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Abstract: This paper describes an automatic multi-image robust alignment (MIRA) procedure able
to simultaneously co-register a time series of medium-resolution satellite images in a bundle block
adjustment (BBA) fashion. Instead of the direct co-registration of each image with respect to a
reference ‘master’ image on the basis of corresponding features, MIRA also considers those tie
points that may be not be shared with the master, but they only connect the other images (‘slaves’)
among them. In a first stage, tie points are automatically extracted by using pairwise feature-based
matching based on the SURF operator. In a second stage, such extracted features are re-ordered
to find corresponding tie points visible on multiple image pairs. A ‘master’ image is then selected
with the only purpose to establish the datum of the final image alignment and to instantiate the
computation of approximate registration parameters. All the available information obtained so far is
fed into a least-squares BBA to estimate the unknowns, which include the registration parameters and
the coordinates of tie points re-projected in the ‘master’ image space. The analysis of inner and outer
reliability of the observations is applied to assess whether the residual blunders may be located using
data snooping, and to evaluate the influence of undetected outliers on the final registration results.
Three experiments with simulated datasets and one example consisting of eleven Landsat-5/TM
images are reported and discussed. In the case of real data, results have been positively checked
against the ones obtained by using alternative procedures (BBA with manual measurements and
‘slave-to-master’ registration based on automatically extracted tie points). These experiments have
confirmed the correctness of the MIRA approach and have highlighted the potential of the inner
control on the final quality of the solution that may come from the reliability analysis.

Keywords: automation; bundle block adjustment; image time-series; matching; registration;
reliability analysis

1. Introduction

The growing availability of medium-resolution satellite images for Earth observation (EO) gives
an unprecedented opportunity to monitor land cover changes and dynamic processes, up to a
hyper-temporal resolution of a few days. Operating satellites such as Landsat, Disaster Monitoring
Constellation, and Sentinel-2 may provide data at geometric resolution between 10 m and 30 m in
terms of ground sample distance (GSD), while covering a large radiometric spectrum [1–4].

Typically, such datasets are delivered after topographic correction to remove relief displacement
errors and the effect of Earth curvature [5]. These pre-processing steps result in the fact that image
registration, which is a fundamental pre-requisite for any multi-image analyses, can be accomplished
by using 2-D transformations [6]. The direct use of metadata information for registering image time
series is not enough to carry out the precise alignment at pixel and subpixel levels, as required in
many applications.
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Traditional methods for image alignment (or registration) [7–9] rely on the use of corresponding
features identified between a reference image (frequently called ‘master’ image) and each generic
image (‘slave’ image) in the time series. This registration method is usually carried out for all the
‘master-to-slave’ combinations, as shown in Figure 1a. Corresponding features may be measured
manually, but several procedures have been developed for their automatic extraction [10–12]. Such
features are used for estimating a geometric 2D transformation to map the images to each other and to
obtain pixel-to-pixel overlap after resampling. The ‘master’ image defines the absolute spatial datum,
for example by using metadata information or ground control points (GCPs), which may come from in
situ GNSS measurements or from existing digital maps [13].

In remote-sensing applications for change detection, the acquisition of data collected over the
same geographic area but at different epochs (e.g., time of the day, season, year) may be accomplished
in uneven conditions of cloud cover, illumination, viewing geometry, and/or imaging sensors [14].
Consequently, the radiometric content of a multi-temporal dataset may sharply differ from one image
to another [15], even if the sensed areas overlap. In such a case, the image alignment of long time series
may become an involved task. This may also result in the fact that all ‘slave’ images may not share
enough corresponding features with the ‘master’ image, resulting in need of concatenating additional
‘master’ images with consequent error propagation.
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Starting from Orun and Natarajan [16], an alternative approach for the registration of satellite
images on the basis of bundle block adjustment (BBA) was introduced. BBA is commonly applied in
photogrammetry and computer vision for image orientation [17]. The basic concept is to use not
only corresponding features for estimating the ‘master-to-slave’ registration parameters, but also to
introduce corresponding points shared between the ‘slave’ images, see Figure 1b. The coordinates of
these correspondencies, which are usually addressed to as tie points (TPs), are used to instantiate a
system of redundant equations to be solved within a least-squares (LS) framework for the determination
of the unknown registration parameters and the coordinates of TPs in a given geodetic datum. This
can be defined by introducing enough GCPs or using some inner constraints [18]. In such a way,
also those ‘slave’ images without corresponding features that are directly shared with the ‘master’
may be registered, limiting error propagation. In addition, since TPs may be observed on more than
two images and used to write multiple equations in the BBA formulation, the inner reliability of the
observations increases and the procedure may gain robustness against gross errors. Moreover, some
additional images could be added into the data processing workflow to improve the network geometry
and to benefit to the alignment.

