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Abstract: Epidemiology estimates how exposure to pollutants may impact human health. It often
needs detailed determination of ambient concentrations to avoid exposure misclassification. However,
it is unrealistic to collect pollutant data from each and every subject. Land-use regression (LUR)
models have thus been used frequently to estimate individual levels of exposures to ambient air
pollution. This paper used remote sensing and geographical information system (GIS) tools to
develop ten regression models for PM2.5-bound compound concentration based on measurements
of a six-year period including NH+

4 , SO2−
4 , NO−

3 , OC, EC, Ba, Mn, Cu, Zn, and Sb. The explained
variance (R2) of these LUR models ranging from 0.60 to 0.92 confirms that this study successfully
estimated the fine spatial variability of PM2.5-bound compound concentrations in Taiwan where
the distribution of traffic, industrial area, greenness, and culture-specific PM2.5 sources like temples
collected from GIS and remote sensing data were main variables. In particular, while they were
much less used, this study showcased the necessity of remote sensing data of greenness in future
LUR studies for reducing the exposure bias. In terms of local residents’ health outcome or health
effect indicators, this study further offers much-needed support for future air epidemiological studies.
The results provide important insights into expanding the application of GIS and remote sensing on
exposure assessment for PM2.5-bound compounds.

Keywords: fine particulate matter (PM2.5); land-use regression (LUR); compounds; culture-specific
PM2.5 sources; temples

1. Introduction

Fine particles dispersed in the atmosphere (PM2.5) are, in general, a mixture of different particle
types with complex chemical compositions (such as ions, elementary and organic carbons, and metals).
PM2.5 can affect the atmospheric visibility, play key roles in the formation of acid rain and climate
change, and deteriorate local and regional air quality. Exposure to ambient PM2.5 is one leading factor
in human health [1,2]. In addition, the potential impacts on human health may vary by the chemical
compositions of particles, which not only affect toxicity by the presence of specific toxic elements,
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but also influence the nonspecific toxicity of particles [3]. Particulate metals, which remain in the same
form as they were emitted, might increase the possibility of lung or cardiopulmonary injuries and
low birth weight [4,5]. Studies have suggested that chemical components of PM2.5 are associated with
mortality, including nitrates, sulfates, ammonium nitrate, elemental carbon (EC), organic carbon (OC),
Fe, Ni, and Zn [6–8].

Recognizing the need for further research on PM characteristics and health, the Taiwan
Environmental Protection Administration (EPA) has established two national monitoring networks
for PM2.5 that provide data on the chemical composition of PM in Northern and Southern Taiwan
from 2002 to 2008. That said, it is still relatively unknown how long-term exposure to organic and
inorganic compounds in PM may impact human health based on epidemiological studies [9]. Thus,
more epidemiological studies on exposure to components of PM might be needed. When it comes to
the study of the health impact of pollution exposure, the spatial variability of pollution concentration
is essential.

Land-use regression (LUR) has been widely used to simulate pollution concentrations in the
last decade because it can better represent small-scale spatial variability of long-term outdoor air
pollution [10–12]. During the LUR model development processes, air pollutant levels measured
from multiple locations are used as dependent variables and linked with a set of potentially
land-use/land-cover related predictors to develop a multiple linear regression model for estimating
air pollution at unmeasured sites [12–14].

Geographical information system (GIS) technologies provide flexible environments for collecting,
storing, displaying, and analyzing distributions of emission sources necessary for LUR model
development [15,16], such as road networks, which are usually considered the main factors in Western
intra-urban PM2.5 prediction, and culture-specific PM2.5 sources like temples, which often affect Asian
areas [12]. In addition, some studies have suggested that green spaces, including vegetation farms in
urban areas, urban forests, and parks, can reduce particulate pollutants [12,17,18]. The efficiency with
which to capture such particles varies with vegetation composition and by season [19,20]. However,
previous LUR studies failed to consider the temporal variability of vegetation’s capability to capture
particles from the atmosphere and thus only used a single GIS thematic map to represent the allocation
of parks or urban trees [21]. In recent years, remote sensing technologies have become readily available
and can effectively provide large-scale and multitemporal surface information for many purposes,
including forest greenness assessment [22]. However, they were rarely used to estimate nonmetal
and metal compounds in PM2.5 [23,24]. For example, only one case used vegetation information from
remotely sensed images as a predictor in the development of a LUR model of PM2.5 [12].

