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Abstract: Forest biodiversity conservation requires precise, area-wide information on the 

abundance and distribution of key habitat structures at multiple spatial scales. We combined 

airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying 

individual tree characteristics and quantifying multi-scale habitat requirements using the example 

of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park 

(Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on 

bark beetles dwelling in dead or dying trees. While previous studies showed a positive 

relationship between the TTW presence and the amount of deadwood as a limiting resource, we 

hypothesized a unimodal response with a negative effect of very high deadwood amounts and 

tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, 

habitat selection was modelled at four spatial scales reflecting different woodpecker home range 

sizes. The abundance of standing dead trees was the most important predictor, with an increase in 

the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a 

decrease in the probability of occurrence. A positive relationship with the deadwood crown size 

indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide 

prediction of species occurrence and the derivation of ecological threshold values for deadwood 

quality and quantity for more informed conservation management. 

Keywords: deadwood; standing deadwood; dead tree; snags; three-toed woodpecker (Picoides 

tridactylus), habitat suitability model (HSM), habitat requirements; airborne laser scanning (ALS), 

CIR aerial imagery 

 

1. Introduction 

Effective biodiversity conservation in managed forest landscapes requires knowledge about the 

distribution of key habitat features at relevant scales [1,2]. This knowledge is essential for assessing 

species’ habitat selection, deriving threshold values for key features, and evaluating habitat quality 

across large spatial scales. Habitat suitability models (HSMs) [3] and their spatially explicit variant, 
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species distribution models (SDMs), have been widely employed in the last decades to predict 

species occurrence [4], abundance, or richness [5–7] based on environmental variables [8]. Given 

their need for area-wide environmental information across large spatial scales, SDMs have mostly 

been based on publicly available topographic, climatic, or land-cover variables, which are often too 

coarse-grained and imprecise for reliably assessing habitat characteristics and quality for 

forest-dwelling species.  

Forests, especially those with natural stand characteristics, are habitats with a high vertical and 

horizontal structural complexity [9] and are difficult to characterize with simultaneously high 

precision and the required generalization. Traditionally, forest structure is described based on 

plot-based forest inventories or high-resolution mapping in the field, which are costly [10] and 

therefore often carried out at limited spatial extents [11]. Moreover, they do not deliver continuous 

spatial information. The rapid development of remote sensing techniques and efficient methods for 

data processing make information originating from airborne and satellite surveys increasingly 

attractive for forest ecology and biodiversity research, conservation and management [12,13]. These 

techniques and methods allow detailed and area-wide structural analyses, alleviating the trade-off 

between precision and extent [11,14].  

Initially forest structural and compositional parameters used in conservation studies 

predominantly originated from passive remote sensing such as aerial and satellite imagery and were 

obtained using manual or semi-automatic mapping methods [15,16]. Current trends increasingly 

turn towards active remote sensing with airborne laser scanning (ALS, also referred to as airborne 

Light Detection and Ranging or LiDAR) and the fusion of data from different sources enabling the 

combination of structural and spectral information [10]. With its ability to penetrate through the 

canopy, ALS provides information on vegetation heights at and below the forest surface, allowing a 

precise, high-resolution description of the vertical and horizontal vegetation structure [17,18]. 

ALS-based structural information has been shown to perform well in predicting the habitat selection 

of various forest species, especially bats and birds [7,11,17,19–23] using three-dimensional habitat 

structures. The fusion of ALS data with satellite or aerial imagery combines accurate measurements 

of vertical structure with the advantages of using spectral information (e.g., for identifying tree 

species [24–29], distinguishing between living and dead trees [27,30,31] or analyzing forest 

structural complexity [9,32]). Such information can be highly relevant for analyzing and predicting 

the habitat requirements of forest species linked to specific tree-characteristics and for determining 

their abundance across large spatial scales [12].  

The three-toed woodpecker (TTW) is a forest bird typical for boreal and mountainous natural 

spruce dominated forests with a high amount of standing deadwood. Although globally red-listed 

with a status of least concern and stable population size [33], this species is regionally rare and 

vulnerable [34] or even threatened with extinction [35–37]. The TTW is frequently selected as a focal 

species of forest biodiversity conservation programs, as its occurrence is associated with a high 

forest bird diversity [38]. It functions as a key-stone species (sensu Thompson and Angelstam [39]) 

[40] as it provides breeding opportunities for a variety of cavity-breeding species [41,42]. Feeding 

mainly on larvae of bark and wood-boring insects [43,44], the TTW is highly dependent on dying 

and dead conifer (mostly spruce) trees [21] and is therefore considered an umbrella species for the 

saproxylic species community [45].  

The habitat variables determining TTW home range selection in its boreo-alpine distribution 

range [46,47] correspond to the attributes of mature, spruce dominated, hemiboreal, boreal, or 

mountain forests. Spruce-dominated natural old-growth forests with a high variability in tree 

diameters (diameter at breast height, DBH) as well as a high abundance and diversity of deadwood 

provide suitable conditions for a continuous woodpecker presence, as they host stable populations 

of spruce bark and longhorn beetles, its staple food [43,44,48,49]. In other habitats, woodpecker 

breeding density varies greatly with the abundance of insect prey [43].  

Spruce trees infested by bark beetles as well as standing deadwood [49] are key habitat 

components for both TTW subspecies: Picoides tridactylus alpinus inhabiting mountainous conifer and 

mixed forests and Picoides tridactylus tridactylus inhabiting hemi- and boreal lowland mixed and 
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spruce forests. Deadwood diversity, i.e., the presence of various stages of decay, allows 

woodpeckers to adjust their diet to varying external conditions and energetic needs [44,49,50]. 

Kratzer et al. [51] showed a significantly higher abundance of deadwood in the early stages of decay 

(comparable to stage three to four according to Thomas et al. [52], Figure 1) at sites with woodpecker 

presence compared to absence sites. Also, Balasso [53] underlined the preference of TTW for fresh 

snags, especially recently dead spruce with loose but attached bark, still inhabited by large numbers 

of bark beetles. 

 

Figure 1. For the purpose of this study, trees were classified as: living trees (LIVE) and standing 

deadwood objects (DEAD), which were further divided into dead trees (DEADTREE) and snags 

(SNAG) representing the stages of conifer tree decomposition after Thomas et al. [52]. Note the 

shrinking of the horizontal extension of the tree crown during the progress in decay. 

In addition, various authors showed the bird’s preference for old-growth stands [43,54–59], 

with TTW territories documented mostly in stands older than 60 years [54,60], 80 years [61,62], or 

100 years [40,63], and with a high abundance of veteran trees [48,54,64].  