The application of BBA approach to the registration of satellite data has been already proposed in
the technical literature. Toutin [19] developed a solution for the BBA of Landsat 7 ETM+ based on a
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3D analytical geometric model for multi-sensor images, including orbital constraints. Different sets
of 3D GCPs integrated to TPs with only known elevations were tested. Results obtained from BBA
were similar to the ones from single ‘image-to-GCP’ alignment, but with a significant reduction of
GCP number. The same approach was then extended to deal with high-resolution Ikonos data [20]
and to multi-sensor fusion [21,22]. At the same time, Grodecki and Dial [23] investigated a similar
technique but based on rational polynomial coefficients (RPCs). Since this model can deal with a large
variety of sensors, it applies to any imaging systems with a narrow field-of-view, a calibrated stable
interior orientation, and an accurate a priori exterior orientation. The same research direction was
continued in Fraser and Hanley [24] and Rottensteiner [25], where a bias-compensated BBA based on
RPCs was demonstrated to provide subpixel accuracy notwithstanding the minimum ground control.
High-resolution Ikonos, QuickBird, and ALOS data were used in this study. As far as new sensors
have been launched, new approaches for BBA of high-resolution satellite images were introduced, as
in the case of Chinese ZY3 data [26].

The studies mentioned above mainly focus on the analytical aspects of BBA and the evaluation
of the obtainable accuracy when using the proposed methods. In Barazzetti [27] the focus was
given on the automatic extraction of TPs for the registration of medium-resolution satellite image
sequences, instead of using manual interactive measurements. These TPs are obtained on the basis
of robust feature-based matching (FBM) techniques (see Section 2.1), and then input in the BBA for the
simultaneous computation of all image registration parameters. Of course, in the case of poor image
texture, the automatic extraction of TPs may easily fail. This case frequently happens, for instance,
when a significant portion of the image depicts a water body. On the other hand, this problem does
not depend on the method used for the measurement of TPs, since, in the case of poor image texture,
the interactive approach may also result in severe problems.

The automatic extraction of TPs is a fundamental step towards the complete automation of the
registration process, which represents a task of high relevance when dealing with large datasets.
An important objective in automatic procedures is to minimize the influence of possible residual
measurement errors. Even though FBM may limit the number of blunders, also a small fraction of
them in the set of observations to be processed within the BBA might lead to significant biases in the
final image registration parameters. The methods usually adopted to reject outliers in BBA are more
efficient when data redundancy is large. This property may be obtained on one side by extracting
multiple connections between images. On the other hand, the application of the inner and outer
reliability concepts, widely popular in geodesy and photogrammetry, also allows evaluating which
is the risk to have registration errors larger than prefixed thresholds. Thus, the focus in this paper is
given to develop the concept presented in Barazzetti [27] to be integrated into a full, robust procedure
(multi-image robust alignment) for the automatic registration of medium-resolution satellite images,
with special emphasis on the reliability analysis (see Section 2). In Section 3 an application to a dataset
of Landsat-5/TM images is presented. After a discussion on the experimental results in Section 4,
Section 5 draws some conclusions and addresses future work.

2. Methods

2.1. Overview

The multi-image robust alignment (MIRA) procedure consists in a multi-step process, as shown
in Figure 2. The core is a preliminary subdivision of the original dataset made up of n images into all
n(n − 1)/2 possible image-pair combinations. Image correspondences are looked for independently in
each image pair by using FBM, as described in Section 2.2. In a second stage, all the extracted features
are reordered to find multiple TPs (Section 2.3). A reference ‘master’ image is selected with the only
purpose to set up the spatial datum. This selection is based on the analysis of extracted connections
between images (see Section 2.4). The TP set is used to jointly estimate all transformations’ parameters
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within a BBA (see Section 2.5). One crucial aspect of this procedure is the analysis of observations’
inner reliability, which will be the subject of Section 2.6.
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2.2. Analysis of Individual Image Pairs

After the publication of SIFT [28], a new category of SIFT-like algorithms has started to be
successfully applied in FBM procedures for the registration of images in close-range photogrammetry
and computer vision (see Wu [29]). Thanks to a multi-resolution analysis, SIFT-like algorithms are
able to extract distinctive features in the images with a high degree of robustness against shift, scale,
and rotation. Each feature is also assigned a descriptor (for example, a vector of 128 elements that
can be characterized using its norm) that may be exploited for matching features in different images.
SIFT-like algorithms have replaced correlation-based techniques that were previously used in FBM.
These were based on the similarity between radiometric values and consequently were less robust
against geometric and radiometric changes [11].

