kg with a flight duration of 15 min. The payload onboard included a Global Navigation
Satellite System (GNSS) rover station, a Single-Board Computer (SBC) Beaglebone Black for sensor
communication and data storage, and an imaging system with three types of cameras. A GNSS base
station was installed close to the study area to serve as the reference for the differential carrier-phase
GNSS system, with the rover antenna located on the drone. The base station was a NovAtel receiver
(flexpak6) with NovAtel GPS-703-GGG pinwheel triple frequency GPS and GLONASS antenna.
The accurate position of the base station was measured by a real-time kinematic (RTK) GNSS (Trimble
RTK GNSS R8s, Trimble Inc., Sunnyvale, CA, USA). To compute the absolute antenna position, a
carrier-phase differential based solution was computed in post-processing. Raw pseudo ranges and
carrier phase measurements were stored at 1 Hz. The position solution was post-processed using Leica
Geomatic Office v 8.1 in kinematic mode. In the post process, an ensemble Kalman filter was applied in
both forward and backward directions for best position performance. For details, refer to [37]. Further,
after each flight campaign, high accuracy ground control points (GCPs) were measured with Trimble
RTK GNSS.

The imaging payload included a thermal infrared camera, a multispectral camera, and a normal
Red-Green-Blue (RGB) channel camera. Due to the limitation of the UAS payload capacity, a
light weight thermal camera (FLIR Tau2 324, Wilsonville, OR, USA), which has an uncooled VOx
microbolometer, was used in this study. It has a focal length of 9 mm with an image dimension
of 324 × 256 pixels and a field of view (FOV) of 48.5◦ × 39.1◦. It records thermal radiation in the
wavelength range of 7.5 to 13.5 µm and is able to measure temperatures ranging from −25 ◦C to
135 ◦C with high gain mode. The multispectral camera (MCA, Multispectral Camera Array, Tetracam,
Chatsworth, CA, USA) consists of an array of six individual channels for the visible and near-infrared
bands, each consisting of a CMOS sensor with a progressive shutter, an objective lens, and mountings
for interchangeable band-pass filters. Each channel has a FOV of 38.3◦ × 31◦ and the focal length of
9.6 mm. The center wavelengths for the camera’s six channels are 470, 530, 570, 670, 710 and 800 nm
and the full width at half maximum (FWHM) for each channel is 10 nm. The RGB camera (Sony
DSC-RX100, Corporation, Tokyo, Japan) has a focal length of 10.7 mm with FOV of 64.8◦ × 45.9◦. It is
mainly used to take RGB images to generate high accuracy digital surface model (DSM) to orthorectify
the multispectral and thermal infrared images and also to obtain the canopy height (hc). UAS flight
campaigns were conducted in the willow site over eight days across different growing stages of willow
and weather conditions during 2016 and 2017. Images were acquired with 60% side overlap and 80%
forward overlap with the horizontal speed of the UAS at 3 m·s−1. Detailed information on these flight
campaigns is shown in Table 1.
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Figure 2. (a) DJI S900 vehicle platform and photos of flight campaigns; and (b) UAS payload
components including RGB, thermal infrared and multispectral cameras, and the Beaglebone
Black microprocessor.

Table 1. Information on UAS flight campaigns (RH, relative humidity; Ta, air temperature; WS, wind
speed at 10 m; Pa, air pressure).

Date Acquisition Time Weather RH (%) Ta (◦C) WS (ms−1) Pa (kPa) Flying Height (m) Spatial Resolution (m)

2 May 2016 14:40–14:55 cloudy 51.60 15.17 6.60 101.88 12 0.03
12 May 2016 10:44–10:55 sunny 45.85 17.31 5.11 100.62 12 0.03
25 May 2016 10:11–10:23 sunny 62.67 21.05 3.30 100.89 12 0.03

7 October 2016 11:41–11:55 sunny 69.87 9.94 5.62 102.05 90 0.3
19 May 2017 12:07–12:19 sunny 79.25 19.27 2.13 100.41 90 0.3
22 May 2017 10:15–10:28 cloudy 70.82 14.72 2.91 101.66 90 0.3

26 May 2017 1 11:13–11:26 sunny 72.56 16.72 4.47 101.54 90 0.3
18 June 2017 1 12:39–12:51 cloudy 71.79 21.81 4.42 101.62 90 0.3

1 Spatial validation of SM was conducted on these days.

3.2. Sensor Calibration

To obtain high quality UAS data, thorough laboratory geometric and radiometric calibrations of
imaging sensors were firstly conducted. Geometric calibration of the RGB and multispectral cameras
was conducted with standard checkerboard calibration patterns to retrieve intrinsic camera geometric
parameters. Radiometric calibration for each channel of MCA was conducted with an integrating
sphere (CSTM-USS-2000C, LabSphere, NH, USA) and the in-lab calibration showed that the absolute
errors of the measured radiance were within ±4.8%. For details on the calibration of the multispectral
camera, please refer to [38].

The accuracy of FLIR is influenced by both the target temperature and the sensor body
temperature. To obtain accurate thermal imagery usable for SM monitoring, this study conducted
a calibration of FLIR with a Landcal P80P black body radiation source (Land Instruments, Leicester,
UK). The calibration was performed with ten different target temperatures ranging from 0 to 45 ◦C in
a climate-controlled chamber, which provided three different ambient temperatures, 10, 20 and 30 ◦C.
Before taking the first snapshot of a series, the thermal camera was powered on for at least 15 min to
reach thermal equilibrium. In total, 560 images were taken for the calibration. Based on the uniform
target temperature provided by the black body, we conducted a pixel-wise calibration to simultaneously
remove the image vignetting effects and link the image digital number (DN) with temperature.

For the FLIR camera, the DN of each pixel in the thermal imagery can be assumed to be
proportional to the incoming thermal radiance Bp (W·m−3·sr−1) of the target with additional radiance
emitted from the camera itself, as shown in Equation (1).

DN =
Bp

l
+ O + tTcore (1)
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Bp =
2hc2

λ5
1

e
hc

λkBT − 1
(2)

where Bp is the thermal radiance from the target, which can be calculated based on the Planck’s Law
(Equation (2)); l (W·m−3·sr−1) is a gain factor for each pixel; O is a constant offset term; Tcore is the DN
of the sensor core temperature; and t is a factor. Here, we assumed that the additional radiation from
the sensor core is approximated as a first-order polynomial. In Planck’s Law (Equation (2)), h is the
Planck constant (6.626 × 10−34 J·s), c is the speed of light (2.998 × 10−8 m·s−1), kB is the Boltzmann
constant (1.381 × 10−23 J·K−1), and λ (m) is the emitting wavelength. Solving Equations (1) and (2) for
Bp, we can get the transfer function (Equation (3)) for the target temperature (Tb), based on DN in the
thermal imagery and the sensor core temperature (Tcore).

Tb =
hc
λkB

1

ln

(
2hc2

λ5 l
DN−O−tTcore

+ 1

) (3)

where parameters l, O and t were obtained by fitting the calibration dataset. For λ, the sensor reference
wavelength of 10.076 µm was used.