Outside of the boreal zone, TTW occurrence mostly coincides with a high protection status, as 

in Białowieża National Park [65–67], in the Polish Carpathians [61,68] or other protected areas 

[51,54,66,69,70]. In these areas, the bird’s home range sizes are smallest ranging from 16 ha [71] to 

40–60 ha [49,59,66,72], while home range sizes in managed forests, with lower densities of the 

required habitat requisites, are larger (i.e., between 100 and 400 ha [43,58]). Territory density is lower 

in managed forest landscapes with 0.2–0.7 territories per 100 ha compared to 1–5 territories per 100 

ha in natural old growth and unmanaged forests [55,60,61,66].  

Due mainly to harvesting and sanitation cutting, deadwood, to which TTW occurrence is 

closely linked, is an especially limited resource in managed forest ecosystems [21,54,64,65,73]. 

Deadwood thresholds of European forest-dwelling species range from 10 to 150 m3/ha with values 

of 20–50 m3/ha given for the majority of species as reviewed by Müller and Bütler [73]. This 

corresponds well with the 15–18 m3/ha to 30 m3/ha given for TTW occurrence [40,54,63,64]. Higher 

densities of deadwood are rare in Europe and occur only locally, mainly in protected areas [73,74], 

so that an upper deadwood limit could not be determined yet. However, the existence of a 

deadwood-optimum is likely, as a share of living trees would be necessary to allow for a 

continuous provision of dying and freshly dead trees. 

In this study, we test the usability of remotely sensed single tree data for analyzing habitat 

selection and predicting area-wide occurrence of the TTW, identifying the most important variables 

explaining home range selection at multiple spatial scales, and deriving threshold values for 

conservation management. We test the hypothesis that extremely high amounts of deadwood lead to 

a decrease in the probability of TTW occurrence and assess the influence of deadwood quality on 

habitat selection.  
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2. Materials and Methods 

2.1. Study Area 

The study was conducted in the Bavarian Forest National Park. Founded in 1970 as the first 

German National Park, it initially covered an area of 13,300 ha which was extended to 24,218 ha in 

1998. The park is located in southeastern Bavaria (Germany) and borders the Šumava National Park 

(69,030 ha), Czech Republic to the East. The park covers a large part of the Bavarian Forest mountain 

chain with an elevational gradient ranging from 600 to 1453 m a.s.l. Depending on elevation, the 

mean annual temperature (1972–2001) varies from 3.5 to 7.0 °C, and the total annual precipitation 

varies from 1300 to 1900 mm [75]. The predominant vegetation is mountainous spruce and mixed 

forest with a share of Norway spruce (Picea abies) of 67.0%, European beech (Fagus sylvatica): 24.5%, 

Silver fir (Abies alba): 2.6%, and other tree species: 5.9% [76].  

Following its non-intervention policy, the National Park authority allowed for natural forest 

dynamics in the core zone (currently encompassing 68% of the park area), with massive bark beetle 

outbreaks after severe storm and windthrow events in 1983 and 1984. This resulted in a dieback of 

spruce forests at an unprecedented rate in Central Europe in recent decades [77].  

2.2. Remote Sensing Data  

Habitat variables were extracted from a full, remote sensing-based tree inventory [78]. Full 

waveform ALS data was acquired on the 24th/26th/27th of July 2012 through the Milan Flug GmbH, 

using a Riegl LMS-Q 600i laser scanner of 350 KHz. A nominal point density of 30–40 points/m2 was 

obtained from data recorded at a 0.32 m footprint. CIR aerial images were acquired in August 2012 

using a DMC camera and a ground sampling distance of 20 cm. The images are composed of 3 

spectral bands: near infrared, red, and green. 

The preprocessing of the raw ALS data to the georeferenced three-dimensional (3D) point 

cloud, including the derivation of the intensity and the pulse width values using a sum of Gaussian 

functions, is described in Reitberger et al. [79] and Yao et al. [80]. Single tree detection and 

delineation was carried out with a 3D segmenting method solely based on ALS data and the 

geographical position and top height (H) were calculated for each segmented tree [81]. This resulted 

in a dataset containing 12,106,320 trees, consisting of two types of geographical data, point data for 

tree tops and polygons for crown delineation. In the next steps, for each tree, the tree type (conifer, 

broadleaf, or deadwood), projected crown area (C), crown base height and crown volume, were 

derived using both types of remote sensing data. Spectral information from CIR aerial imagery fused 

with segmented ALS point cloud data was used for tree species classification based on Reitberger et 

al. [79] and for the detection of snags and standing deadwood in line with Polewski et al. [30] and 

Polewski et al. [82]. The crown base height and the crown volume originated from a 3D 

Alpha-Shape-triangulation of the segmented ALS point cloud. Diameter at breast height (DBH), 

basal area (BA) and volume (VOL) were also calculated for live trees in an extra modelling step 

based on a calibration with an extensive ground reference database [83].  

In addition to the automatically derived, tree-based information, we tested independent data of 

yearly visual assessment of deadwood areas based on the CIR aerial imagery [84] dated 2010–2015 

(Table A1).  

2.3. Species Data and Sampling Design 

Presence locations of the TTW originated from the database of the Bavarian Forest National 

Park, including data from the biological monitoring, various research projects, and chance 

observations by trained park staff (Figure 2). Locations of TTW, either observed directly or through 

sound identification, were recorded with a GPS. Data were collected in two time periods (2007–2008 

and 2012–2014), however, to achieve a temporal synchronization with the remote sensing data from 

2012, we only used the observations from the latter sampling period (N = 115). 
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To study habitat selection at different relevant scales, we generated circular sample plots 

around each presence location, with sizes reflecting the area requirements of the species reported 

under different conditions: 

 R = 100 m to evaluate the habitat characteristics in close vicinity of the TTW presence locations. 

 R = 250 m (19.6 ha) representing the minimum reported home range of an individual TTW 

under excellent habitat conditions (ca. 16–19 ha [85]);  

 R = 450 m (63.6 ha) depicting the average minimum home range size reported for areas with 

presumably good conditions such as protected areas [43,54,66,86];  

 R = 600 m (113 ha) corresponding to the average home range size reported by various authors 

[49,66,85,87].  

The presence locations showed spatial clumping in some regions, indicating multiple 

observations originating from the same individual. To avoid pseudoreplication, we thinned the 

initial set of presence locations allowing a maximum 18% overlap of the sampling plots at the largest 

scale (r = 600 m), after Pechacek [85] who reported average territory overlaps of 17.6% (±3.9). Using 

R-package “Spatstat” package [88] to discard all presence locations that fell below the resulting 

minimum distance of 840 m, resulted in a final set of 52 presence locations. 

In addition, we randomly created a similar number of pseudo-absence locations (in the 

following referred to as “absence”) with the same minimum distance to any presence location and to 

each other.  

 

Figure 2. Study area (Bavarian Forest National Park) and the locations with TTW presence (black 

points) and absence (red points) used for the analysis. Presence locations closer than 840 m to the 

next location were discarded to avoid using multiple observations of the same bird (blue points). 

Grey buffers represent different home range sizes with radii of 100 (A), 250 (B), 450 (C), and 600 m 

(D) (inset). 