Here, the SURF operator has been specifically used [30]. SURF has a lower computational
time than other SIFT-like algorithms [31,32] and is prone to extract a large number of key-points (i.e.,
points that are candidates to become TPs) that may be observed in more than a single image pair
(manifold features), as proved in Barazzetti [33]. This capability is very important to obtain a redundant
dataset of TPs, which is the primary purpose of MIRA.

Corresponding features are obtained by exhaustively comparing the SURF descriptors (in vectors
Dm and Dn) of all key-points extracted on the image pair to register. No preliminary information about
the spatial location in the images is used for registration. Then the Euclidean distance (dmn) between
descriptors of points in different images is used as metrics for FBM:

dmn = ||Dm − Dn||, (1)
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The following procedure is applied to find a set of homologous points:

1. Distances dmn are worked out between all combinations of key-points in the image pair;
2. Distances dmn are ranked from the shortest d1

mn to the largest dp
mn;

3. The couple of key-points corresponding to the smallest distance d1
mn are assumed to be matched;

4. A ratio test [34] (first distance d1
mn/second distance d2

mn) is applied to scrutinize distinctive matches;
5. If the ratio test has passed, both key-points are assigned as corresponding points and are removed

from the list of potential matches; otherwise, the points are kept available to be considered at a
later stage; and

6. The analysis moves on to consider the following distance d2
mn in the rank up to the completion

of the list.

When SURF retrieves a sufficient number of image correspondences, some mismatches may often
still be present. To remove such outliers, the procedure makes use of the robust estimation of a 2D
similarity transformation between both sets of extracted features in the images. In Barazzetti [27] more
details can be found about the implementation of this step, which is based on the use of the popular
high-breakdown point estimator RANSAC [35].

The similarity transformation may not be the best model to fit real data, depending on the sensor
and the ground topography [13]. On the other hand, at this stage, the aim is to remove large blunders,
which may account for tens of pixels. The recourse to a similarity transformation may help cope
with this problem, while the rejection of smaller measurement errors is afforded afterward by using
more refined models (see Table 1) that may be selected during the successive multi-image adjustment.
For this reason, a relatively large threshold (e.g., 2–3 pixels) is selected for discriminating outliers
with RANSAC.

The geometric distribution of corresponding points is analyzed to seek for weak configurations
during RANSAC estimation. The covariance matrix Cxx of the registration parameters is compared
against a criterion matrix H constructed by assuming an optimal point distribution. The analysis is
based on the maximum eigenvalue λmax of matrix K, which is computed as follows:

K =

(
nC
nH

)
H

1
2 CXXH

1
2 (2)

Table 1. Geometric registration models encompassed as subcases of the general planar transformation
implemented in MIRA during multi-image adjustment.

Mapping Model # Unknowns (np) Equations Nmin Geometric Deformations

Similarity 4
xi = a0 + xjmcosα− yjmsinα
yi = b0 + xjmsinα+ yjmcosα 12 2D shifts, rotation, scaling

1st Degree
Polynomial (Affine)

u = 1
6

xi = a00 + a10xj + a11yj
yi = b00 + b10xj + b11yj

18 2D shifts, rotation, shear,
scaling along both axes

2nd Degree
Polynomial

(u = 2)
12

xi = a00 + a10xj + a11yj+

+a20x2
j + a21xjyj + a22y2

j
yi = b00 + b10xj + b11yj+

+b20x2
j + b21xjyj + b22y2

j

36
2D shifts, rotation, scaling
along both axes, torsion,

convexity along both axes

3rd Degree
Polynomial

(u = 3)
20

xi = a00 + a10xj + a11yj + a20x2
j + a21xjyj+

+a22y2
j + a30x3

j + a31x2
j yj + a32xjy2

j + a33y3
j

yi = b00 + b10xj + b11yj + b20x2
j + b21xjyj+

+b22y2
j + b30x3

j + b31x2
j yj + b32xjy2

j + b33y3
j

60

2D shifts, rotation, scaling
along both axes, torsion,

and convexity along both
axes, other deformations

without geometric
interpretation

Here the approach proposed in Förstner and Wrobel [36] has been modified to account for the
different number of points in the real (nc) and the ideal case (nh), see Syrris [15]. If λmax ≤ 1 the real
configuration is better than the ideal one. In such a case, the solution is accepted, and the RANSAC
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estimate is terminated. If the condition λmax ≤ 1 is never verified, the solution corresponding to the
minimum eigenvalue, but less than a safety threshold (λth = 4) is selected.