3.3. Image Processing and Validation

The workflow for image processing to obtain DSM, normalized difference vegetation index
(NDVI), Tb and Ts (land surface temperature after emissivity correction) for this study is shown in
Figure 3. The first step of image processing was to geo-reference images with GNSS data from UAS.
Then, these georeferenced images along with pre-calibrated intrinsic camera geometric parameter
values were imported into Agisoft Photoscan (Agisoft LLC, St. Petersburg, Russia) to generate
orthophotos. Agisoft Photoscan software uses the structure-from-motion (SfM) approach [34] to
generate orthomosaic and surface elevation maps from overlapping images from different positions
and orientations. The Agisoft software firstly aligned images and generated sparse 3D point clouds.
After that, high accuracy GCPs measured by the Trimble RTK GNSS were added to the aligned images.
Then, the GNSS information from these accurate GCPs was used to optimize the image alignment by
adjusting the estimated camera locations. Further, the DSM generated from RGB images was imported
into both multispectral and thermal projects to orthorectify multispectral and thermal images. Finally,
the six-band reflectance was calculated from the generated multispectral orthophotos based on the
radiance method. An ASD spectroradiometer (FieldSpec HandHeld 2TM Inc., Boulder, CO, USA) was
used to collect with a Spectralon panel (nominal reflectance of 99.99%) before and after each UAS flight
campaign. Then, the averaged spectral radiance was used as the incoming solar spectral radiance
(Lin,λ), while MCA measured the reflected spectral radiance for each band (LMCA,λ). Due to the low
flight altitude, we did not conduct the atmospheric correction. Six-band reflectance was calculated
as Equation (4). The reflectance of the near infrared (800 nm) and red (670 nm) bands was used to
calculate NDVI as Equation (5).

ρλ =
LMCA,λ

Lin,λ
(4)

NDVI =
ρ800 − ρ670
ρ800 + ρ670

(5)

where LMCA,λ is the reflected spectral radiance measured by MCA (W·m−2·sr−1·nm−1), Lin,λ is the
incoming solar spectral radiance measured by ASD (W·m−2·sr−1·nm−1), λ is the wavelength (nm).
ρ800 is the reflectance at 800 nm, and ρ670 is the reflectance at 670 nm.
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The observed fraction of vegetation cover ( fc) as Equation (6) was calculated based on NDVI [39].
Further, the observed f c (Equation (7)) was used to validate the estimated fc from UAS ( fc_UAS).

fc_UAS =

(
NDVI−NDVImin

NDVImax −NDVImin

)2
(6)

fc_obs =
PARabove − PARreflected − PARbelow

PARabove
(7)

where NDVImax = 0.97 for fully vegetated surface and NDVImin = 0.24 for bare soil were used
in this study based on the field investigation. fc_obs was calculated based on measurements of the
incident PAR above the canopy (PARabove), canopy-reflected PAR (PARreflected) and the average of
eight understory PAR sensors (PARbelow).

The Tb from the thermal orthophotos was influenced by the longwave radiation emitted by the
object, the reflected longwave radiation and the atmospheric attenuation. UAS flight campaigns were
conducted with a low attitude (Table 1), thus, in this study, we did not conduct atmospheric correction.
To obtain the thermal signal emitted from the object (Ts), Tb was corrected with the land surface
emissivity (εs) to exclude the signal from reflected longwave radiation as Equation (8). εs can be
approximated based on an empirical relation with NDVI as Equation (9) [40].

σTb
4 = εsσTs

4 + (1− εs)LWin (8)

εs =


0.986 (NDVI > 0.608)

1.0094 + 0.047 ln (NDVI) (0.131 < NDVI < 0.608)
0.914 (NDVI < 0.131)

(9)

where σ is the Stefan–Boltzmann constant (5.67 × 10−8 W·m−2·K−4), Ts is the surface temperature
with emissivity correction (K), Tb is the brightness temperature from FLIR (K), and LWin is incoming
longwave radiation (W·m−2) and was calculated based on the Stefan–Boltzmann law using the
atmospheric emissivity εa as Equations (10)–(13) [41].

LWin = εaσTa
4 (10)

εa = 1− (1 + δ)e−
√

(1.2+3δ) (11)

δ =
46.5
Ta

e0 (12)

e0 = RH·6.11e[
Lv
Rv (

1
273.15−

1
Ta )] (13)

where e0 is the actual water vapor pressure (hPa) and was calculated based on the Clausius–Clapeyron
equation, Lv = 2.5× 106

(
J·kg−1

)
is the latent heat of vaporization, Rv = 461

(
J·kg−1·K−1

)
is the gas

constant for water vapor, and Ta is the air temperature (K).
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Figure 3. Workflow for RGB, multispectral and thermal infrared image processing. GCPs, ground
control points; Opt. Image Alignment, optimizing the camera position and orientation to obtain good
image alignment; GNSS, Global Navigation Satellite System; Temp., temperature; DSM, digital surface
model; NDVI, normalized difference vegetation index; LWin, incoming longwave radiation; Tb, surface
brightness temperature; Ts, surface temperature after emissivity correction. Final products are shown
in green boxes.

To check the accuracy of the generated DSM, the Trimble RTK GNSS was used to measure the
ground elevation in different places across the site. It should be noted that the validation was mainly
conducted during periods with low vegetation height (hc < 0.5). During the dense vegetation period,
we did not conduct validation, due to the difficulty in measuring the tree height.

To validate the acquired surface reflectance data, the reflectance of tarpaulins with four different
colors (green, blue, black and silver) was measured with the ASD spectroradiometer for each flight.
Tarpaulins are acknowledged to have low anisotropic effects [42]. The measured reflectance by ASD
was used to validate reflectance from MCA. Validation was shown for 670 and 800 nm bands, since, in
this study, only these two bands were used for calculating NDVI.

To conduct validation of the thermal infrared imagery in field conditions, the generated Tb
orthophotos were compared with the brightness temperature converted from the outgoing longwave
radiation (LWout_CNR4) from CNR4 on the tower (Figure 1). Even though FLIR and CNR4 have
different thermal wavelength responses (FLIR: 7.5 to 13.5 µm, CNR4: 4.5 to 45 µm) and sensor FOVs
(FLIR: 35◦ × 27◦, CNR4: downward 150◦), this comparison can provide insights into the quality of the
thermal data to some extent. To compare with Tb from FLIR, LWout_CNR4 was converted to brightness
temperature Tb_CNR4 by applying Stefan–Boltzmann’s law as Equation (14).

Tb_CNR4 = (
LWout_CNR4

σ
)

1/4
(14)
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where σ is the Stefan–Boltzmann constant (5.67 × 10−8 W·m−2·K−4), Tb_CNR4 is the brightness
temperature (K), and LWout_CNR4 is the recoded longwave radiation by CNR4 (W·m−2).

To get the corresponding pixels inside the FOV of CNR4, the flux tower position, the FOV and
sensor height of CNR4, and the vegetation height were used to calculate the radius of the circle
according to Equation (15), as one example, with the vegetation height equal to 0 m, as shown in
Figure 1.

r = (H− hc) tan (
FOV

2
) (15)

where r is the radius of the projected sensor FOV on the surface (m), H is the sensor height (10 m), hc is
the height of the willow plantation obtained from DSM (m), and FOV is the downward FOV of CNR4,
namely 150◦.

3.4. Temperature–Vegetation Triangle Approach

3.4.1. The Original “DT” Triangle Approach

Numerous satellite studies have applied the temperature–vegetation triangle approach to estimate
both SM and evaporative fraction [11,18,21,22,28,29]. However, the linkage between applying the
triangle approach for SM and evapotranspiration estimation is seldom explained. For SM estimation,
originally, the temperature vegetation triangle index or soil wetness index (SWI) was defined as
Equation (16), by rescaling the observed radiometric surface temperature (Ts,obs) at each pixel between
extreme dry and wet Ts for a given level of f c [11,21,28] (hereinafter, “original triangle approach”).
This approach assumed that the only factor modifying Ts in the triangle space apart from f c is SM.
The SWI is used to indicate SM conditions.