2.4. Predictor Variables 

Predictor variables were generated for each of the four sampling plot scales and encompassed 

three classes: general forest stand characteristics, specific tree features, as well as topographic 

information (Table 1).  
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Table 1. Tested predictor variables each calculated for circular sampling plots of r = 100, 200, 450, and 600 m respectively, with their potential ecological relevance 

for the model species. (BB = bark beetle, DBH = diameter at breast height, RS = remote sensing). 

Category Variable Description Ecological Meaning Unit 

Forest stand  FCOVER_part  Proportion of forest cover per plot based on crown area  Stand structure and shelter function  0–1 

characteristics STANDH15_partF Proportion of crown cover of trees with H > 15 m to forest cover Stand structure: mature trees 0–1 
 DEADCIR_part Proportion of deadwood area per plot (2010–2016 aerial imagery) Feeding potential for BB/Option for cavities 0–1 

 DEADRSI_part Proportion of deadwood area per plot (2012 RS tree inventory) Feeding potential for BB/Option for cavities 0–1 
 LIVE_Nha Amount of living trees per ha Forest stand density and tree shelter function N/ha 
 LIVE_VOLha Total volume of live trees per ha Forest stand structure m3/ha 
 LIVE_BAha Mean basal area of live trees per plot Proxy for stand mass and forest age m2/ha 
 LIVE_BAvar Variance of live tree basal area per plot Proxy for stand age heterogeneity  m2/ha 
 LIVE_Hmean Mean height of live trees per plot Proxy for stand vertical structure and age m 
 LIVE_Hvar Variance of live tree height per plot Proxy for vertical structure/age heterogeneity m 
 CONIF_Npart Proportion of conifer trees (N) in all live trees Forest type and potential food resources  0-1 
 CONIF_VOLpart Proportion of conifers (Volume) in all live trees Forest type and resources food resources 0-1 
 DECID_VOLha Volume of deciduous trees per ha Forest type and shelter function m3/ha 

Specific tree  RESOURCE_Nha Amount of trees with DBH > 30 cm per ha Feeding potential for BB/Option for cavities N/ha 

features DEAD_Nha Amount of all standing deadwood per ha  Feeding potential for BB/Option for cavities N/ha 
 DEAD_Hmean Mean height of all standing deadwood per plot Feeding potential for BB/Option for cavities m 
 DEAD_Cmean Mean crown area of all standing deadwood per plot Feeding potential for BB/Option for cavities m2 
 SNAG_Nha Amount of snags per ha Old deadwood (rather unsuitable) N/ha 
 SNAG_Hmean Snags mean height per plot Old deadwood (rather unsuitable) m 
 SNAG_Cmean Snags mean crown area per plot Old deadwood (rather unsuitable) m2 
 DEADTREE_Nha Amount of all standing dead trees per ha Deadwood with BB potential  N/ha 
 DEADTREE_Hmean Mean H of all standing dead trees per plot Deadwood with BB potential  m 
 DEADTREE_Cmean Mean crown area of all standing dead trees per plot Deadwood with BB potential  m2 

Topography  ALTITUDE_mean Mean altitude a.s.l. of a sampling plot Proxy for climate m 

 SLOPE_mean Mean slope of a sampling plot Proxy for terrain Degree 

 EAST Easting (sine of aspect) of a sampling plot Sun exposure (−1)–1 

 NORTH Northing (cosine of aspect) of a sampling plot Sun exposure (−1)–1 

 SOLAR_mean Yearly mean of solar radiation per plot Proxy for climate h 
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Based on a literature review, predictor variables describing general forest stand characteristics 

were selected according to their hypothesized ecological relevance for the species. Forest cover per 

plot was defined as the share of the horizontal plot area covered by all trees’ crowns. The proportion of 

forest cover attributed to trees higher than 15 m was assessed as a proxy for mature forest, and the 

proportion the sampling plot covered by crowns of standing deadwood, as an indicator for areal 

deadwood availability. We also included a similar variable derived from the standard visual mapping 

(CIR): the proportion of area with standing deadwood originating from the period 2010–2015. This 

data was compared with the available ALS and CIR based data. In addition, the number and 

proportion of living trees (i.e., conifers, deciduous trees, and all trees) were calculated for each plot 

size, as well as the average height (H), diameter (DBH), and volume (VOL) and the variance thereof.  

Specific tree features such as dead, “resource” or “veteran” trees have been observed to be 

important for the TTW. We defined resource trees (RESOURCE) as all living trees with a DBH > 30 

cm, based on Pechacek and d’Oleire-Oltmanns [48], Kajtoch and Figarski [64] and Kajtoch et al. [54]. 

To approximate the different decay stages of deadwood in adherence to Thomas et al. [52] (Figure 1), 

and to distinguish between potential foraging trees (stages 2–4) and other dead trees (stages 5–7) as 

proposed by Bütler et al. [63], we subdivided the deadwood (category DEAD including all standing 

deadwood objects) into snags (SNAG) and dead trees (DEADTREE). The category SNAG 

encompassed all deadwood with either a crown area of C < 4 m2 (1st Quartile of the DEAD crown 

area values) or deadwood with C ≥ 4 m2 but a height of H < 15 m. DEADTREE objects were 

characterized as C ≥ 4 m2 and H ≥ 15 m. The threshold of 15 m was chosen because in our study area, 

living spruce trees of that height had an approximate DBH of 20 cm (Figure A1), allowing a direct 

comparison with DBH-based classifications of deadwood used by other authors (Bütler et al. [63]). 

Finally, we calculated the mean crown area of the trees in the respective classes (DEAD, 

DEADTREE, and SNAG) per plot to obtain a continuous metric of the crown status as a proxy of the 

stage of decay.  

All structural predictors, except the variable derived from visual interpretation (DEADCIR_part), 

were thus calculated based on the single tree data originating from the ALS and CIR remote sensing 

dataset, either used directly to describe specific tree features or aggregated to describe forest stand 

related characteristics. 

In addition, topographic variables were generated using a digital terrain model (DTM) with a 

25 × 25 m resolution and included altitude, slope, eastern (sine of aspect), and northern (cosine of 

aspect) exposition as well as solar radiation, calculated using the Solar Analyst module in ArcGIS. 

We also included latitude and longitude to test for random spatial clustering of the woodpecker 

observations.  

The preparation and calculation of variables with a horizontal dimension (i.e., referring to the 

proportion of the plot area) was carried out in ArcMap 10.4.1. [89]. The processing and calculation of 

the remaining variables was carried out in RStudio [90] using R [91] with the packages: “Raster” [92] 

and “Rgdal”[93].  

2.5. Statistical Analysis 

We modelled species occurrence as a function of the environmental variables using General 

Additive Models (GAM) facilitated in the R-package “mgcv” [94–96]. GAMs combine General 

Linear Models with smoothing splines [97], thereby allowing to fit the response curves “as closely as 

possible” to the data, within a permitted level of smoothing.  