This paper adopts land-use regression models for the study of components of PM2.5 based on
measurements of a six-year period and remote sensing data in six sites across Taiwan. To further
enhance the accuracy of such modeling, the distribution of temples collected from GIS maps,
and greenness dynamics obtained from satellite image were applied as predictors in the modeling not
only to represent the emission from Asian culture-specific sources, such as incense and joss money
burning, but also to show the importance of the greenness variable to PM2.5 compounds. The results
provide important insights in expanding the application of GIS and remote sensing on exposure
assessment for PM2.5-bound compounds.

2. Methods

2.1. Study Area and Material

Taiwan is an island country located in South East Asia, neighboring with China, Japan, and the
Philippines. The population density in Taiwan has been estimated at 649 people per km2 [25], ranking
the 17th most heavily populated country in the world. Notably, there are 22 million registered motor
vehicles (including both motorbikes and cars) in this small island, which means 91.5 vehicles per
hundred people [26]. As a result, traffic emission is a significant factor of urban air pollution [27].
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Moreover, in average, there are 2.31 factories per square kilometer and many of them are located near
commercial districts and residential areas [28]. Local culture also plays a role in this study, as Taiwan
has some unique emission sources of inorganic and organic components in PM2.5, such as the constant
burning of joss paper and incense by thousands of temples and stir frying, a Chinese cooking technique
used by almost all restaurants and households [29,30]. Additionally, one quarter of the land in Taiwan
is a cultivated area and the growing of crops is commonly stimulated by fertilizers, such as potassium
nitrate and ammonium sulfate [31]. These four main emission sources mentioned above not only
elevate the level of pollutants, but also increase the difficulty in estimating the spatial–temporal
variability of metal and nonmetal components in PM2.5 in Taiwan.

2.2. Experimental Methods

To investigate the physical and chemical properties of aerosols in Taiwan, a sampling network
consisting of six stations was initiated from 2002 to 2007. Figure 1 illustrates the geographical location
of these stations. Fugueijiao is located at the northeast corner of Taiwan, along with urban/suburban
stations in Taipei, Taichung, Tainan, and Pingtung, which lie in the western plains. These locations
were chosen because they are highly developed, industrialized, and populated. On the other hand,
the eastern measurement station is 10 km north from the downtown of Hualien, which is a rural area
with less population and industry density.

The sampling period was usually 12 h: Daytime samples were collected from 8 a.m. to 8 p.m.,
and night-time sampling was from 8 p.m. to 8 a.m. the next day. Sometimes the sampling was
conducted on a daily basis, i.e., from 8 a.m. to 8 a.m. the next day. Thus, in the following data analysis,
we paired all the half-day measurements and integrated them to the daily measurements. We also
excluded those unpaired data (i.e., without the day/night counterpart) in this study. Moreover, we did
not include data for raining days, because precipitation can significantly suppress the formation of
secondary organic carbon (SOC) [32,33].

Mass concentration of PM2.5 was determined by gravimetric measurement of the samples collected
on Polytetrafluoroethylene (PTFE) filters. The PTFE filter samples were then used for the analysis of
soluble ions (Na+, NH+

4 , SO2−
4 , Cl−, NO−

3 ) using ion chromatograph and metals (Al, Ba, Ca, Cd, Cu,
Fe, K, Mo, Mn, Na, Ni, Pb, Sb, Sr, Ti, and Zn) using inductively coupled plasma mass spectrometry.
The samples for carbonaceous analysis were collected on quartz filters. Before sampling, all the filters
were baked at 900 ◦C for 3 h to remove organic contaminants. The mass loadings of organic carbon
(OC) and elemental carbon (EC) on the filter samples were analyzed using a DRI- 2001A carbonaceous
aerosol analyzer, following the IMPROVE thermo–optical reflectance (TOR) protocol [34]. More details
are available in our previous studies [32,33].