SWI =
Ts,obs − Ts,wet

Ts,dry − Ts,wet
=

DTobs
DTdry

(16)

DTdry = (1− fc)DTbs,dry (17)

where the subscripts “dry”, “wet” and “obs” indicate dry, wet and observed conditions, respectively.
Ts,dry and Ts,wet are the minimum and maximum Ts for a given f c. For the wet edge, Ts,wet corresponds
to the temperature of the wet land surface and numerous studies proved that Ts,wet is in equilibrium
with Ta [22,36,43]. That means Ts,wet can be replaced by Ta and DTwet is equal to 0 [29]. DTdry can
normally be extracted from the observed dry edge in the triangle space. However, if there are no
sufficient pixels to represent dry and wet conditions, DTdry can be approximated from a linear mixture
of DTbs,dry (temperature difference between the dry bare soil temperature and the air temperature)
and DTwet as Equation (17) [18,44].

The triangle approach can be quantitatively explained by the surface energy balance and one
source evapotranspiration model [18,29], as shown in Figure 4. As shown in Figure 4b, the relationship
between SM and Non-Evaporative Fraction (NEF = H/AE) for any given pixel within a fixed f c can
be described in a linear model approach Equation (18), due to the land–atmosphere coupling [1].
In Figure 4a, for a fixed level of f c, the increases in Ts are due to increases in sensible heat flux (H),
which are determined by decreases in SM.

NEF =
H

AE
= 1− θ− θwt

θfc − θwt
(18)

where AE is the available energy and is equal to the sum of the sensible heat flux (H) and the latent heat
flux (LE), θ is the volumetric SM (m3·m−3), θfc is the field capacity (m3·m−3), and θwt is the wilting
point of soil (m3·m−3), representing the upper and lower limits of available SM [11].



Remote Sens. 2018, 10, 1978 11 of 28
Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 28 

 

 
Figure 4. Linking SM and surface heat fluxes within the temperature-vegetation triangle approach. 
(a) Conceptual sketch of the temperature–vegetation triangle approach. The x-axis is the fractional 
vegetation cover (fc). The y-axis is the sensible heat flux (H) and it can be simplified to be proportional 
to DT by canceling air density (ρ), the specific heat of air at constant pressure (cp) and aerodynamic 
resistance for heat transfer (ra). DT represents the difference between air and surface temperatures. 
DTdry and DTwet are for the dry and wet edges, while DTobs is the observed temperature difference for 
a given pixel and DTbs_dry is the temperature difference for the dry bare soil. ra,wet, ra,dry, ra,obs and ra,bs,dry 
are aerodynamic resistance for heat transfer for wet, dry, observed and driest bare soil conditions, 
respectively. The upper red line and lower blue line represent the dry and wet edges, respectively. (b) 
Diagram (adapted from [1]) representing the relationship between non-evaporative fraction (NEF) 
and SM. In the dry conditions (θ < θ୵୲), the available energy (AE) converts into sensible heat. In the 
wet conditions (θ ≥ θ୤ୡ), the available energy (AE) converts into latent heat flux. For transitional 
conditions, the NEF has a linear relationship with SM. θ୵୲ is the wilting point and θ୤ୡ is the field 
capacity in this study. These two represent the lower and upper limits of available SM, respectively. 

For NEF, it can be further expressed as a ratio between H and Hdry as Equation (19). Hdry is the 
sensible heat flux at the dry edge, where LE is assumed to be negligible (Equation (20)). With the bulk 
sensible heat flux equation, H can be expressed as a ratio between DT and aerodynamic resistance 
(ra). Further, if we assume that meteorological forcing and aerodynamic resistance (ra) is constant 
within the area, NEF can further be simplified into a ratio between DTobs and DTdry by canceling the 
air density (ρ), the specific heat of air at constant pressure (cp) and aerodynamic resistance for heat 
transfer (ra).  

NEF = HAE = HHୢ୰୷ = ρC୮DT୭ୠୱrୟ,୭ୠୱρC୮DTୢ ୰୷rୟ,ୢ୰୷
= DT୭ୠୱrୟ,୭ୠୱDTୢ ୰୷rୟ,ୢ୰୷

≈ DT୭ୠୱDTୢ ୰୷ (19)

Hୢ୰୷ = AE = ρC୮DTୢ ୰୷rୟ  (20)

where DTobs is the temperature difference between the surface and air for each pixel, DTdry is the 
temperature difference for the dry pixel corresponding to a certain fc level (Figure 4a), ρ is the air 
density (kg∙m−3), cp is the specific heat of air at constant pressure (J∙kg−1∙K−1), ra is the aerodynamic 

Figure 4. Linking SM and surface heat fluxes within the temperature-vegetation triangle approach.
(a) Conceptual sketch of the temperature–vegetation triangle approach. The x-axis is the fractional
vegetation cover (f c). The y-axis is the sensible heat flux (H) and it can be simplified to be proportional
to DT by canceling air density (ρ), the specific heat of air at constant pressure (cp) and aerodynamic
resistance for heat transfer (ra). DT represents the difference between air and surface temperatures.
DTdry and DTwet are for the dry and wet edges, while DTobs is the observed temperature difference
for a given pixel and DTbs_dry is the temperature difference for the dry bare soil. ra,wet, ra,dry, ra,obs

and ra,bs,dry are aerodynamic resistance for heat transfer for wet, dry, observed and driest bare soil
conditions, respectively. The upper red line and lower blue line represent the dry and wet edges,
respectively. (b) Diagram (adapted from [1]) representing the relationship between non-evaporative
fraction (NEF) and SM. In the dry conditions (θ < θwt), the available energy (AE) converts into
sensible heat. In the wet conditions (θ ≥ θfc), the available energy (AE) converts into latent heat flux.
For transitional conditions, the NEF has a linear relationship with SM. θwt is the wilting point and
θfc is the field capacity in this study. These two represent the lower and upper limits of available
SM, respectively.

For NEF, it can be further expressed as a ratio between H and Hdry as Equation (19). Hdry is the
sensible heat flux at the dry edge, where LE is assumed to be negligible (Equation (20)). With the bulk
sensible heat flux equation, H can be expressed as a ratio between DT and aerodynamic resistance
(ra). Further, if we assume that meteorological forcing and aerodynamic resistance (ra) is constant
within the area, NEF can further be simplified into a ratio between DTobs and DTdry by canceling the
air density (ρ), the specific heat of air at constant pressure (cp) and aerodynamic resistance for heat
transfer (ra).

NEF =
H

AE
=

H
Hdry

=

ρCpDTobs
ra,obs

ρCpDTdry
ra,dry

=

DTobs
ra,obs
DTdry
ra,dry

≈ DTobs
DTdry

(19)

Hdry = AE =
ρCpDTdry

ra
(20)

where DTobs is the temperature difference between the surface and air for each pixel, DTdry is the
temperature difference for the dry pixel corresponding to a certain f c level (Figure 4a), ρ is the air
density (kg·m−3), cp is the specific heat of air at constant pressure (J·kg−1·K−1), ra is the aerodynamic
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resistance for heat transfer (s·m−1), ra_obs is the aerodynamic resistance for the observed pixel, and
ra_dry is the aerodynamic resistance for the dry conditions.

In this way, we can explain the theories for using the triangle approach for both SM and
evapotranspiration fraction (approximately 1-NEF). In this study, SWI (Equation (16)) was converted
to the volumetric SM with a piecewise approach [11]. For energy limited evapotranspiration regime
(θ ≥ θfc), SWI is equal to 0. For water limited, dry condition and no evapotranspiration conditions
(θ ≤ θwt), SWI is equal to 1. For water limited evapotranspiration regime (transitional conditions in
Figure 4b) (θwt < θ < θfc), the SWI can be expressed as Equation (21).