After the completion of RANSAC cycle, the set of inliers is rejected if the number of corresponding
points is below Nmin = 12, otherwise they are used for estimating the four parameters of the similarity
transformation on the basis of LS regression [37]. The threshold Nmin corresponds to six times
the minimum dataset to compute a similarity transformation (i.e., two points), which is twice the
safety value (three) frequently adopted in geodesy to guarantee a sufficient global redundancy in LS
regressions. A statistical testing procedure based on data snooping [38] is applied to remove the possible
remaining tiny fraction of outliers (<5%).

The quality assessment of the solution is based on checking the theoretical accuracy of shift
parameters (σ̂c and σ̂r along columns and rows, respectively) that may be extracted from the estimated
covariance matrix Cxx. These are related to the standard deviation of an observation with unit weight
(σ̂0) estimated after LS regression, and to the number of extracted inliers (F):

σ̂c = σ̂r =
1√
F
σ̂0. (3)

A threshold on σ̂c and σ̂r is introduced to check weak configurations. In fact, results worse than
σ̂c = σ̂r = ±3 pixels for shift parameters are mainly caused by incorrect matches and should be
removed from the datasets.

It should be also mentioned that the FBM process is highly prone to be parallelized. On one
side the extraction of key-points with the SURF operator may be independently carried out in each
image. On the other, the pairwise FBM procedure may be applied to each considered image pair
disregarding others.

2.3. Derivation of Multiple Tie Points

As expected from the multiple overlaps, it is likely that some corresponding features are ‘visible’
on more than a single image pair. Indeed, as already addressed in Section 2.2, an essential characteristic
of SURF operator is the capability of finding the same feature in multiple images under different
geometric and radiometric conditions. A comparison of the numerical value of the extracted pixel
coordinates of corresponding points obtained from the image-to-image matching stage may provide a
regular structure of multiple (or manifold) tie points (TPs), i.e., TPs that may be measured on more than
two images. Such points improve the inner reliability of the observations and make the registration
process less sensitive to residual measurement errors [39], as it will be illustrated in Section 2.6.

2.4. Selection of the ‘Master’ Image

The selection of the ‘master’ image is based on the distribution of corresponding points between
the images. A connectivity graph is drawn to show the relationship between the images and to highlight
possible weak connections in the network. An example of connectivity graph related to the example
presented in Section 3 is displayed in Figure 3 using a matrix representation, where a cross indicates
the presence of sufficient TPs for co-registering the pair of images corresponding to the intersecting
row and column. While a rapid look at the connectivity matrix is enough to check out its consistency
in the case of visual interpretation, a test is implemented to afford this task automatically. Once the
consistency of the connectivity graph is assessed, the ‘master’ image is chosen on the basis of the
following criteria:

1. to maximize the number of images that share enough TPs with the ‘master’, i.e., at least Nmin; and
2. the ‘master’ image should be preferably in a central position in the time series t = 1, 2, 3, . . . , n.

Indeed, a time series covers the same spatial region within a time span and, consequently, the
temporal factor is more important than the spatial factor for selecting the ‘master’ image.
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The connectivity graph is also useful to work out the approximate values for any parameters to
be estimated in the global multi-image BBA, see Section 2.5. The adopted procedure is similar to the
scheme followed in the ‘structure-from-motion’ technique [40] for image orientation in close-range
photogrammetry. By looking at the connectivity graph, all ‘slave’ images that are directly linked to the
‘master’ image may be approximately registered in pairwise, independent manner. In this way, any
images in this first group of registered images can be used as new ‘master’ images to register other
‘slaves’ that would share sufficient corresponding points with one of them. By using such approximate
registration parameters it is then possible to re-project the coordinates of any points on the space of the
main ‘master’ image.
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2.5. Analysis of Multiple Images

Since the MIRA method provides corresponding TPs not only for ‘master-to-slave’ combinations
but also for ‘slave-to-slave’ pairs, all transformation parameters can be concurrently estimated.

A generic 2D polynomial transformation of degree p between two images is implemented at this
stage. Given a feature k, the transformation of its coordinates between images i and j is given by:{

xjk = ∑
p
u=0 ∑u

v=0 auvjxu−v
ik yv

ik

yjk = ∑
p
u=0 ∑u

v=0 buvjxu−v
ik yv

ik

. (4)

The number (np) of transformation parameters (auvj, buvj) depends on the selected geometric
model (see Table 1).