For each plot size we selected the best explaining variables following a hierarchical procedure. 

First, we ran univariate models for each variable, also testing their quadratic term. Predictor 

variables which significantly explained woodpecker occurrence (p ≤ 0.05) or showed a trend (p ≤ 0.1) 

and were significant in other studies (such as information on amount and volume of conifers and 

amount of live trees per plot) were retained. To avoid collinearity among variables in the 

multivariate models, we removed from any pair of correlated variables (Spearman’s r ≥ |0.7|) [98] 

the “weaker” predictor based on Akaike’s Information Criterion (AIC) [99].  
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In a first step, a common initial set of input variables (i.e., all variables retained at any of the 

four scales) was used for model calibration on all plot sizes. In addition to the environmental 

variables smoothed with a smooth term s(), a tensor smooth for the spatial location te(x, y) was 

added to account for effects of random spatial clustering of the TTW data.  

To avoid overfitting, as it was observed when running the model with automatic settings, we 

set the upper limit of the degrees of freedom associated with a smooth term to k = 3, as Guisan et al. 

[100] recommends after Hastie et al. [51] to use lower degrees of freedom (df < 4) for deductive 

species distribution and habitat modelling, while avoiding degrees of smoothing higher than 4 or 5 

for predictive purposes. We used automatic variable selection (function “select=TRUE” in mgcv) 

which indicates variables that do not contribute to the model and can therefore be dismissed with p 

= 1. After the removal of these variables, the models were recalibrated and variables were again 

removed until no p = 1 occurred. In a second step, we used chi-square test statistics for assessing the 

significance of the smooth terms and removed variables with p < 1 but with chi-square equal 0 as not 

contributing to the model. At each step we compared the AIC of the resulting model with the 

previous step until no further reduction was achieved This way, we obtained one “best model” for 

each of the 4 plot sizes.  

The models’ fit was evaluated using 5-fold cross validation with 20% of the observations held 

back randomly with a condition of an equal proportion of presence and absence observations in 

folds. Multiple evaluation metrics, i.e., sensitivity, specificity, correctly classified rate, and Cohen’s 

Kappa (all using the threshold 0.5), as well as the area under the receiver operating characteristics 

(ROC) curve (AUC) were calculated using the “caret” package in “R” [101] and evaluated according 

to Hosmer and Lemeshow [102]. The best model was then used to predict TTW occurrence 

probability across the entire National Park. 

To analyze the model results, we plotted the single predictor variables against their smooths 

(function “gam.check” in the “mgcv” package) and against the target variable using the packages 

“mgcv” and “ggplot2” [103]. 

Finally, we calculated conditional inference trees (CTREEs), as implemented in the R-package 

“party” [104], to obtain thresholds for the most important variables for practical management 

recommendations. Trees based on maximally selected rank statistics were fitted using the Bonferroni 

correction for multiple testing and a minimum sum of weights in a node to be considered for 

splitting of 20 (minsplit = 20). All variables selected for the respective “best” GAM at each scale were 

included in the multivariate trees. In addition, univariate trees were fitted for variables with a 

significant split in the multivariate tree. 

3. Results 

3.1. Habitat Selection 

Univariate models revealed eight environmental variables that significantly contributed to 

explaining woodpecker presence at least one of the four scales and were retained for calibrating 

multivariate models (Table 2). With the exception of altitude all of the significant variables described 

stand and tree-related habitat characteristics. Three additional variables (DEAD_Nha, 

DEADTREE_Cmean, and DEADRSI_part) were significant but discarded as correlated with retained 

variables. 

The final models consisted of 4 to 6 variables, depending on the plot scale (Table 3). The amount 

of dead trees was the only variable with a significant contribution at all scales. Altitude and the 

mean crown diameter of all standing deadwood were also included in all models, but the former 

was only significant at the two smaller scales, while the latter was only significant at the two 

intermediate scales. The proportional volume of conifer trees was included at 3 scales and the mean 

crown diameter of snags only on sampling plots with a 250 m radius, but neither of them had a 

significant contribution. The spatial location was also included in all models, suggesting a spatially 

clustered distribution of the woodpecker observations. The two preselected variables representing 
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the living stand (the amount of living trees per ha and the amount of conifers per ha), although 

univariately significant at 3 scales, did not contribute to any of the multivariate GAMs.  

Table 2. Retained predictor variables for modelling the occurrence of the three-toed woodpecker and 

their univariate (simple and quadratic) p-value (<0.1) on the four plot sizes. Variables with p < 0.05 

are bold. Mean values and the standard deviation (SD) of these variables at presence, absence and 

both study plots are listed in Table A1. 

  R = 100 m R = 250 m R = 450 m R = 600 m 

Variables p < 0.05/0.1 Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic 

Altitude_mean 0.040  0.042  0.043  0.045  

CONIF_Nha   0.063  0.025  0.031  

DEAD_Cmean 0.003  0.006  0.028  0.096  

DEADTREE_Nha 0.025 0.000 0.034 0.005 0.035 0.066 0.091 0.089 

SNAG_Cmean  0.052  0.043  0.063   

LIVE_Nha 0.081  0.076  0.07    

CONIF_VOLpart  0.051  0.096     

DEADCIR_part  0.007  0.064     

Table 3. General Additive Models (GAMs) explaining the occurrence of the three-toed woodpecker 

(TTW) as a function of remote sensing-based forest inventory variables and altitude at four sampling 

scales, i.e., within different radii (R) around TTW sampling locations. Parametric coefficients and 

approximate significance of the smooth terms (effective degrees of freedom (edf), p-value) are given 

for the variables selected in the best model for each scale. Variable codes and descriptions are listed 

in Table 1. Bold figures indicate significant variables (p < 0.05). 

 R = 100 m R = 250 m R = 450 m R = 600 m 

edf p-Value edf p-Value edf p-Value edf p-Value 

Intercept estimate 0.134  0.035  0.013  0.006  

Standard error 0.249 0.227 0.208 0.205 

Z-Value 0.537 0.156 0.064 0.032 

Pr(>|z|)  0.591  0.876  0.949  0.975 

s(Altitude_mean) 0.817 0.049 0.929 0.020 0.681 0.076 0.605 0.105 

s(DEAD_Cmean) 0.167 0.239 0.947 0.018 0.784 0.038 0.627 0.103 

s(DEADTREE_Nha) 1.000 0.000 0.906 0.007 0.953 0.021 0.855 0.027 

s(SNAG_Cmean)   0.790 0.099     

s(CONIF_VOLpart) 0.620 0.114 1.571 0.107   0.176 0.252 

te(x,y)  1.795 0.045 1.742 0.154 1.509 0.033 1.640 0.037 

The most meaningful variable at all scales was the amount of dead trees (DEADRTREE_Nha). 