SWI ≈ 1− θ− θwt

θfc − θwt
(21)

3.4.2. The Modified “DT/ra” Triangle Approach

In a real-world condition, the assumption of the triangle approach may not be valid. For instance,
if ra is not homogeneous for a given f c and causes variations in DT unrelated with SM, DT should be
normalized with ra, especially with fast surface elevation changes. In this study, the willow bioenergy
plantation grows fast during the growing season and the change of hc can alter the surface roughness
to further affect DT. To exclude the influence of the change of surface roughness, we need to normalize
DT with ra for heat transfer. Thus, in this study (Equation (16)), we modified SWI to more accurately
represent NEF as Equation (22) instead of Equation (16) for SM estimation.

SWI =

DTobs
ra,obs
DTdry
ra,dry

(22)

To apply a modified triangle approach, we calculated an aerodynamic resistance and DTdry.
The aerodynamic resistance for heat transfer (ra) was calculated based on the algorithm proposed by
Brutsaert (1982) as Equation (23) [45].

ra =
ln
(

z−d
z0m

)
ln
(

z−d
z0h

)
k2u

(23)

z0h =
z0m

ekB−1 (24)

where z is the height of the reference wind velocity (m), i.e., the sensor height (10 m). To calculate
ra,obs in the real conditions, d is the zero-plane displacement height (m) and was chosen equal to 2/3
of hc. z0m is the surface roughness length for momentum transport and was equal to 0.1 of hc. hc

is the effective averaged hc for the willow plantation. hc was obtained by subtracting UAS-based
DSM, which was obtained from each UAS flight campaign, with the digital elevation model (DEM).
The DEM was obtained from UAS flight campaigns before the willow grew and only contained the
elevation information of the ground surface (DSM without trees). z0h is the roughness lengths for heat
transport and was calculated based on Equation (24). kB−1 is a parameter to account for the local
boundary resistance for the heat transfer and a constant value of 2.3 was adopted in this study [46].
k is von Karman constant (0.4). u is the horizontal wind speed at the reference height (m·s−1). For the
dry bare soil conditions, d = 0 and z0m = 0.005 were used to calculate ra,dry in Equation (23) [47].

The dry edge, represented by DTdry, cannot be extracted from the observed dry edge in the
triangle space as UAS imagery does not have sufficient pixels to represent dry and wet conditions.
Thus, we used ground meteorological observations to calculate theoretical dry edges. The dry edge
DTdry/ra,dry was obtained from a linear mixture of DTbs,dry/ra,bs,dry (extreme dry bare soil conditions)
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and DTwet/ra,wet (fully vegetated surface conditions). DTwet/ra,wet can be approximated to 0, since
the sensible heat flux for fully vegetated conditions is equal to 0 [18,44].

DTdry

ra,dry
= (1− fc)

DTbs,dry

ra,bs,dry
(25)

For extremely dry bare soil conditions, LE is equal to 0. DTbs,dry can be derived based on the
surface energy balance principle and the heat transfer equation as Equation (26) [44,47].

DTbs,dry =
(1− α)SWin + εssεaσTa

4 − εsσTa
4 − LE/(1− c)

4εssσTa3 + ρCp/[ras(1− c)]
(26)

where SWin is the shortwave incoming radiation (W·m−2) and, in this study, it was obtained from the
meteorological tower. α is the albedo of the dry bare soil and was adopted as 0.2 in this study according
to the field investigation. εss is the land surface emissivity for the dry bare soil (NDVI = 0.24) and
the value of 0.94 was adopted according to Equation (10). εa is the emissivity for the atmosphere and
was calculated based on Equation (10). σ is the Stefan–Boltzmann constant (5.67 × 10−8 W·m−2·K−4).
LE was assumed to be 0 for the dry bare soil conditions. c is a ratio between the ground heat flux and
net radiation. The value of 0.3 was adopted in this study [48]. ρ is the air density (kg·m−3). Cp is the
specific heat of air at constant pressure (J·kg−1·K−1).

3.5. Sensitivity Test of the Modified Triangle Approach to the Canopy Height

To investigate the sensitivity of the proposed “DT/ra” triangle approach to hc, a sensitivity test
to model inputs (hc, DT and f c) was conducted. The atmospheric forcing was based on 26 May 2017
and there were two experiments in the test. The first experiment was to control f c and quantified the
relationship between hc and SWI with different DT. A pixel was assumed to be f c equal to 0.5, hc from
0.1 to 3 m with an interval of 0.01 m, and DT from 0 to 5 ◦C with an interval of 1 ◦C. The second one
was to control DT, which was assumed to be equal to 1 ◦C, and explored the relationship between hc

and SWI with different levels of f c. A pixel was assumed to have hc from 0.1 to 3 m with a 0.01 m
interval and f c from 0 to 1 with a step of 0.1. Totally, 3492 simulations were conducted. Then, these
results were used to analyze the sensitivity of the “DT/ra” approach to hc, DT and f c. This sensitivity
analysis quantified the sensitivity of model inputs. Further, with the information of input uncertainty
from the validation of UAS observations, this analysis could also provide insights into the uncertainty
of the simulated SWI.

3.6. Validation of Soil Moisture Estimates

The estimated SWI was converted to the volumetric soil moisture (θ) as Equation (22) with θfc
and θwt equal to 0.31 and 0.15, respectively. The values of θfc and θwt were determined according to
the soil texture (loam) and long-term in-situ SM observations from 2012 to 2017. Here, we use the
“DT” and “DT/ra” to denote the original and modified triangle approaches, respectively. In-situ SM
observations from the portable and fixed SM sensors were used to validate the spatial and temporal
dynamics of estimated SM from these two approaches. The Root Mean Square Deviation (RMSD,
Equation (27)), Correlation Coefficient (R, Equation (28)), Relative Error (RE, Equation (29)), unbiased
Root Mean Square Deviation (ubRMSD, Equation (30)) and Standard Deviation (STD, Equation (31))
were used as statistical indices to evaluate the performance of estimated SM. The Taylor diagram
(Taylor, 2001), which presents the complementary statistics among R, Normalized STD (NSTD, as
Equation (32)) and Normalized ubRMSD (NubRMSD), was used. In the Taylor diagram, these three
statistical indices have a triangle-cosine-law-like relationship, as Equation (33). The radial distance
of the diagram stands for the NSTD and the angle in the polar plot represents R. The reference point
located on the x-axis with R = 1, NSTD = 1, and NubRMSD = 0 is the observation. The distance from
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the simulation point to the reference point means the NubRMSD of simulations and it is the integrated
performance of the simulation.

RMSD =

√√√√ N

∑
i=1

(simi − obsi)
2/N (27)

R =
∑N

i=1
(
simi − sim

)(
obsi − obs

)
√

∑N
i=1
(
simi − sim

)2
√

∑N
i=1

(
obsi − obs

)2
(28)

RE =
(

sim− obs
)

/obs (29)

ubRMSD =

√√√√ N

∑
i=1

[(
simi − sim

)
−
(

obsi − obs
)]2

/N (30)

STD =

√√√√ N

∑
i=1

(
sim− sim

)2/N (31)

NSTDsim = STDsim/STDobs (32)

NubRMSD2
obs,sim = NSTD2

obs + NSTD2
sim − 2NSTDobsNSTDsim cos CCobs,sim (33)

where sim is the simulation, obs is the observation, i refers to the ith simulation or observation, N is
the total number of data points, sim is the average of the simulation, and obs is the average of the
observation.