Since we measured multiple compounds of PM2.5 at each site, it is very complicated to analyze
the spatial variation of each compound between any two sites. Thus, we simply compared the
variation of the entire group of compounds between sites using the coefficient of divergence
(CD; a self-normalizing parameter):

CDjk =

√√√√ 1
p

p

∑
i=1

(
xij − xik

xij + xik

)2

, (1)

where j and k stand for two sampling sites, p is the number of investigated components, and xij and
xik represent the average mass concentrations of a chemical component i at sites j and k [35]. If the CD
approaches zero, the two sampling sites are similar (<0.3 was used in this study). If the CD approaches
one, the two sampling sites are very different (> or = 0.3 was used in this study) [35].

The PM10 was obtained from the EPA database. An unhealthy amount of PM10 concentration was
announced by the Taiwan EPA whenever local daily averaged concentrations exceeded 125 µg/m3

(PM10 episodes). The number of days for PM10 episodes was also calculated as a predictor to see if
this predictor would impact the concentration of PM2.5-bound compounds. The data of temperature,
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rainfall, UV, and humidity were obtained from the Central Weather Bureau, Taiwan. Since the
concentrations between PM10 and PM2.5 are highly correlated, we may use PM10 as a predictor
variable to develop LUR models for estimating PM2.5-bound compound concentrations.
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Figure 1. Overview of the six measurement sites and the illustrations of the collected geospatial databases.

2.3. Geospatial Database

To develop LUR models, we needed land-use or land-cover related information from several
GIS layers and spatial databases. For instance, the Institute of Transportation of the Ministry of
Transportation and Communication produced a GIS map with digital map data recording the spatial
distribution of road networks with a polyline geoformat. All of the roads in the database were
reclassified into two categories: Expressways versus others (e.g., local roads and main streets).
To estimate the effects of traffic condition upon air quality, we calculated the density of all types of roads
as well as each of two categories surrounding the measurement sites. We also used a 2010 database
from the Industrial Development Bureau to determine the distance from each measurement site to the
nearest industrial park. The second national land-use survey of 2007 recorded the land-use/land-cover
information for Taiwan island-wide. For LUR modeling, we then selected several subtypes of land
cover, such as residential areas, farms, water bodies, parks and greenbelts, railways, national airports,
and sandstone fields from this database. Spatial distributions of temples and Chinese restaurants from
the point of interest (POI) landmark database, and crematoriums from the Taiwan EPA environmental
database were used for taking the culture-specific emissions into account. Moreover, the location of
sewage treatment plants was also extracted from the Taiwan EPA environmental database for our
analysis. A digital terrain model (DTM) with 20 m × 20 m resolution was applied to obtain the
elevation above sea level of the measurement site. As coal-fired power plants contribute considerable
air pollution, we collected the location of all coal-fired power plants in Taiwan from Google Maps
to calculate the distance from each PM2.5 measurement site to the nearest coal-fired power plant.
In addition to the GIS databases mentioned above, NASA’s MODIS normalized difference vegetation
index (NDVI) was also incorporated to represent the surrounding greenness during the study period.
The spatial resolution of MODIS NDVI is 250 m × 250 m. NDVI images from 2000 to 2006 were all
collected and aggregated to annual average for our analysis. We applied the Kriging interpolation
model to simulate PM10 concentration and meteorological data nationwide from 76 Taiwan EPA air
quality monitoring stations and 130 weather stations, respectively.

All of these geospatial predictor variables were abstracted from 25 m to 5000 m circular buffer
ranges surrounding each PM2.5 measurement site to represent the land-use/land-cover allocations
in the neighborhoods. Figure 1 thus shows the illustrations of the six measurements sites and the
collected geospatial databases; Table 1 lists the potential predictor variables used in this study.
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Table 1. List of potential predictor variables.