The implementation of Equation (4) in the BBA has been revised with respect to the previous
version published in Barazzetti [27] to define a more rigorous stochastic model. All transformations in
the global adjustment are written between the 2D image space of the generic ‘slave’ j and the 2D image
space of the ‘master’ (M). The functional model of the observation equations based on Equation (4)
then becomes: {

vxjk + xjk = ∑
p
u=0 ∑u

v=0 auvjx
u−v
Mk yv

Mk

vyjk + yjk = ∑
p
u=0 ∑u

v=0 buvjx
u−v
Mk yv

Mk

, (5)

where xMk and y
Mk

are the image coordinates of tie point k projected in the image space of the
‘master’ image, while vxjk and vyjk are residuals. Underlined parameters in Equation (5) are considered
as unknowns, including TP coordinates re-projected on the ‘master’ image. This formulation is
stochastically corrected, since the observed quantities (with errors) are bounded on the left side and
unknowns are on the right side. Consequently, the observed coordinates (xjk, yjk) of any TPs may
be properly weighted if their measurement precision is uneven. Equation (5) is not linear in the
parameters and requires linearization around approximate values (see Section 2.4). Consequently,
the unknown parameters in Equation (5) are replaced by corrections dauvj, dbuvj, dxMK, and dy

Mk
.

Since it is not possible to predict the accuracy of individual features extracted by SURF,
the observations are assigned unit weights. In the case a TP is cast into Equation (5), its coordinates on
the ‘master’ image will have to be fixed to the measured value. A set of additional pseudo-observation
equations is introduced to keep corresponding corrections constrained to zero. Additional constraint
equations may also be included in the functional model to enforce conditions between parameters, for
example, when a first-degree polynomial has to be reduced to a similarity transformation.

A TPs found on nim image (see Section 2.3) provides 2nim observation equations. The total
number of unknowns depends on the number of images (n), the parameters of the adopted geometric
transformation (np), the coordinates of ‘slave-to-slave’ matches re-projected onto the ‘master’ image
(2nrep), and the number of 2D points (2u) used as a reference (GCPs) on the ‘master’ image.

The system of observation, pseudo-observation and constrain equations can be rewritten in
compact form as follows: 

v + y = A1dx1 + A2dx2 + c
−w1 = Idx2

−w2 = Ddx1

, (6)

where:

dx1: vector of corrections to the transformation parameters between any ‘slaves’ and the
‘master’ image;

dx2: vector of corrections to point coordinates on the ‘master’ image;
A1, A2: coefficient (or design) matrices of parameter vectors dx1 and dx2;
y: vector of measured coordinates of TPs;
c: vector of constants in linearized observation equations;
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v, w1, w2: vectors of residuals; and
D: coefficient matrix of additional constraint equations, if any.

After casting all unknown parameters into a single unknown vector dx = [dx1 dx2]T the design
matrix can be redefined as follows:

A =

 A1 A2

0 I
D 0

, (7)

The system of linearized equations may be solved to estimate the vector of unknowns x̂ = N−1b,
where N = ATWA is the normal matrix and b = ATWY, while Y = [c−y 0 0]T is the constant vector and W
the weight matrix. The theoretical accuracy of the solution may be derived from the estimate of the
covariance matrix Cxx = σ̂2

0N−1, where σ̂2
0 is the estimated variance of unit weight observations (or

sigma naught).
Data snooping is applied again on the residuals after BBA to remove small errors. The effectiveness

of this procedure is directly related to the evaluation of reliability that is described in the following section.

2.6. Analysis of the Reliability of Multi-Image BBA

With the term reliability the chance to identify a gross error in the observations (inner reliability)
and the estimated parameters (outer reliability) is referred to. While the readers may find the theoretical
background about reliability analysis in Förstner [41] and Kraus [42], the basic concepts are briefly
reviewed in the following of this section.

It is well known that a gross error in the ith observation may be reflected only to a limited extent
into the corresponding residual vi after BBA. Thus, the largest residual does not necessarily correspond
to a gross error. Moreover, outliers and random errors mask one another, so that the localization
of gross errors may be difficult. In the case no gross errors are in the observations, the probability
distribution of each residual is supposed to be Gaussian as N(0, σ̂2

vi). The estimated variance of residual
vi may be derived from the estimated covariance matrix of residuals:

Cvv = σ̂2
0

(
W−1 −AN−1AT

)
. (8)