A scale discrepancy may exist between pixel-based UAS imagery and point-based in-situ SM
measurements. In the spatial validation, to compare with in-situ measurements, we used the mean
values from buffer zones (circles) of different radiuses around the sample location in UAS imagery.
In the temporal validation, we compared the estimated SM and in-situ measurements at different
soil depths.

4. Results

4.1. UAS Sensor Calibration and Data Validation

Results of pixel-wise calibration in the laboratory are shown in Figure 5. With the pixel-wise
calibration, the RMSDs of the thermal imagery were less than 0.57 ◦C. The nearly uniform pattern
indicates that, through the calibration, the typical camera image errors, e.g., vignetting effects, were
removed. The orthophotos of Tb, NDVI, and DSM obtained from UAS flight campaigns are shown
in Figure 6. It can be found that the first three flights of 2016 were obtained at the beginning of the
growing season with NDVI < 0.5 and DSM < 15.5 m, while the last five flights have more dense
vegetation with NDVI > 0.7 and DSM around 16–18 m.
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Figure 5. RMSD (◦C) for the pixel-wise laboratory calibration of the thermal sensor.

To check the quality of these orthophotos, Tb, reflectance and DSM were compared with in-situ
observations (Figure 7). Comparison between the UAS Tb and CNR4 Tb showed a close correspondence
between the brightness temperatures with R2 equal to 0.97 and RMSD of 0.93 ◦C. Figure 7b indicates
a good accuracy of the reflectance at 670 and 800 nm with R2 more than 0.98 and RMSD less than
3%. Figure 7c shows the accuracy of the generated DSM from the RGB images. The RMSD of the
DSM is 0.06 m from three campaigns in May 2016 when the willow plants had a small growth height
(hc < 0.5 m). Validation of f c (Figure 7d) revealed a good correspondence with the observations with
R2 equal to 0.99 and RMSD of 0.04.
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are the FOV of CNR4 with considering the canopy height. Note the differences in the spatial resolutions
and the dimensions of the displayed plots.
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Figure 7. Validation of UAS-based: (a) brightness temperature Tb; (b) surface reflectance at 670 and
800 nm; (c) DSM (masl, meter above the mean sea level; validation when hc < 0.5 m); and (d) vegetation
fraction f c.

4.2. Sensitivity of the Modified Triangle Approach to the Vegetation Height

Figure 8 shows the modified triangle approach is sensitive to the change of hc, DT and f c.
In general, in the same conditions of the observed DT and f c, the higher hc corresponds to higher SWI.
Figure 8a shows that, with the same level of SWI and f c, the higher DT corresponds to the higher hc.
This agrees with the fact that, for pixels with the same SM, f c and atmospheric conditions, pixels with
a higher hc tend to have higher surface roughness and lower ra. Similarly, as shown in Figure 8b, with
the same levels of f c and DT, the pixels with higher hc correspond to higher SWI. Different from the
sensitivity of SWI to DT with the same level of hc, which is approximately linear, the sensitivity of
SWI to f c with the same hc is highly non-linear. In low f c conditions, the sensitivity of SWI to f c is low,
while it is much higher in the high f c conditions. Within the same levels of DT and f c, the sensitivity of
SWI to hc is closer to linear.

Further, Figure 8 also provides insights into simulation uncertainty of this study. As shown in
the validation of UAS orthophotos (Figure 7), with the pixel-wise calibration approach, UAS-based Ts

can have an uncertainty around 0.93 ◦C in the field. The RMSD of reflectance is around 3% and the
RMSD of hc is about 0.06 m. It should be noticed that RMSD of hc is assessed when hc < 0.5 m and
errors for high hc conditions is likely to be higher. Here, we use 0.5 m to consider the uncertainty of hc.
In Figure 8a, for instance, with the condition DT = 1 ◦C and f c = 0.5, the uncertainty of 0.5 m in hc can
contribute to the uncertainty of SWI around 0.02. With the condition f c = 0.5 and hc = 2 m, the 1 ◦C
uncertainty of Ts can contribute to the uncertainty of SWI about 0.15. As for f c in Figure 8b, with the
condition DT = 1 ◦C and hc = 1 m, it can contribute to the uncertainty of SWI around 0.05 in low f c

conditions (f c < 0.5), while the uncertainty of SWI is much higher in high f c conditions. Therefore, in
this approach, the accuracy of SWI is highly sensitive to DT and, in high f c conditions, it is also highly
sensitive to f c.
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Figure 8. Sensitivity of SWI to data inputs (hc, DT and f c). (a) To control f c, the sensitivity of SWI to hc

with different levels of DT. Six colors correspond to DT equal to 0, 1, 2, 3, 4 and 5 ◦C. (b) To control
DT, the sensitivity of SWI to hc with different levels of f c. Five colors correspond to f c of 0, 0.2, 0.4, 0.6
and 0.8, respectively. It should be noticed that in (a) the curve of DT = 0 is overlapping with the x-axis
and in (b) the curve of f c = 1 does not show, as DT of pixels with f c = 1 is assumed to be constant and
always equal to 0 ◦C.

4.3. Spatial Validation of UAS Estimated Soil Moisture

The spatial patterns of the estimated SWI from the two triangle approaches (“DT” and “DT/ra”)
are shown in Figure 9(a1–a8) and (b1–b8), respectively. It can be seen that before the willow grew
(the first three flights of 2016), there was no difference in spatial patterns and histogram distributions
between “DT” and “DT/ra” as shown in Figure 6(a1–a3) and (b1–b3). However, when the willow
grew up (the last five flights) and the canopy grew higher, the spatial patterns of SWI from these two
approaches became different. In the “DT/ra” approach, the normalization of ra tends to stretch SWI of
willow plantation to a higher value. From the histogram distributions (Figure 9(c4–c8)), it can also be
seen that, after normalization, more pixels have higher values of SWI.
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Figure 9. (a,b) Spatial patterns of the estimated SWI. “DT” (the first and third columns) represents
the scheme without normalizing surface roughness and “DT/ra” (the second and fourth columns)
indicates the scheme with normalizing aerodynamic resistance. (c) Histograms of SWI. The blue color
is the “DT” scheme and the red color is the “DT/ra” scheme. The magenta color is the overlapping of
the histograms from these two schemes.
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The corresponding Ts-f c scatterplots for these UAS flights are shown in Figure 10. From the
scatterplots, it is clear that there is a large mismatch between the observed dry and wet edges and
the theoretical ones, since UAS campaigns do not have a large coverage of heterogeneous landscapes
to represent the dry and wet edges. This confirms that it is necessary to calculate the theoretical dry
and wet edges for the triangle approach. It should also be noticed that, in the scatterplots, there are
outliers in the feature space enclosed by the theoretical dry and wet edges. This can be attributed to
the difference between aerodynamic and radiometric temperatures [49] or errors in the retrieval of Ts

from the UAS sensors. Due to the lower ra of the willow plantation than the pixels of grass or bare soil,
after normalization, points in the “DT/ra” approach shifted toward the dry edge as compared to the
“DT” approach (Figure 10). This also agrees with the change of the spatial pattern and the histogram
distribution in Figure 9.
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second and fourth columns (b,d,f,h,j,l,n,p) are the “DT/ra” scheme, which considered both surface 
roughness and theoretical dry/wet edges. Dates: (a,b) 2 May 2016; (c,d) 12 May 2016; (e,f) 25 May 
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Figure 11 shows the spatial validation of “DT” and “DT/ra” approaches with different buffer 
zone sizes. Because the hc was calculated based on the averaged hc, the normalization did not change 
the correlation coefficient R. However, it can also be seen that there was a significant improvement 
in RMSD and relative errors (RE) with normalized ra than without. With a buffer zone of 1.5 m radius, 
as shown in Figure 11g, on 26 May 2017, the RE reduced from 14.02% to −1.51%. Similarly, on 18 June 

Figure 10. Surface temperature–vegetation triangle feature space. The first and third columns
(a,c,e,g,I,k,m,o) are the “DT” scheme, which did not consider the influence of surface roughness.
The second and fourth columns (b,d,f,h,j,l,n,p) are the “DT/ra” scheme, which considered both surface
roughness and theoretical dry/wet edges. Dates: (a,b) 2 May 2016; (c,d) 12 May 2016; (e,f) 25 May
2016; (g,h) 7 October 2016; (i,j) 19 May 2017; (k,l) 22 May 2017; (m,n) 26 May 2017; and (o,p) 18 June
2017. The red line is the dry edge and the black line is the wet edge.