Variable Category Variable Data Description Expected Direction Data Type Unit Buffer

Taiwan EPA database

PM10 (season) cold and warm seasonally average (+) raster data µg/m3 -

PM10 (year) annual average (+) raster data µg/m3 -

PM10 episode a (season) number of days for PM10 > 125 µg/m3 (+) numerical data day/season -

PM10 episode a (year) number of days for PM10 > 125 µg/m3 (+) numerical data day/year -

Central Weather Bureau database

Temperature (season) cold and warm seasonally average (+/−) raster data ◦C/season -

Temperature (year) annual average (+/−) raster data ◦C/year -

Rain fall (season) cold and warm seasonally average (−) raster data mm/season -

Rain fall (year) annual average (−) raster data mm/year -

UV (season) cold and warm seasonally average (+) raster data nm/year -

UV (year) annual average (+) raster data nm/year -

Humidity annual average (−) raster data %/year -

Institute of Transportation digital
map data (2006)

Local road rural road, city road, industrial road and
unnamed road (+) area source m b 25–5000 m

Main road National highway, provincial highway,
county road, city highway (+) area source m b 25–5000 m

All types of road Local road + Mayor road (+) area source m b 25–5000 m

Industrial Development Bureau
industrial database (2010) Industrial park distance to the nearest landmark (−) area source m b 25–5000 m

The second national land-use
survey (2007)

Purely residential area - (+) Area source m2 b 25–5000 m

Commercial area - (+) Area source m2 b 25–5000 m

Industrial area - (+) Area source m2 b 25–5000 m

Residential mixed with
commercial area Residential area + Industrial area (+) Area source m2 b 25–5000 m

All types of residential area Purely residential area + Residential
mixed with commercial area (+) Area source m2 b 25–5000 m

Rice farm - (+/−) Area source m2 b 25–5000 m

Fruit orchard - (+/−) Area source m2 b 25–5000 m
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Table 1. Cont.

Variable Category Variable Data Description Expected Direction Data Type Unit Buffer

Mixed farm Rice farm + Fruit orchard (+/−) Area source m2 b 25–5000 m

The second national land-use
survey (2007)

Water body - (−) Area source m2 b 25–5000 m

Park and greenbelt - (+) Area source m2 b 25–5000 m

Railway distance to the measurement sites (+) Area source m -

National airport distance to the measurement sites (−) Area source m -

Sandstone field distance to the measurement sites (+) Area source m -

Point of interest (POI) landmark
database (2008)

Temple - (+) Point source count 25–5000 m

Chinese restaurant Chinese restaurant + Night market (+) Point source count 25–5000 m

Taiwan EPA
environmental database

Crematorium distance to the measurement sites (−) Point source m -

Crematorium distance to the measurement sites (−) Area source m -

Industrial sewage
treatment plant distance to the measurement sites (−) Area source m -

Domestic sewage
treatment plant distance to the measurement sites (−) Area source m -

Digital terrain model with
20 m resolution Altitude elevation above sea level of the

measurement site (+) raster data m -

Vegetation indices from
remote sensing NDVI - (−) raster data unitless -

Location of coal-fired
power plants Coal-fired power plants distance to the measurement sites (−) Point source m -

a number of days for PM10 episode; b buffers were set for 25, 50, 75, 100, 125, 150, 175, 200, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 3000, and 5000 m.
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2.4. LUR model Development and Validation

Land-use regression models were built following a methodology developed in our paper
published earlier [12]. We used a supervised stepwise procedure to maximize the percentage of
explained variability (R2). For all potential predictor variables, we chose an a priori direction of
effect to each compound of PM2.5 concentration (e.g., positive for road length and industrial area,
and both positive and negative directions for rice farms, fruit orchards, and forests) [24,36]. The model
starts with the variable having not only the highest explained variance in a univariate analysis,
but also a regression slope with the expected direction. Then, all other variables were added to this
model separately by assessing if the p-value was <0.1 and variance inflation factor (VIF) was <3.
This procedure continues until none of the variables could fit the criteria mentioned above. Finally,
we used R2, adjusted R2, and root mean square error (RMSE) to assess the model performance.
A leave-one-out cross-validation (LOOCV) was further employed to confirm the model reliability
and robustness. LOOCV essentially uses one observation as the validation data and the remaining
observations as the training data for model development. The detailed methodology is available in
our previous work [12].