The response plots (Figure 3 and Table A2) indicate a unimodal response with adverse effects on 

woodpecker presence when the amount of dead trees increased beyond a threshold of 40–55 trees 

per hectare. However, these results need to be interpreted with caution due to only a few plots with 

extremely high numbers of dead tree driving this trend (i.e., two sample plots with 

DEADTREE_Nha > 90 on R = 100 m and R = 250 m and three sample plots with DEADTREE_Nha > 

70 on R: 250, 450, and 600 m).  

Another deadwood variable, the mean crown area of all standing deadwood (Dead_Cmean), 

showed a significant positive effect on TTW occurrence at the two intermediate scales (R = 250 and R 

= 450 m), suggesting a preference for deadwood with large crowns, i.e., in the early stages of decay 

(Figure 1). This is in line with the species’ opposite response trend to the mean crown area of snags 

(SNAG_Cmean) at the intermediate scale (R = 250 m). Finally, the share of conifers in the total 

volume of living trees (CONIF_VOLpart) showed a slightly unimodal, but non-significant 

relationship with TTW presence, with the highest occurrence probabilities in stands with about 50–

80% conifers, depending on the sampling scale. Altitude was included in all models and significant 

at the two smallest scales, with higher probabilities of TTW presence at higher altitudes. 
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Figure 3. Effect plots showing predicted TTW occurrence as a function of the environmental 

predictors included in the best models at different plot scales (Table 3). The blue line indicates the 

estimated smoothing parameter of a given variable, while keeping all other variables set on the 

median. Shadowed areas indicate the 95% confidence intervals conditional on the estimated 

smoothing parameter. Variable codes and descriptions are listed in Table 1. 

3.2. Model Performance  

Model performance decreased with increasing sampling scale. This trend applied to both model 

fit and predictive performance over the 5-fold cross validation replicates and was consistent across 

all evaluation metrics (Table 4). Based on the AUC, our final models showed a good to excellent fit at 

the two small scales (R = 100 m and R = 250 m, AUC > 0.8) and an acceptable fit at the two larger 

scales (R = 450 and 600, 0.7 < AUC < 0.8) [102]. Five-fold cross validation confirmed an acceptable 

predictive performance of the models at the two smallest scales (AUC > 0.7), but less so at the two 
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larger scales (0.6 < AUC < 0.7). Similar trends were found for the other evaluation metrics R-Square 

(Adjusted), Correct Classification Rate (CCR), and Cohen’s Kappa (Table 4. Sensitivity was generally 

higher than specificity at all scales indicating better detection and prediction of TTW presence than 

of absence locations. Complete results of the cross validation are presented in Appendix, Table A2. 

Table 4. Fit of the final models (Fit) and the averaged results of the 5-fold cross-validation (CV, in 

italics) at four spatial scales: Akaike’s Information Criterion (AIC), R-Square adjusted (R-sq. adj.), 

and Area Under the ROC-Curve (AUC), Sensitivity, Specificity, Correct Classification Rate (CCR), 

and Cohen’s Kappa. Variable codes and descriptions are listed in Table 1. 

  

R = 100 m R = 250 m R = 450 m R = 600 m 

Model Fit 
CV 

Model Fit 
CV 

Model Fit 
CV 

Model Fit 
CV 

Mean SD Mean SD Mean SD Mean SD 

R-sq.(adj.) 0.33 0.34 0.04 0.25 0.25 0.06 0.14 0.15 0.04 0.11 0.12 0.03 

AUC 0.85  0.77 0.10 0.82  0.71 0.08 0.74  0.63 0.09 0.72  0.61 0.10 

Sensitivity 0.85 0.75 0.14 0.83 0.66 0.06 0.75 0.58 0.13 0.71 0.54 0.07 

Specificity 0.73 0.67 0.24 0.69 0.65 0.13 0.64 0.52 0.17 0.60 0.58 0.12 

CCR 0.79 0.71 0.12 0.76 0.65 0.08 0.69 0.55 0.12 0.65 0.56 0.06 

Cohen’s Kappa 0.58 0.41 0.24 0.52 0.31 0.15 0.39 0.10 0.24 0.31 0.12 0.12 

3.3. Model Prediction 

The model calibrated at the smallest scale (R = 100 m) was employed to predict TTW occurrence 

throughout the National Park. The results are shown for a raster of 100 × 100 m (Figure 4), with the 

occurrence probability of each raster cell calculated based on the conditions within R = 100 m around 

the grid cell center. When using a presence probability of 0.5 as a threshold for occurrence, 36% of 

the park area was classified as potentially suitable TTW habitat.  

 

Figure 4. Predicted probability of three-toed woodpecker (TTW) occurrence for the Bavarian Forest 

National Park using the best GAM model according to Table 3 (calibrated for R = 100 m). The 

occurrence probability is shown for a 100 × 100 m raster, with the value of each cell calculated based 

on the environmental conditions within R = 100 m around the grid cell center. Black and transparent 

circles indicate the TTW presence and absence locations used for model calibration. 
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3.4. Variable Thresholds 

The results of the conditional inference trees (Figure 5) revealed significant thresholds for two 

variables, the mean crown area and the amount of standing deadwood per plot. Multivariate trees 

were only found at the two smallest scales, with a first split indicating the highest TTW presence 

probability (>0.7) when deadwood with large crowns (>11–13 m2) was available, intermediate 

probabilities (>0.5) when the abundance of dead trees per hectare was at least 4–5 (R = 100) or 3 (R = 

250) respectively, and a low probability when none of the two variables exceeded these thresholds. 

These results indicate substrate selection with a first priority for fresh and then for other deadwood. 

No split was observed for variables measured on plots of 450 m radius or larger. Univariate models 

of the two variables with significant splits showed a TTW-presence probability of 0.7–0.8 when more 

than 8 dead trees per hectare were present in the surrounding of 100 and 250 m, respectively, or 

when the mean crown size DEAD_Cmean was larger than 11 m2 (R = 100 m) to 13 m2 (R = 250). 

R (a) All variables (b) DEADTREE_Nha (c) DEAD_Cmean 

100 m 

250 m 

Figure 5. Multivariate (a) conditional inference trees (CTREEs) constructed from the variables 

selected into the best Generalized Additive Models (GAMs) at four sampling scales (R = 100 m, 250 

m, 450 m, 600 m, see Table 3), and univariate trees (b) constructed from the variables with a 

significant split in (a). Each node of the trees represents one split of the data into significantly 

different partitions, with variables ranked according to their importance, until no further split is 

possible. The significance of the split (p-values after Bonferroni correction) is indicated in the 

splitting nodes. The Y-axis shows the predicted probability of TTW occurrence (1—presence; 

0—absence) under the given combination of variable values. The variable values splitting the 

datasets are indicated on the tree branches. DEAD_Cmean: mean crown area of all standing 

deadwood, DEADTREE_Nha: number of dead trees per hectare. No significant splits were obtained 

for variables included at the two larger scales (R = 450 m, 600 m). 