The data snooping [38] technique implemented for scrutinizing gross errors is based on the analysis
of standardized residuals zi = vi/σvi, which are expected to be distributed as a standard Gaussian
probability density function N(0,1). In the hypothesis that each zi should follow the distribution N(0,1),
an upper threshold kα on the absolute size of acceptable standardized residuals is then fixed to filter
out possible outliers. An observation is accepted only if the corresponding standardized residual
|zi| ≤ kα, where kα is directly related to a given risk probability (α) that |zi|> kα (see Figure 4).
The rejection might occur in two different cases: (1) the residual is supposed not to follow the
distribution N(0,1) because the related observation is a gross error; or (2) a rare event belonging
to the distribution N(0,1) but with low risk probability α has happened. In such a case, an inlier would
be erroneously discarded (type I error).
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The test adopted to scrutinize the residuals may also fail in the presence of an outlier that does not
follow the standard Gaussian distribution, but has a biased expectation E(zi) = δ. As shown in Figure 4,
a small outlier may not be detected because it features a corresponding standardized residual zi that
is smaller than the acceptance threshold kα. The probability of accepting an outlier (type II error) is
given by β, which is related either to the risk probability α and to the bias δ. This last parameter is
commonly referred to as the non-centrality parameter (δ) and gives in standardized coordinates the size
of the minimum measurement error that may be detected using data snooping. Once the risk probability
(α) and the power of the test (β) have been selected, the non-centrality parameter (δ) can be worked out.
A typical set of parameters that has been also adopted in the experiments reported in this paper is:
α = 1%, β = 93%, kα = 2.56, and δ = 4.

The inner reliability (E(∆la)rel) of the observation ith is defined as the size of the minimum
detectable error, according to selected parameters α and β. Its corresponding value can be computed
using the expression:

E(∆la)rel = δσwi/
√

ri, (9)

where σwi is the expected precision of the ith observation and ri is its local redundancy, which may be
obtained from the ith element of the main diagonal of the redundancy matrix R:

R =
(

W−1 −AN−1AT
)

W. (10)

Equation (9) shows that the test on standardized residuals may leave undetected a gross error
whose size is δi times the precision of the observation ith, given prefixed values for α and β. On the
other hand, the local redundancy ri may have a mitigating effect on the inner reliability. Higher values
of ri lead to a smaller size for the detectable errors in corresponding observations. In a BBA, a manifold
observation results in a high ri and consequently in a better inner reliability.

The final step is to evaluate the effect of an undetected gross error on the estimated parameters.
This may be computed through the corresponding outer reliability:

E(∆|xa|)rel=
(

ATWA
)−1

ATW∆la, (11)

where vector ∆la reports the value of inner reliability E(∆la)rel on the line ith and zero elsewhere.
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To demonstrate how the inner and outer reliabilities may be obtained in the case of a BBA adopted
to register a satellite time series implementing a 2D similarity transformation model, the following
simulated examples are proposed (see also Scaioni [43]). In Table 2 the range of inner reliabilities
and their average values are shown for three different cases. Additionally, the outer reliability
corresponding to the average inner reliability is reported in the same table.

In Case 1, two images have been registered by using 16 corresponding features. It may be seen
that the limit for the minimum detectable error corresponds to a bias of 0.27 pixels in the estimated
shift in the same direction. In Case 2, a total number of three ‘slave’ images have been included, in
addition to the ‘master’. Any ‘slaves’ share 16 TPs with the ‘master’. ‘Slaves’ also share nine TPs
among them. As may be seen from Table 2, the inner reliability of TPs shared with the ‘master’ is
only slightly better than the one in Case 1. Looking at TPs between ‘slaves’, the minimum detectable
error is larger with respect to the previous group of TPs. However, when looking at the corresponding
outer reliability, the maximum detectable errors lead to biases in the estimated parameters that are
significantly smaller than in Case 1.

In Case 3, the dataset adopted in Case 2 has been integrated by three additional images, leading
to a total number of six ‘slaves.’ New images are not directly connected to the ‘master’, but they share
16 TPs among them.

The result regarding the inner reliability shows a further improvement concerning both Cases 1
and 2. Similarly, TPs have a higher threshold for non-detectable errors when they are shared among
‘slave’ images only. In Table 2 the inner reliabilities have been separately computed for TPs shared
between three (as in Case 2) and six ‘slave’ images, respectively. As expected, values of inner reliability
are lower in the case of points visible on six images (Subset ‘SS6’) than in the case of points visible on
three images only (Subset ‘SS3’). It is also interesting to observe how the outer reliability has improved
in Case 3 concerning the previous cases with less redundant observations. In particular, the effect of
maximum non-detectable gross errors in TPs is quite low (less than 1/10 pixels for shifts). In Section 3,
some results related to a real dataset are also presented.