3. Experimental Results

3.1. Descriptive Statistics of PM2.5-Bound Compound Concentrations

The LUR model with R2 greater than 0.70 was considered to perform well, between 0.50 and 0.70 it
was adequate, and less than 0.50 it was poor [24]. Because some compounds/elements (Na+, Cl−, Al,
Ca, Cd, Fe, K, Mo, Mn, Na, Ni, Pb, Sr, and Ti) performed poorly (R2 less than 0.5) for developing LUR
in this study, we only show the PM2.5-bound compound with R2 greater than 0.5 (NH+

4 , SO2−
4 , NO−

3 ,
OC, EC, Ba, Mn, Cu, Zn, and Sb) (see Figure 2). As expected, there were substantial differences by
area (the results of CD range from 0.13 to 0.62 for the concentrations of PM2.5-bound compositions),
with rural areas (Fugueijiao and Hualien) having the lowest concentrations and the lowest within-area
variability. As for the secondary aerosol (NH+

4 , SO2−
4 , NO−

3 , OC), the highest concentrations of NH+
4

and SO2−
4 were observed in Tainan, while the highest concentrations of NO−

3 and OC were observed
in Pingtung. As for EC, the highest concentration was obtained in Taichung, followed by Taipei,
Tainan, Pingtung, and two rural areas (Fugueijiao and Hualien). On the other hand, the OC/EC
ratios fell within the range of 2.9–7.2. These values were consistent with those observed in a previous
study conducted in Taichung, Changhua, and Yunlin in central Taiwan [33,37], which suggested
a relatively high concentration of SOC in the study areas. Chou et al. (2010) [33] also indicated that the
elevated concentrations of SOC were likely due to the increases in biogenic secondary organic aerosols
precursors [38]. In addition, the secondary aerosol is likely caused by the following sources: Vehicle
exhaust, coal combustion, biomass burning, oil burning, waste incineration, and household emission
via their precursor gas-to-particle conversion. Indeed, the formation of the secondary aerosol depends
on the concentrations of SO2, NOx, NH3 and orgenic compound and weather condition, such as
relative humidity, temperature, OH/radiation, and nighttime chemistry via NO3 [39], each of which
exhibits seasonal and regional variations. As for PM2.5-bound metals, the highest concentrations of Ba,
Cu, and Zn were obtained in Tainan, while the highest concentrations of Mn and Sb were observed
in Taichung. We adopted the enrichment factor (EF) analysis to roughly delineate the crustal and
anthropogenic sources for PM2.5 metals. The detailed method is available in our previous works [37,40].
In each area, Cu, Zn, Sb, and Mn (except for Mn in Pingtung with an EF value of 3) with higher EF
values (≥5) were predominantly from anthropogenic emissions. As for Ba concentration, it arises from
anthropogenic emissions (EF values ≥5) at half the stations, while for Taichung and two rural areas
(Fugueijiao and Hualien), the EF levels of 1.0–5.0 were considered to be from both anthropogenic and
crustal sources.
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3.2. LUR Model Assessment

LUR models were developed for 10 PM2.5 components. The coefficient estimate, partial R2,
and overall performance are shown in Table 2 for nonmetal compounds and Table 3 for metal
compounds. As predictors for LUR models, greenness and culturally specific sources, such as temples,
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were contributors with either a positive or negative regression coefficient in the developed models.
As for nonmetal compounds, the models performed well for NH+

4 , NO−
3 , OC, and EC (R2 > 0.70),

but performed lower than those for SO2−
4 (R2 = 0.63). In this study, the value of the model R2 for