4. Discussion 

Our analysis shows the usability of area-wide, remote-sensing-based, single tree data for 

modelling the habitat selection of an endangered and highly specialized forest species such as the 

three-toed woodpecker. Combining remote sensing information from different sources with a 

comprehensive set of species observation data enabled finding species-relevant predictor variables 

and thresholds for practical forest management and species conservation.  
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4.1. Remote Sensing Data 

The fusion of multiple sources of remote sensing data, especially ALS and aerial imagery 

technologies, has high potential for complementing traditional, field-based forest inventories [10]. 

Although original ALS point clouds deliver more detailed information on tree height and forest 

structure [105] and are widely used as input data for habitat modelling [106], the combination of 

ALS data with aerial imagery for deriving single tree-related information proved crucial for our 

purpose: While ALS data enabled accurate mapping of single trees and their projected crown areas 

with subsequent modelling of tree volume, multispectral data allowed deadwood detection and—in 

combination with the structural information—the detection of specific deadwood characteristics, 

such as fresh deadwood and snags. This approach offered two additional advantages: First, by 

summarizing structural information at the tree-level, our variables refer to a species-relevant 

ecological scale of habitat selection. Second, other than abstract point-cloud metrics, our data 

describe environmental features that can be directly translated into target values for conservation 

management.  

Our deadwood variables at the tree scale outperformed the deadwood information 

(area-percentage of deadwood per plot, DEADCIR_part, Table 3) obtained from the yearly visual 

assessment of aerial imagery. Although univariately significant at the smallest plot size, it did not 

enter the final model. Only new deadwood areas were mapped each year [84,107], thereby 

neglecting forest dynamics such as ingrowth and regeneration in the dieback areas of previous 

years. Complete mapping of standing deadwood for a given year may therefore have improved the 

performance of this variable.  

The corresponding variable based on remote sensing tree inventory data, the area percentage of 

deadwood per plot (DEADRSI_part), showed better explanatory power (lower AIC than DEADCIR) 

on 100 and 250 m plot sizes, but was correlated with the number of dead trees (DEADTREE_Nha), 

our most important predictor. It was therefore discarded. Nevertheless, the relationship of the two 

variables with TTW occurrence shows some potential for the planar mapping of standing deadwood 

areas when single tree crown delineation is not possible. 

We show the usability of remotely sensed single tree data and derived variables using the 

example of the TTW, a keystone species of boreal and mountainous spruce dominated forests. 

However, these data could also be of high relevance for modelling the habitat of other species or 

species assemblages of that forest types [21,38]. Information on deadwood features and their quality 

(dead trees, snags and stumps) could be vital for species depending on deadwood in different decay 

stages either for food, shelter, or roosting such as saproxylic beetles [108], birds [46], or bats [109,110] 

and crown delineation, allowing the determination of canopy cover and forest gaps, could be used in 

studies deriving habitat thresholds for species responding to these structures e.g., capercaille [111] 

or hazel grouse [112].  

4.2. Species Data 

TTW presence data originated from three survey projects, including non-systematically 

collected chance observations of park staff. Despite thinning the original data according to the 

expected home range for one pair of birds, the models still indicated a clustering of the observations 

and a spatial correlation of the model performance with the locations of the observations. This may 

reflect a bias in sampling intensity, e.g., related to the road and walking paths network in the 

National Park, or be caused by a species-relevant environmental variable not included in the model. 

Our final models showed notably higher sensitivity than specificity, indicating a better classification 

of presence than absence data. This may be because of the random generation of pseudo-absence 

data outside the TTW presence areas, where false absences could not be ruled out.  

We used species observations from three consecutive years starting in year one of the remote 

sensing data acquisition. At this time, the area of the National Park offered a large range of 

conditions, including optimal TTW habitat of mountainous, spruce dominated forests with a large 

amount of standing deadwood in different stages of decay. As both species and environmental data 

originated within a limited period of time and a unique environment, our models reflect only a 
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snapshot of the species–habitat relationship [3]. The time lag of two years between the acquisition of 

remote sensing and species data we consider negligible, as also demonstrated by Vierling et al. [113], 

since no significant changes due to disturbance events were recorded in the respective period and 

the National Park is not subjected to regular harvesting. Moreover, our models showed a high 

predictive performance, with results largely conforming to those of other studies. This makes us 

confident that they captured TTW habitat requirements with a high level of generality. 

4.3. Modelling Approach 

GAMs are increasingly used in ecological modelling, especially when species–habitat 

relationships are complex and not easily fitted with the standard parametric functions of the 

predictors [100]. Using GAMs for the exploratory analysis of predictor variables is advantageous as 

GAMs fit the data in the most exact way possible [97]. However, being data-driven, they are prone to 

overfitting. We applied stronger smoothing to address this issue. The most important feature of 

GAMs for our study was the possibility of including a multidimensional smoother [100] for the 

spatial location (x,y) of TTW observations to account for spatial clumping of the data.  

Although useful for identifying key variables and describing the species response, GAMs do 

not provide threshold values which are frequently required in ecology and forestry to define 

conservation targets [114]. We used conditional inference trees for this purpose as Müller and Bütler 

[73] found them particularly useful among a variety of methods [115]. The simplicity of the 

underlying model and the visualization of the results facilitate the development of applicable 

guidelines.  

4.4. TTW Habitat Selection  

From the initial broad set of environmental predictors (Table 1), only four structural variables 

indicating food resources, cavities, and altitude affected the occurrence of the TTW in our study 

area. Dead tree abundance was the most important variable. The species had a preference for 

deadwood in the early stages of decay when the abundance of insect food is highest [116,117]. Dying 

and dead spruce trees provide the major food sources of the TTW due to bark beetles (esp. Ips 

typographus) and wood-boring longhorn beetles inhabiting them. Müller and Bütler [73] showed the 

probability of TTW presence increasing from 0.1 to 0.9 when more than 0.81 (0.56–1.22, Switzerland) 

and 0.44 (0.25–0.62, Sweden) m3/ha basal area of standing deadwood corresponding to approx. 

seven and four dead trees with DBH ≥ 21 were present. Our results of 8 or more dead trees per 

hectare resulting in an 80% probability of TTW presence are in accordance with these findings. 

In contrast with previous findings focusing on the minimum deadwood threshold, we show 

that very high amounts of deadwood, especially of late decay stages with little foraging value, 

negatively affect TTW occurrence probability. The detection of this tendency was made possible by 

very few observations at the extreme end of the gradient (i.e., sites with up to 120 trees per hectare), 

stemming from the large-scale area-wide bark beetle infestations. The lack of suitable research areas 

in Europe exhibiting the full possible gradient of deadwood abundance may be the reason that this 

effect has remained undetected, although Scherzinger [118] observed a recession in TTW occurrence, 

a few years after a significant increase following the bark beetle outbreak. This implies that a patchy 

distribution of bark-beetle infested trees and tree groups in the forest landscape is favorable 

compared to large-scale area-wide dieback, which is more likely in homogeneous, even-aged stands. 