Figure 11 shows the spatial validation of “DT” and “DT/ra” approaches with different buffer
zone sizes. Because the hc was calculated based on the averaged hc, the normalization did not change
the correlation coefficient R. However, it can also be seen that there was a significant improvement in
RMSD and relative errors (RE) with normalized ra than without. With a buffer zone of 1.5 m radius, as
shown in Figure 11g, on 26 May 2017, the RE reduced from 14.02% to −1.51%. Similarly, on 18 June
2017, as shown in Figure 11h, the RMSD decreased from 0.04 to 0.02 m3·m−3 and the RE reduced from
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15.07% to −2.53%. Further, the comparison between different sizes of buffer zones indicates that the
best match of R between SWI and in-situ SM measurements was with buffer zones of 1.5 m radius.
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4.4. Temporal Validation of UAS Estimated Soil Moisture 

Figure 12 shows the temporal variations of in-situ and UAS derived SM estimates for Soil Profile 
A (Figure 1) during the growing seasons of 2016 and 2017. In the non-growing season (November–
April), this site had high SM and was energy limited, while, during the growing season (May–
October), the condition switched to SM limited (Figure 4). This supports the assumption of this study 
to apply NEF to estimate SM during the growing season. By comparing the “DT” and “DT/ra” 
approaches, we found that SM estimates from the “DT/ra” scheme had a close correspondence with 
the temporal variations of in-situ SM measurements at depths of 15 and 30 cm.  

Figure 11. Validation of the spatial variability of SM. The first and third columns (a,c,e,g,i,k) are
on 26 May 2017 and the second and fourth columns (b,d,f,h,j,l) are on 16 June 2017. The blue color
represents the “DT” approach, which considered theoretical dry and wet edges but not ra normalization.
The red colors indicate the “DT/ra” approach, which considered ra normalization and theoretical
dry/wet edges. The validation was conducted with buffer zones of the different radius: 0.15 m (initial
spatial resolution) (a,b); 0.5 m (c–e); 1 m (e,f); 1.5 m (g,h); 2 m (i,j); and 2.5 m (k,l).

4.4. Temporal Validation of UAS Estimated Soil Moisture

Figure 12 shows the temporal variations of in-situ and UAS derived SM estimates for Soil Profile A
(Figure 1) during the growing seasons of 2016 and 2017. In the non-growing season (November–April),
this site had high SM and was energy limited, while, during the growing season (May–October), the
condition switched to SM limited (Figure 4). This supports the assumption of this study to apply NEF
to estimate SM during the growing season. By comparing the “DT” and “DT/ra” approaches, we
found that SM estimates from the “DT/ra” scheme had a close correspondence with the temporal
variations of in-situ SM measurements at depths of 15 and 30 cm.
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0.1 to approximately 0.4–0.75. The “DT/ra” approach had the best matches with the in-situ SM at 15 
and 30 cm depth, which corresponds to the root-zone depth of the willow plantation [50]. The R 
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Figure 12. Temporal variation of the precipitation (P), air temperature (Ta), in-situ volumetric SM and
the estimated volumetric SM from UAS for Soil Profile A during the growing seasons (May–October)
of 2016 and 2017. The curves are the in-situ SM measurements at different soil depth and the dots are
the SM estimates from UAS using “DT” and “DT/ra” schemes.

The Taylor diagram and the scatterplot (Figure 13) shows the temporal validation of the “DT”
and “DT/ra” approaches with SM at different depths (5, 15, 30 and 60 cm) for Soil Profiles A and
B (Figure 1) with 1.5 m buffer zones. Significant improvements in R by normalizing ra is evident
than without normalization. In the Taylor diagram (Figure 13a), all markers representing “DT/ra”
approach (solid colors) had closer correspondence to the observation than markers representing the
“DT” approach. Compared to the “DT” approach, R of the “DT/ra” approach increased from−0.25–0.1
to approximately 0.4–0.75. The “DT/ra” approach had the best matches with the in-situ SM at 15 and
30 cm depth, which corresponds to the root-zone depth of the willow plantation [50]. The R between
the SM estimates and observations at the depth of 15 and 30 cm improved from the value around 0 (not
significant correlation) to 0.7 (<0.05 significance level). Similarly, in Figure 13b, the comparison shows
the “DT/ra” approach had the lowest RMSD around 0.025 m3·m−3 and RE about 3% when compared
with the SM at 15 and 30 cm. However, in the “DT” approach, RMSDs were around 0.045 m3·m−3

and REs were about 10%. Generally, the improvement for the “DT/ra” approach in the temporal
domain was substantially larger than the comparison in the spatial domain. This is because, in the
temporal domain, hc changed more significantly from 0 to approximately 4 m. Further, regarding SM
measurements at different depths, it can be found that the estimated SM from the triangle approach
has better correlation with measurements at 15–30 cm depths, as shown by the green and light blue
symbols in Figure 13. These results suggest that the estimated SM from the triangle approach reflects
SM at the root zone.
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4) other than SM [11,21,28,29]. As it happens in our study site, it is possible that pixels with the same 
fractional cover have different aerodynamic properties due to tree height variations. In this 
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Additionally, as the aerodynamic properties of soil and vegetated surfaces are quite different, just 
accounting for those in the triangle for the full cover and bare soil cases corrected most of the original 
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formulation of bulk aerodynamic resistance under neutral conditions from Brutsaert with roughness 
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Figure 13. (a) Taylor Diagraml and (b) scatterplot of RE and RMSD for validation of temporal dynamics
of SM. The colors represent SM at different soil depth. The square makers are validation for Soil Profile
A and the pentagram makers indicate validation for Soil Profile B. The solid markers indicate the
“DT/ra” scheme, while the face color of the “DT” approach markers is white. The validation was
conducted with a buffer zone radius of 1.5 m (p < 0.05, when the correlation coefficient is larger
than 0.632).

5. Discussion

5.1. Linking Soil Moisture, Surface Heat Flux and the Triangle Approach

The temperature–vegetation triangle space is defined by the scatterplot of surface temperature
(assuming a constant air temperature) and vegetation cover, where the triangle boundaries correspond
to dry and wet endmembers of SM (Figure 4). In this 2D space, the relative position of an observation
of surface temperature between the wet/dry extremes has already been extensively applied to map
SM using satellite data and at spatial scales of 60 m to 1 km [11,21,28]. Using high resolution imagery
from UASs provides opportunity to match the typical spatial scale of SM variations (meter level) [51],
identify areas of low SM levels where water is limiting for plants and will be obscured in coarser
grids [52], and also interpret how fluxes aggregate within a footprint of the EC system.