EC was 0.86, which demonstrated similar model performance to a previous study in ten European
areas, where the model R2 was 0.87 [41]. On the other hand, the value of the model R2 for OC with
0.92 demonstrated better model performance than those in the European areas where the model R2 was
0.59 [41]. The difference of performance for compounds might be further affected by spatiotemporal
variability [36,41]. In addition, Chou et al. (2010) [33] indicated that the biogenic secondary organic
aerosols precursors would elevate SOC concentration [42]. Therefore, the model performance also
depends on existing biogenic predictors. Regarding the LUR model for secondary inorganic aerosol
(NH+

4 , NO−
3 , SO2−

4 ), however, we found no previous study on this topic.
As for metal compounds, the models performed well for Mn, Sb, and Zn (R2 > 0.70), but performed

lower than those for Ba and Cu (see Table 2). Regarding Ba and Cu, the model R2 was 0.64 and 0.60,
respectively, which were lower than the previous studies for Ba with 0.80 [24] and Cu between 0.70 and
0.80 [24,36]. However, these two studies [24,36] conducted sampling only in four weeks (January and
August) or one year, while they disregarded other years and months with temporal variation of
concentration. As a result, they cannot be used for estimating long-term concentration, which is
fundamental for exposure assessment [11,12,43]. Regarding Mn and Sb, the model R2 was 0.76 and
0.82, which were similar to previous studies for Mn (R2 between 0.70 to 0.80) [24,44] and Sb (R2 equal
to 0.75) [24]. As for Zn, the model R2 was 0.78, which was similar to previous studies in Canada and
Australia with R2 values of 0.80 and 0.75, respectively [24,44], but greater than those in Taipei, Taiwan,
and Europe with R2 equal to 0.57 and 0.67, respectively [37,45].

Table 2. Results of land-use regression (LUR) models for regression coefficient (partial R2) for non-metal
PM2.5-bound compound.

Variable Log_EC Log_OC Log_SO4
2− Log_NH4

+ Log_NO3
−

Intercept 0.93 0.22 0.85 0.37 0.74

Local road_175 3.92 × 10−4 (0.81)

All type of road_25 0.011 (0.09)

Residential mixed with
Commercial area_500 9.55 × 10−7 (0.09)

Temple_5000 0.002 (0.03)

Domestic sewage
treatment plant a

−3.86 × 10−6

(0.12)

Rice farm mixed with
fruit orchard_125 1.04 × 10−4 (0.02)

Rice farm mixed with
fruit orchard_175 −2.25 × 10−4 (0.73) −2.43 × 10−7

(0.50)

Rice farm mixed with
fruit orchard_5000 3.64 × 10−7 (0.17)

Forest_1000 −7.19 × 10−8 (0.59)

NDVI_100 −0.129 (0.05)

PM10 (year) 0.004 (0.05) 0.003 (0.06) 0.02 (0.71)

Rainfall (year) −0.02 (0.02) −0.017 (0.01)

Temperature (year) −0.02 (0.04) −0.002 (0.05)

UV 0.08 (0.01)

R2 for model 0.86 0.92 0.63 0.87 0.90
Adj R2 for model 0.85 0.90 0.60 0.86 0.89

LOOCV R2 0.78 0.84 0.53 0.82 0.83
RMSE 0.36 0.06 0.06 0.15 0.16

a distance to the nearest landmark.
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Table 3. Results of LUR models for regression coefficient (partial R2) for metal PM2.5-bound compound.

Variable Log_Ba Log_Cu Log_Mn Log_Sb Log_Zn

Intercept −3.43 −0.04 −3.75 −2.99 1.82

Main road_4000 9.55 × 10−6 (0.13)

All type of residential area_1750 2.53 × 10−9 (0.43)

Industrial area mixed with
commercial area_500 −1.27 × 10−5 (0.05)

Industrial area mixed with
commercial area_1250 2.18 × 10−6 (0.75)

Industrial sewage treatment plant a 4.40 × 10−6 (0.15)

Fossil fuel power plant a 0.19 (0.63)

NDVI_1750 −0.61 (0.36)

NDVI_125 −0.438 (0.03)

PM10 episode b 0.008 (0.03) 0.01 (0.12)

PM10 (annual average) 0.019 (0.51)

Temperature 0.001 (0.06)

UV 0.009 (0.11) 0.89 (0.20) 0.04 (0.04)

R2 for model 0.64 0.60 0.76 0.82 0.78
Adj R2 for model 0.61 0.55 0.71 0.79 0.75

LOOCV R2 0.55 0.50 0.64 0.73 0.66
RMSE 0.24 0.0041 0.21 0.22 0.03

a distance to the nearest landmark; b number of days for PM10 episode.