Such heterogeneous deadwood distributions may be furthered by natural topographic complexity 

and increasing forest structural variability through active management or strict protection [119], as 

structural heterogeneity is expected to increase in unmanaged forests [120]. 

We also found a positive effect of the mean crown area of the dead trees per plot, indicating 

the availability of fresh deadwood with still complete tree crowns. This variable was selected into 

all models, although only significant at the two intermediate scales. Conditional inference trees 

indicated high probabilities (0.7–0.8) of woodpecker occurrence when the mean crown area per plot 

was larger than 11 m2 (R = 100 m) or 13–13.5 m2 (R = 250–450 m), respectively, corresponding to an 

average branch length of about 2 m. These findings are in line with Balasso [53], who found that the 
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presence of TTW was related to abundance of fresh snags, and Scherzinger [84], who reported an 

initial increase in TTW occurrence shortly after bark beetle infestations with a subsequent decrease 

after some years. Nevertheless, the relationship between remotely sensed crown parameters and 

bark conditions needs further research.  

In most field-based studies, deadwood is classified into standing dead trees, snags, and logs, 

representing different decay stages to account for TTW’s prey diversity. In our study, the input data 

was limited to information that can be derived from the air. The first limitation was the omission of 

logs, the recognition of which, although theoretically possible by using ALS data from scanning in 

leaf-off conditions [121], was impossible with our data. Studies relying on field data often included 

this variable in HSMs [40, 54], however it was rarely significant [51]. In addition, our remote sensing 

data could not provide information about the DBH, basal area (BA) and volume (Vol) of deadwood 

objects as often used in other studies [51,53,54,73,122]. This was due to the difficulty of modelling 

these values without reliable height measurements of the tree tops that are often broken in standing 

deadwood.  

Similar to the findings of Braunisch et al. [21], our study suggested a positive, but 

non-significant correlation of TTW occurrence with the presence of conifers. In the Bavarian Forest 

National Park, conifer trees are predominantly Norway spruce, the primary host tree of Ips 

typographus which is the staple food of the TTW [123]. Scherzinger [118] concluded that not the pure 

amount of deadwood, but a permanent occurrence of dying and freshly dead trees originating from 

a continuous share of live spruce stands are crucial for the presence of TTW in the area. Mapping 

still alive, but degenerating spruce trees (the so called green attack stage) that were not detectable 

from our data and that remain a challenge for the remote sensing research [124–126] could 

potentially be of high explanatory value for TTW habitat selection. Further research using 

hyperspectral data could bring important progress here [127–129]. Resource trees that were an 

important variable in other studies [48,54,64] did not correlate with TTW occurrence in our study, 

due to a similar, very high resource supply in both presence and absence plots over the entire study 

area. 

Decreasing model performance from the smallest to the largest sampling scale indicates habitat 

conditions, especially the amount and quality of deadwood, in the surrounding approximately 20 ha 

are most decisive for the TTW’s habitat choice [17]. As species’ area requirements depend on habitat 

quality, TTW home range sizes have been shown to vary considerably among regions and foraging 

conditions [47,57,62,85]. Bütler et al. [63] reports TTW ranges vary between 44 and 176 ha, 

depending on food availability and snag abundance. Kajtoch et al. [66] suggests at least 100 ha with 

optimal conditions and 200 ha in suboptimal stands are necessary, conforming to the results of other 

studies [43,58,85–87]. Our study area, with its consistently high abundance of patchily distributed 

deadwood in different stages of decay therefore seems to represent an optimal habitat for the TTW. 

4.5. Management Recommendations 

Effective forest and biodiversity management requires habitat thresholds at a scale and 

resolution that are ecologically relevant to the species and can be practically implemented [105]. 

Bütler et al. [63] recommended a precautious 1.6 m2 (basal area), corresponding to 5% of all standing 

trees or 14 standing dead trees with a DBH ≥ 21 cm per ha. We show the best response of TTW to habitat 

features within 100 to 250 m, i.e., related to a surrounding of up to 20 hectares. Within this area, at least 

eight dead trees per hectare should be retained, focusing on fresh deadwood in the early stages of decay, 

indicated by an average branch length of at least 2 m. Pechacek and Krištín [44] give similar 

management recommendations claiming that “dead trees should not be removed within a 250 m 

circle from nests”. 

To favor the coexistence of alternative prey for TTW and ensure a constant input of fresh 

deadwood, retaining and restoring dead coniferous trees in different stages of decay and a 

substantial portion of live spruce trees is required. At the landscape scale, Bütler et al. [40] showed 

an effect of the spatial arrangement and density of deadwood rich patches, and recommended a 

network of forest stands with high deadwood densities embedded in a forest landscape with lower 
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deadwood densities. As bark beetle spread was revealed to be strongly distance dependent with the 

most new infestations occurring within a 250 m radius of the previous year’s infestation and 95% 

thereof in 500 m [130], safeguarding a wide enough inter-patch distance is crucial for preventing of 

bark beetle outbreak. Patches of declining and dead trees large enough to host bark beetle 

populations but disconnected from each other, would therefore aid forest managers in effectively 

controlling bark beetle dispersion [131], while at the same time promoting woodpecker habitat.  

Our map showing current TTW habitat suitability allows distinguishing deadwood rich versus 

deadwood poor areas, so as to accurately target conservations measures. 

5. Conclusions 

Our study highlights the value of remote sensing, especially the fusion of ALS data with digital 

aerial imagery, for generating a full inventory of live and dead standing trees for large-scale, 

area-wide habitat analyses. Combining structural and spectral data enabled not only the 

identification of deadwood, but also of deadwood characteristics, which is indispensable for reliably 

modelling the habitat requirements of species highly specialized on particular types of standing 

deadwood. While our habitat analysis confirms the amount of standing dead trees as a key predictor 

of TTW occurrence, and the species’ preference for fresh deadwood characterized by large and intact 

crowns, our study is the first showing a negative impact of very high deadwood amounts, with a 

tipping point at about 40–55 standing dead trees per ha. Moreover, we highlight the importance of 

resource diversity including also snags and live conifers. Based on tree-related remote sensing 

information, we were able to draw management recommendations. For example, keeping at least 

eight dead trees in the early stages of decay per hectare within 20 ha (corresponding to a small 

woodpecker’s home range) leads to an increase in habitat suitability for the TTW.  

Our models show a high predictive power, nevertheless, they may be improved by a more 

precise separation of fresh and old deadwood or even a further differentiation of decay stages or 

deadwood quality obtainable from field studies. Comparing decay stages from field assessments 

with time series of remote sensing data, and using hyperspectral imagery to detect tree decline in an 

early stage (e.g., the first stage of a bark beetle infestation), may further advance the set of predictors 

and aid foresters to better identify and carry out effective management measures to support 

biodiversity.  
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Appendix A 

Table A1. Environmental variables with their mean and standard deviation (SD) at presence, 

absence and all study plots. Variable codes and descriptions are listed in Table 1. 