In our study, we mapped changes in SM over a willow forest at canopy scales by considering a
simple piecewise SM relation with sensible heat flux normalized by available energy at the scale of tree
crowns (Figure 4) [1,53] together with observations of Ts and f c. The linkage between soil moisture
and surface heat flux within the triangle approach shows that using a triangle approach for mapping
SM requires considering any environmental factors susceptible to modify Ts (vertical axis of Figure 4)
other than SM [11,21,28,29]. As it happens in our study site, it is possible that pixels with the same
fractional cover have different aerodynamic properties due to tree height variations. In this framework,
finding the absolute or “exact” value of the aerodynamic resistance is less important than accounting
for relative variations among pixels with the similar vegetation cover, not being as critical as in SEB
models that explicitly estimate sensible heat flux using aerodynamic resistances [54]. Additionally,
as the aerodynamic properties of soil and vegetated surfaces are quite different, just accounting for
those in the triangle for the full cover and bare soil cases corrected most of the original bias (spatial
validation in Figure 11 and temporal validation in Figure 13). To do that, we used the formulation
of bulk aerodynamic resistance under neutral conditions from Brutsaert with roughness effective
parameters similar to Moran et al. (1994) and Hoffman et al. (2016) [16,18]. In their studies, those
parameters were derived from static prescribed crop height for the entire area, while we used estimates
of tree height derived from SfM photogrammetry techniques, which is a more accessible alternative to
LiDAR to retrieve canopy structure information [55]. To have effective parameters of roughness length
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at blending height for momentum and displacement height, we averaged tree height (e.g., roughness
elements) over the footprint area in each date. The SM retrieved showed larger improvements in
accuracy over time more than over space. This is logical, as we did not consider the effect of fine scale
spatial variability (canopy level) and because the tree height variation is very high (0–4 m) over time in
this willow forest.

5.2. Influence of the 3D Canopy Structure to the Triangle Approach at Fine Resolution

The main improvement of SM estimates is on the temporal domain, in which hc changes from 0
to around 4 m. In the spatial domain, there was an improvement in RMSD and RE, but no changes in
the correlation coefficient. This is due to that the averaged hc from the whole willow patch was used
to calculate the bulk aerodynamic roughness and a constant kB−1 of 2.3 was used to account for the
local boundary resistance for the heat transfer. An important aspect to further improve the triangle
approach is the proper interpretation of the spatial patterns of Ts detected from UAS at fine scales of
~1 m [56]. These fine spatial Ts patterns vary in response to the water status of tree crowns, as trees
modify root-zone SM through transpiration [52]. However, the spatial patterns are also influenced
by the micro-scale structural heterogeneity of forest canopies due to gaps or tree height changes [57].
Historically, it has been considered that turbulence mixing “wipes” out such fine scale heterogeneities,
but it has been shown that the eddy mixing length inside and just above the canopy sublayer is at the
same scale as the tree-crown diameter and, therefore, crown-scale heterogeneity leads to persistent
effects [57,58]. In fact, the spatial arrangement of soil and vegetation patches and plant architecture
produces near-surface turbulent changes clearly modifying the surface fluxes and not accounted for in
turbulent diffusion theory formulations [56,59].

Typically, the effect of tree scale heterogeneity when calculating turbulent fluxes is accounted via
length scales using a scalar quantity (zero plane displacement and aerodynamic roughness length) that
aim to account for the 3D effects of the canopy structure on the momentum transfer, using effective
patch-averaged profiles when the goal is to estimate the fluxes at the blending height as we also did
over time [57]. However, in this study, a zero-dimensional representation of 3D canopy effects using
uniform scalar properties removes the signature of heterogeneity on fluxes and temperature when
heterogeneity is relevant as in the case of mapping fine scale SM patterns.

One simple possibility to incorporate the effect of canopy heterogeneity in the triangle space
would be to consider an additional boundary layer resistance to heat transport in series with the
aerodynamic resistance, to account for variations in heat transfer due changes in tree height that would
modify heat roughness length as in Equations (34) and (35). That means that, in Equations (34) and
(35), the averaged hc can be used to estimate zom, while the pixel hc can be used to calculate zoh. Thus,
the effective spatially-averaged hc is used for the aerodynamic resistance between the reference height
and the displacement height and the local variation of hc with respect to the average hc is used to
account for the local boundary resistance for Zoh. In practice, this is equivalent to calculating a kB−1

resistance that is dependent on tree height.

z0h = 0.1hc (34)

z0h = 0.1(hc + ·hc) (35)

where hc is the averaged canopy height for the willow planation and ·hc is the local variation of the
canopy height.

To explore if accounting for the spatial variability of hc had an impact on the retrieval of SM, we
compared the local hc formulation of Equation (34) with the two prior approaches (no resistance DT
and effective parameterized resistance DT/ra with average hc) on 18 June 2017 as it had more TDR
measurements available. The results are shown in Table 2. It can be seen that, when including local
variations of hc at the pixel level, there is a slight improvement. This indicates the variation of hc

inside the plantation is also important, even though the spatial variations are not that large. It can be
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expected that, for other sites with larger spatial variations of hc, more significant improvement could
be achieved.

Table 2. Comparison of the approaches to consider the spatial variations of the canopy height (the
spatial validation was on 18 June 2017).

Approach R RMSD (m3·m−3) RE (%)

DT 0.67 0.04 15.07
DT/ra average hc 0.67 0.02 2.53
DT/ra Local hc for kB−1 0.69 0.02 1.84

The aerodynamic roughness length in this study was expressed as a ratio of hc [45]. This is
valid for homogeneous surfaces as the eddy covariance flux site of this study [33]. However, for the
heterogeneous landscapes, additional consideration of the effective averaged obstacle height and
frontal area index can help to obtain more accuracy [58]. Moreover, hc can also be more accurately
acquired from UAS LiDAR techniques. For instance, the comparison between UAS-based LiDAR and
SfM techniques shows that LiDAR is relatively more accurate in the forest height and 3D structure
detection, while SfM is an adequate low-cost alternative [60].

Another aspect related with SM retrieval from the relation with surface heat fluxes is due to the
fact that every tree has a different root system and root depth; therefore, Ts pattern will respond to
slightly different SM levels from tree to tree. That might explain why we get the better correlations in
the layers with higher root density. It can be expected that, in this study, during the progress of the
growing season from bare soil to full canopy cover, UAS-based SWI is associated with SM in different
depths. For the bare soil period, SWI indicates SM more superficial, while for high canopy covers, SWI
was related with SM at deeper depths. Since this study has more UAS observations with high canopy
covers (f c > 0.7) over Soil Profiles A and B, it explained better correlations with SM at layer around
15–30 cm depths. This finding agrees with other studies that showed SM estimates from the triangle
approach to be more related to the root-zone SM [19,61]. For instance, Wang et al. (2018) compared
the SM estimates from UAS with in-situ SM at different depths at the experimental plots with spring
wheat and found the best match between estimates and observations to be at 10–20 cm depth, which
corresponds to the root zone of the wheat [19].

The comparison between different sizes of buffer zones indicates that the best match of R was
with buffer zones of 1.5 m radius. Several reasons can justify the best match at this size of buffer
zones. The triangle approach infers SM through canopy temperature for high f c levels. Although UAS
imagery provided sub-meter level VHR imagery of the canopy, there may be a spatial discrepancy
between the canopy status and SM conditions underneath the canopy. This means the detected canopy
status may reflect the SM conditions representing the few meters around the canopy instead of the
SM condition just below the canopy and, in fact, the root of the willow plantation can spread 1–3 m
around the tree [62]. Further, a complete canopy is composed of sunlit and shaded leaves and a single
pixel among the canopy cannot reflect the whole status of the canopy and SM conditions in the root
zone [63]. According to the DSM and visual inspection of the RGB photos, as shown in Figure 1, the
radiuses of the canopy are around 1–1.5 m in dense vegetation conditions. This approximately agrees
with the size of the buffer zones. Additionally, there are uncertainties in the georeferencing of the
UAS image processing and the Trimble RTK GNSS, which was used to measure the location of TDR
measurements and GCPs, also has errors. Therefore, errors were reduced with spatial aggregation.