3.3. Spatiotemporal Variations of PM2.5-Bound Compounds

Figure 3 illustrates the annual average concentration for the entire study period, as simulated by
the developed model. Red to blue/green on the maps represents the levels of each PM2.5 compound,
from high to low. Regarding nonmetal compounds, western and southern areas clearly have higher
concentrations throughout the study period except for NO−

3 , since the eastern area is mainly occupied
by agricultural fields. In addition, southern areas presenting higher concentrations (except for EC,
which is a primary pollutant) suggested a strong latitude gradient in secondary aerosol concentration.
On the other hand, the metal compounds and EC show different patterns from each other. For instance,
Ba and Cu concentrations present a higher level in the south, while EC, Mn, Sb and Zn show high
concentrations in the particular areas. The resulting pattern of metal and EC concentrations across
the island is likely caused by local emission sources, such as vehicular and industrial emissions and
human and commercial activities. For instance, EC and Ba have been identified in previous studies
as markers for traffic, vehicular emissions, or brake and tire wear [37,46]. Zn was ascribed to power
plant emissions because a high portion of Zn is in coal ranges and most of the Zn evaporates and
condenses onto the fly ash particles when coal is combusted at high temperatures (typically around
1500 ◦C). Manganese (Mn) has been identified as the main component in aerosols in the iron ore and
steel industry [47,48]. Many studies have suggested a link between industrial emissions and a high
concentration of Sb [49,50]. See and Balasubramanian (2008) [51] suggested that EC and Cu could be
released into the air through cooking exhaust hoods.
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4. Discussion

While the LUR model has become increasingly popular to simulate air pollutant concentration,
it is rarely used in Asia, including Taiwan [12,36]. This also means a limited understanding of PM2.5

constituent characteristics in Asia and their association with local emission sources. This paper,
thus, exploited LUR models coupled with GIS and remote sensing data for PM2.5-bound compound
concentrations in Taiwan, which may represent typical Asian characteristics. This is also significant for
the epidemiological studies in Asia, which need data with fine-scale exposure concentration.

Previous studies have shown that green space is associated with lower exposure to ambient
air pollutants [20,52]. Actually, tree species and vegetation composition could efficiently capture
pollutants [20,53]. For example, Yin et al. (2011) [53] demonstrated that the concentrations of PM, SO2,
and NO2 decreased 9.10%, 5.30%, and 2.60%, respectively, at distances of 50 to 100m from an urban
woodland area. Nowak et al. (2006) [17] demonstrated that urban trees and shrubs could remove
about 215,000 tons of PM10 every year in the USA as a whole. Today, remote sensing technologies
have become readily available to obtain greenness information from satellite images. In our study,
long-term NDVI data coupled with buffer size analysis were used to assess plant growth (vigor)
and neighborhood vegetation cover during the study years. The results of the negative regression
coefficient for NDVI were obtained in the SO2−

4 , Mn, and Sb LUR models. Moreover, the partial R2 of
NDVI in the Mn model was 0.36, indicating 36% of PM2.5-bound Mn variation could be explained by
NDVI information in the developed LUR model. The aforementioned results demonstrate that NDVI
information is an applicable factor in developing LUR models for compounds in fine particles.