Table 2. Inner and outer reliabilities computed for the simulated Cases 1, 2, and 3. In the second
column, the subset of TPs adopted for evaluating the inner/outer reliabilities are described using the
following symbols: ‘MS’ is the subset of TPs shared between the ‘master’ and one or more ‘slaves’; ‘SS’
is the subset of TPs shared between two or more ‘slaves’; ‘All’ is the subset including all types of TPs.

Case TP Subset σim (pix)
Inner Reliability Outer Reliability

Max-Min Range
(pix)

Average
(pix)

Shifts
(pix)

Scale
(‰)

Rotation Angle
(10−3 gon)

1 MS 1 4.2–4.4 4.3 0.27 3.8 9.8

2
MS 1 4.1–4.2 4.2 0.20 2.6 7.0
SS 1 5.0–5.2 5.1 0.14 1.8 5.6
All 1 4.1–5.2 4.5 - - -

3

MS 1 4.1–4.2 4.2 0.15 2.2 6.4
SS3 1 5.0–5.1 5.1 0.08 1.3 3.8
SS6 1 4.5–4.8 4.6 0.07 0.8 2.3
All 1 4.1–5.1 4.5 - - -
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3. Application to Landsat-5/TM Imagery

3.1. Dataset and Data Processing

The MIRA algorithm has been tested on a Landsat-5/TM time series (Level 1 products) made up
of eleven frames imaged over the city of Multan, Pakistan. The images were collected from February
1998 to December 1998 (ID1: 9 February; ID2: 23 March; ID3: 14 April; ID4: 16 May; ID5: 4 August;
ID6: 20 August; ID7: 7 October; ID8: 23 October; ID9: 8 November; ID10: 24 November; and ID11:
10 December). The GSD (ground sample distance) is 30 m for all the available spectral bands except
the thermal infrared channel (TIR—Band TM6), whose GSD is 120 m. Due to such a low geometric
resolution, images from Band TM6 have not been considered during next processing stages.

Since the radiometric content may largely differ in different wavelengths of multispectral imagery
(see Table 3), uneven results are expected during pairwise FBM aimed at extracting corresponding
TPs. Indeed, different land-cover types and surface materials are characterized by a non homogeneous
spectral response. Thus, they may exhibit different image contrast according to the specific wavelength.
In addition, shorter wavelengths in the visible domain (mainly bands TM1/TM2) are more affected
by atmospheric scattering. In a previous paper [44], the robustness of MIRA against atmospheric
effects was demonstrated. For this reason, FBM has been applied to the images in all bands without
any preprocessing to correct these effects. Table 3 shows the results in terms of image pairs that have
been successfully matched in different bands, and the total number of extracted TPs. A single image
pair is considered as ‘successfully matched’ if at least Nmin = 12 TPs have been found. As can be
seen, all bands except TM4 show results that are very close to one another regarding the fraction of
successfully matched image pairs, ranging between 96% and 100% of 55 total possible combinations.
This achievement is also motivated by the large spatial overlap between all the images. In the case
of Band TM4 (NIR—near infrared), changes in vegetation cover during different seasons of the year
may be strongly correlated to the variation of NIR content of the images, resulting in problems when
seeking for corresponding features.

After the pairwise FBM stage is accomplished, image pairs need to be linked together to find
multiple TPs and to detect which image should be preferably used as ‘master’ for the time series. This
selection is done by analyzing the pairwise connections between images that are summarized in the
connectivity matrices for different bands displayed in Figure 3. According to the results obtained from
the most wavelengths, Image ID8 has been selected as ‘master’ using the methodology reported in
Section 2.4. The choice is motivated by the highest number of images that are connected to it, i.e.,
images that share at least Nmin = 12 TPs. Image ID8 is shown in Figure 5, where extracted TPs are also
overlaid. In some bands, only two images are not directly connected to Image ID8. The poor results
obtained with FBM in the case of Band TM4 have also reflected in the connectivity graph, which is split
into two clusters (Figure 6). The lack of connections suggests that the time series cannot be processed
as a whole when using TPs extracted in spectral Band TM4. Looking at the other wavelengths, the
total number of extracted TPs after reordering spans from 47,812 (TM1) to 75,073 (TM3) in terms of
image observations (Table 3). This variability shows that the number of extracted multiple features
significantly depends on the adopted wavelength, even though TPs are always sufficient to compute
the image registration parameters. In Figure 7 three patches of the images from the ‘Multan’ dataset
are shown before and after the alignment obtained using MIRA procedure.
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Figure 5. In the upper-left subfigure, the master image (ID8) of ‘Multan’ dataset is shown. In the
lower-left subfigure, the same image is overlaid with all the TPs extracted with MIRA procedure. Also,
those features that have not been found in the ‘master’ but they connect other images of the same
dataset have been re-projected over the master. The two zoom-in windows on the right side display
some details of the extracted features in two specific areas.