R Variable Unit 
All Plots Presence  Absence 

Mean SD Mean SD Mean SD 

100 

Altitude_mean m a.s.l. 953.84 182.37 990.93 187.98 916.74 170.36 

CONIF_Nha N/ha 172.96 91.54 159.96 90.21 185.95 91.89 

DEAD_Cmean m2 10.35 5.32 11.92 5.13 8.78 5.09 
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DEADTREE_Nha N/ha 12.75 19.74 17.55 19.56 7.95 18.91 

SNAG_Cmean m2 4.76 4.28 5.19 4.01 4.34 4.53 

LIVE_Nha N/ha 299.55 134.15 276.43 137.98 322.66 127.35 

CONIF_VOL % 0.65 0.24 0.66 0.22 0.65 0.27 

DEADCIR_part % 0.04 0.09 0.05 0.09 0.03 0.09 

250 

Altitude_mean m a.s.l. 953.53 180.50 989.86 184.95 917.20 170.00 

CONIF_Nha N/ha 178.28 78.48 163.82 75.10 192.73 79.84 

DEAD_Cmean m2 11.01 4.13 12.16 4.14 9.86 3.82 

DEADTREE_Nha N/ha 12.58 18.97 16.94 20.03 8.21 16.93 

SNAG_Cmean m2 5.02 3.63 5.48 3.33 4.56 3.89 

LIVE_Nha N/ha 311.07 116.69 290.57 119.85 331.57 110.81 

CONIF_VOLpart % 0.63 0.22 0.63 0.21 0.63 0.24 

DEADCIR_part % 0.04 0.08 0.05 0.08 0.03 0.08 

450 

Altitude_mean m a.s.l. 952.71 176.60 987.99 179.23 917.44 168.31 

CONIF_Nha N/ha 184.81 71.52 168.79 69.50 200.84 70.54 

DEAD_Cmean m131 11.52 3.61 12.31 3.76 10.73 3.30 

DEADTREE_Nha N/ha 11.77 15.01 15.24 17.31 8.30 11.43 

SNAG_Cmean m2 5.56 3.44 5.87 3.12 5.25 3.74 

LIVE_Nha N/ha 329.25 108.90 309.69 113.58 348.81 101.35 

CONIF_VOLpart % 0.60 0.19 0.59 0.18 0.61 0.21 

DEADCIR_part % 0.37 0.65 0.47 0.73 0.28 0.56 

600 

Altitude_mean m a.s.l. 951.77 173.45 986.13 174.79 917.41 166.72 

CONIF_Nha N/ha 187.38 70.91 172.16 67.59 202.60 71.51 

DEAD_Cmean m131 11.76 3.47 12.33 3.62 11.19 3.26 

DEADTREE_Nha N/ha 11.96 14.24 14.50 15.71 9.43 12.24 

SNAG_Cmean m2 5.69 3.18 5.90 2.91 5.49 3.45 

LIVE_Nha N/ha 335.78 105.28 319.20 112.90 352.35 95.29 

CONIF_VOLpart % 0.58 0.18 0.57 0.16 0.59 0.20 

DEADCIR_part % 0.04 0.06 0.04 0.06 0.03 0.06 

 

Figure A1. Scatter plots showing the relationship between the diameter at breast height (DBH in cm) 

and the height (m) of live conifer trees on various plot sizes. The green horizontal line shows the 

threshold of H = 15 m. The vertical blue line shows the DBH = 20 cm. 
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Table A2. Performance of the four models including the predictors at 4 spatial scales (i.e., within 

different radii R, in meters), measured for each of the 5-fold cross-validation replicates as well as for 

their mean (and standard deviation (SD)). The following evaluation metrics are shown: AIC: Akaikes 

Information Criterion, R-Sq. (adj.): Adjusted R-Squared, AUC: Area under the ROC curve, 

Sensitivity, Specificity, Correct Classification Rate (measured with a threshold of 0.5), and Cohen’s 

Kappa. 

R Model Fit Measures Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Mean SD 

100 

AIC 91.00 93.32 91.55 87.59 83.49 89.39 3.49 

R-sq.(adj.) 0.31 0.28 0.35 0.37 0.40 0.34 0.04 

AUC 0.80 0.89 0.84 0.74 0.59 0.77 0.10 

Sensitivity 0.91 0.82 0.50 0.70 0.80 0.75 0.14 

Specificity 0.73 0.91 0.90 0.50 0.30 0.67 0.24 

Correct Class. Rate 0.82 0.86 0.70 0.60 0.55 0.71 0.12 

Cohen’s Kappa 0.64 0.73 0.40 0.20 0.10 0.41 0.24 

250 

AIC 98.43 97.17 106.73 104.61 91.30 99.65 5.52 

R-sq.(adj.) 0.25 0.28 0.18 0.18 0.35 0.25 0.06 

AUC 0.65 0.74 0.83 0.71 0.60 0.71 0.08 

Sensitivity 0.55 0.64 0.70 0.70 0.70 0.66 0.06 

Specificity 0.55 0.82 0.80 0.60 0.50 0.65 0.13 

Correct Class. Rate 0.55 0.73 0.75 0.65 0.60 0.65 0.08 

Cohen’s Kappa 0.09 0.46 0.50 0.30 0.20 0.31 0.15 

450 

AIC 104.04 105.93 113.38 109.05 104.26 107.33 3.51 

R-sq.(adj.) 0.18 0.16 0.09 0.13 0.19 0.15 0.04 

AUC 0.55 0.63 0.76 0.70 0.51 0.63 0.09 

Sensitivity 0.36 0.64 0.70 0.70 0.50 0.58 0.13 

Specificity 0.55 0.55 0.80 0.40 0.30 0.52 0.17 

Correct Class. Rate 0.46 0.59 0.75 0.55 0.40 0.55 0.12 

Cohen’s Kappa −0.09 0.18 0.50 0.10 −0.20 0.10 0.24 

600 

AIC 106.22 109.15 113.70 113.15 108.39 110.12 2.87 

R-sq.(adj.) 0.17 0.12 0.09 0.09 0.15 0.12 0.03 

AUC 0.50 0.63 0.71 0.71 0.49 0.61 0.10 

Sensitivity 0.46 0.64 0.50 0.60 0.50 0.54 0.07 

Specificity 0.55 0.46 0.80 0.60 0.50 0.58 0.12 

Correct Class. Rate 0.50 0.55 0.65 0.60 0.50 0.56 0.06 

Cohen’s Kappa 0.00 0.09 0.30 0.20 0.00 0.12 0.12 
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Figure A2. Variable smooth effect plots for the predictor variables at all spatial scales produced using 

“gam.check”. In brackets on y-axis: variables’ edf (the estimated degrees of freedom of the smooth’) 

from the GAM model. Variable codes and descriptions are listed in Table 1. 
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