5.3. Comparison with Other Studies

While numerous studies have been conducted with thermal inertia, the triangle approach and
microwave to estimate SM from satellite and manned airborne remote sensing [11,36,63,64], only few
studies have been conducted with UAS observations [4,17,19]. For instance, Sobrino et al. (2012) used
NDVI and Ts with a polynomial formulation to predict SM and this approach can estimate SM with
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RMSDs of 0.05 m3·m−3 from observations from a manned airborne system [64]. Fan et al. (2015) used
vegetation indices and Ts to estimate SM with RMSDs around 0.023 m3·m−3 from a manned airborne
system [63]. Wang et al. (2018) demonstrated that UAS-based optical and thermal remote sensing
data can be utilized with the water deficit index approach to estimate SM with R2 reaching to 0.63
and RMSDs less than 0.1 m3·m−3 [19]. Compared to these studies, this study achieved an accuracy to
map spatial and temporal variations of SM with R around 0.58–0.69 and RMSDs around 0.025 m3·m−3.
Further, this study was based on the triangle approach to utilize the optical and thermal remote sensing
information. It has advantages to be applied for bare soil, sparse and dense vegetation conditions.
Moreover, this approach can be applied to monitor the root-zone SM, which has added significance for
predicting near-future vegetation anomalies [65]. Further, the approach of this study does not need
parameter calibration and most inputs were available from UAS observations. This UAS-based SM
monitoring approach can be applied in the data-scarcity regions. However, the shortage of this method
is that, in the dense vegetation conditions, the accuracy of this method is very sensitive to the accuracy
of the optical and thermal data, as shown in Figure 8. For the miniaturized UAS thermal sensors, it is
hard to obtain surface temperature with very high accuracy (<1 ◦C). Thus, the precise calibration of the
thermal sensor, as performed in this study, is recommended. Additionally, novel trapezoid methods
utilizing the visible and shortwave infrared data may be another alternative [66,67].

6. Conclusions

In this study, an operational methodology to map soil moisture (SM) in the root-zone
at high spatial resolution (m level) from Unmanned Aerial Systems (UAS) is proposed.
We improved the state-of-the-art temperature-vegetation triangle methodology by normalizing the
land–atmosphere temperature gradients with a bulk aerodynamic resistance that was derived from
structure-from-motion based surface elevation maps. In this way, the effects of the tree growth driven
surface roughness dynamics on surface temperatures were considered. Due to the limited coverage of
the UAS, the hydrological contrast of the UAS maps was reduced, which lead us to model theoretical
dry and wet edges rather than extracting them from the images. Evaluation with SM measurements in
a Danish bioenergy willow short rotation coppice in two consecutive summer seasons led us to the
following conclusions:

(i) Accounting for changes in surface roughness considerably increased the performance of the
temperature-vegetation triangle approach to estimate SM variation.

(ii) Under densely vegetated conditions, the estimated SM from the triangle approach correlated
better with the root-zone SM than with the surface SM (< 10 cm). This shows that the modified
triangle approach is better suited to monitor water availability for vegetation compared to thermal
inertia- or microwave-based approaches, which detect surface rather than deeper root-zone SM.

(iii) The optimum spatial resolution or aggregation for the modified triangle approach is in the same
order of magnitude as the typical length scale of the tree crowns.

(iv) Given the high sensitivity of SM model to errors in surface temperature estimates, we proposed
a pixel-wise sensor calibration method to improve the accuracy of the uncooled UAS thermal
sensor to be around 0.55 ◦C for the laboratory conditions and 0.95 ◦C in the field.

(v) The proposed methodology mainly relies on UAS observations and requires limited in-situ
measurements, e.g., solar incoming radiation, air temperature and humidity, wind speed,
and atmospheric pressure, and can be operationally used for routine SM monitoring in both
agricultural and natural ecosystems.

This study mainly addresses the influence of the temporal changes of the canopy roughness
on the triangle approach. Future research should consider the effects of strong spatial variation of
the canopy height and the role of canopy gaps for the fine scale patterns of the surface temperature
observed from UAS, to avoid contamination of the estimated SM maps by micro-scale variability of
structural induced turbulence patterns and radiation budgets.
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UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds.
Forests 2016, 7, 62. [CrossRef]

61. Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture
from satellite imagery. Sensors 2007, 7, 1612–1629. [CrossRef]

62. Phillips, C.J.; Marden, M.; Suzanne, L.M. Observations of root growth of young poplar and willow planting
types. New Zeal. J. For. Sci. 2014, 44. [CrossRef]

63. Fan, L.; Xiao, Q.; Wen, J.; Liu, Q.; Tang, Y.; You, D.; Wang, H.; Gong, Z.; Li, X. Evaluation of the airborne
CASI/TASI Ts-VI space method for estimating near-surface soil moisture. Remote Sens. 2015, 7, 3114–3137.
[CrossRef]

64. Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Muñoz, J.C.; Corbari, C. A method to estimate soil moisture
from Airborne Hyperspectral Scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP
campaigns. Remote Sens. Environ. 2012, 117, 415–428. [CrossRef]

65. Qiu, J.; Crow, W.T.; Mo, X.; Liu, S. Impact of Temporal Autocorrelation Mismatch on the Assimilation of
Satellite-Derived Surface Soil Moisture Retrievals. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7,
1–9. [CrossRef]

66. Babaeian, E.; Sadeghi, M.; Franz, T.E.; Jones, S.; Tuller, M. Mapping soil moisture with the OPtical TRApezoid
Model (OPTRAM) based on long-term MODIS observations. Remote Sens. Environ. 2018. [CrossRef]

67. Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote
sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2013.05.010
http://dx.doi.org/10.1016/j.rse.2013.05.007
http://dx.doi.org/10.1002/2016WR020111
http://dx.doi.org/10.1007/s10546-009-9404-4
http://dx.doi.org/10.1007/BF00709229
http://dx.doi.org/10.1016/j.jhydrol.2007.05.023
http://dx.doi.org/10.3390/f7030062
http://dx.doi.org/10.3390/s7081612
http://dx.doi.org/10.1186/s40490-014-0015-6
http://dx.doi.org/10.3390/rs70303114
http://dx.doi.org/10.1016/j.rse.2011.10.018
http://dx.doi.org/10.1109/JSTARS.2014.2349354
http://dx.doi.org/10.1016/j.rse.2018.04.029
http://dx.doi.org/10.1016/j.rse.2017.05.041
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Site 
	Methods 
	Unmanned Aerial System (UAS) and Flight Campaigns 
	Sensor Calibration 
	Image Processing and Validation 
	Temperature–Vegetation Triangle Approach 
	The Original “DT” Triangle Approach 
	The Modified “DT/ra” Triangle Approach 

	Sensitivity Test of the Modified Triangle Approach to the Canopy Height 
	Validation of Soil Moisture Estimates 

	Results 
	UAS Sensor Calibration and Data Validation 
	Sensitivity of the Modified Triangle Approach to the Vegetation Height 
	Spatial Validation of UAS Estimated Soil Moisture 
	Temporal Validation of UAS Estimated Soil Moisture 

	Discussion 
	Linking Soil Moisture, Surface Heat Flux and the Triangle Approach 
	Influence of the 3D Canopy Structure to the Triangle Approach at Fine Resolution 
	Comparison with Other Studies 

	Conclusions 
	References