On the other hand, there were large amounts of ammonia in East Asia atmosphere as a result of
using fertilization in argricultural fields, which elevated NO−

3 [54]. In addition, secondary organic
carbons would increase due to the increases in biogenic secondary organic aerosols precursors, such as
carbonaceous aerosols [33,38]. Carbonaceous aerosols are mainly emitted either directly through
primary emissions or indirectly through gas-phase oxidation products from biogenic volatile organic
compounds (BVOCs) [55,56]. BVOCs are primarily emitted from plants as a tool for communication
and to handle biotic and abiotic stress [57,58]. On the other hand, the ability of green spaces,
like vegetation planted in urban areas, urban forests, and parks, to remove particle pollutants has been
well documented [17,18]. Thus, rice farms, fruit orchards, and forests had either a positive or negative
regression coefficient to OC and NO−

3 concentrations.
Population variables were included in the EC, NH+

4 , and Cu models. This predictor variable
represented various human and commercial activities, such as heating, cooking, and cleaning
activities [51,59]. For instance, the aminium salts contained in the commercial degreaser solution
are released into the air when people use a degreaser to clean kitchens [59]. Road length was also
included in the OC, NO−

3 , and Ba models. This predictor suggests traffic-related emission, such as
vehicle exhaust and road dust re-suspended by automobiles and wind. Laboratory experiments have
indicated that OC can be formed from photooxidation of precursors present in gasoline fuel and
diesel exhaust. In addition, emissions from gasoline and diesel vehicles contain a certain amount of
primary OC (POC) [42] and nitrogen oxides (NOx), which are the precursor of NO−

3 . In addition,
Amato et al. (2011) [60] suggested Ba comes from re-suspended dust.

While industry and traffic are often the dominant factors to estimate PM2.5-bound compounds [24,45],
some culturally specific PM2.5 sources must also be considered in Asia. Joss paper and incense
burning are very important for many Asian households and temples for religious purposes [61],
and several studies have shown their contributions to air pollution [27,62]. However, none of these
studies considered joss paper and incense burning related variables to develop an LUR model for the
concentration of PM2.5-bound compounds. In this study, we used the number of temples to reflect local
emissions by joss paper and incense burning, which proved to be a significant predictor in our newly
developed model (such as NH+

4 ). Thus, we would suggest future studies could consider this unique
local cultural source as a predictor when establishing LUR models for estimating the concentration of
PM2.5-bound compounds in other Asian regions.
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The present study relied on the data collected at six sampling sites from 2002 to 2007. While a larger
number of sampling sites is preferred, the comprehensive data measured and collected throughout
a six-year period were still very helpful to serve our purpose. In addition, to sample and analyze
PM-bound compound is often time-consuming and very expensive. Thus, it’s not easy to have a six-year
period of PM2.5-bound compound concentrations as used in this study. On the other hand, this study
has some other limitations with regard to when we selected predictors. For instance, the comprehensive
traffic count data and the number of buildings or the population, while often used by others to improve
model performance [63,64], were not considered in this study because these data are not readily
available in Taiwan. Nonetheless, compared to a one-year period (or shorter) of data used by others,
this model chose a comprehensive data set covering the entire island throughout a six-year period to
represent not only the spatial, but also temporal variation of compound concentrations in all locations
of Taiwan. In addition, using such a long span of pollutant data in Taiwan to establish multiple
LUR models with culturally specific and greenness predictors, these models showcased a mid-high
estimation performance level, which can be used to better depict the concentration variation of
PM2.5-bound constituent in Asian cities.

5. Conclusions

Land-use regression (LUR) models have thus been used frequently to estimate individual levels
of exposures to ambient air pollution. The remote sensing data have become important for developing
LUR models. This paper thus exploited LUR models with the remote sensing data for PM2.5-bound
compound concentrations in Taiwan where traffic, industrial area, and greenness were the main
variables. Using data from six measurement stations, we confirmed that the LUR models developed in
this study can estimate fine spatial variability of long-term PM2.5-bound compound concentrations
with the estimated uncertainty as low as 8% (e.g., for the estimation of OC compound). Moreover,
this LUR method could be similarly used in future studies to develop new LUR models for other
pollutants in Taiwan. In terms of local residents’ health outcome or health effect indicators, this study
further offers much-needed support for future air epidemiological studies.
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