In Table 4 the focus is given to the multiplicity of extracted TPs, which directly reflects in the
inner reliability of the observations. For simplicity, here the results obtained with spectral Band TM3
have been reported, since this band has provided the largest number of TPs. Similar outcomes have
been also found from other spectral bands (except TM4). While the majority of TPs (approx. 70% of
the total) are measured on two images only, the remaining 30% comprehend manifold points, i.e., TPs
observed on at least three images. As expected, the most numerous classes are the ones including TPs
visible on three (approx. 18%) and four images (approx. 7%), while the number of TPs dramatically
drops down when considering higher multiplicities. It should be observed that a small group of TPs
are visible on more than seven images.
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Table 3. Summary of FBM results with images in different spectral bands of ‘Multan’ dataset. The
number of image pairs that have been successfully matched refers to those image pairs sharing a
sufficient number (Nmin = 12) of corresponding features after FBM. The percentage represents the
number of image pairs that have been successfully matched over the total number of potential image
combinations (n.a.: not applicable).

Band Spectral Content
(nm)

Image Pairs
Successfully Matched

Total Number of Extracted
TPs (after Reordering)

(#) (%) # Matches

TM1 Blue (0.45–0.52) 53 96 47,812
TM2 Green (0.52–0.60) 55 100 64,984
TM3 Red (0.63–0.69) 54 98 75,073
TM4 NIR (0.76–0.90) 14 25 16,294
TM5 SWIR (1.55–1.75) 54 98 55,893
TM6 TIR (1.75–2.08) n.a. n.a. n.a.
TM7 SWIR (2.08–2.35) 53 96 75,057

Table 4. Summary of TPs extracted in ‘Multan’ dataset with their multiplicity for both automatic data
processing (MIRA) and manual measurement. Here results obtain in spectral Band TM3 are reported.
TPs are considered with their multiplicity as re-projected on the space of the ‘master’ image.

# Images

Number of Matched TPs in Band TM3

MIRA (Automatic) Manual

# Points % Total # Points % Total

2 26,138 69.63 1 0.95
3 4579 18.30 4 5.71
4 1300 6.93 5 9.52
5 486 3.24 3 7.14
6 148 1.18 4 11.43
7 53 0.49 2 6.67
8 19 0.20 6 22.86
9 1 0.01 5 21.43

10 1 0.01 3 14.29
Total 37,275 100.00 33 100.00

Table 5 shows some figures illustrating the ratio between equations and unknowns of the system
adopted to estimate the image registration parameters and the coordinates of all TPs re-projected on
the ‘master’ image space. In any spectral bands, this ratio is over three, resulting in a good global
redundancy. In the case of Band TM4 as well, whose processing has been more problematic, the ratio
equations/unknowns has been found close to three (2.8). As can be seen, subpixel accuracy has been
obtained for all the spectral bands, as pinpointed by the values of estimated σ0, which can be assumed
as metrics for the average theoretical accuracy of measured image coordinates. Results achieved
with visible bands (TM1, TM2, TM3) have been slightly better (σ0 ∼= 0.5 pixels) than the ones from
short-wave infrared (TM5, TM7), which yielded σ0 ∼= 0.6/0.7 pixels. As mentioned before, NIR (TM4)
has output two different clusters of images. Thus, the system as a whole has shown a rank deficiency
and could not be solved together.
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Figure 6. Connectivity graph obtained from Band TM4 (on the left) of the ‘Multan’ dataset, showing
the separation of the entire blocks in two parts. This graph is compared to the one obtained from band
TM3 (on the right), which corresponds to the best connections. In these graphs, circles represent the
images while lines indicate the availability of sufficient TPs to connect each pair.

Table 5. Summary of global registration results after BBA in different spectral bands (n.a.: not applicable;
r.d.: rank deficiency).

Band Spectral Content
(nm) Mode

Observation
Equations

(#)

Unknowns
(#)

Global
Redundancy

(#)

Ratio
Obs.

eq.s/unk.s

σ0
(pix)

TM1 Blue (0.45–0.52) MIRA 95,624 29,814 65,810 3.2 0.53
TM2 Green (0.52–0.60) MIRA 129,968 35,810 94,158 3.6 0.52

TM3 Red (0.63–0.69)
MIRA 150,146 42,858 107,288 3.5 0.52

Manual 420 70 350 6.0 1.15
TM4 NIR (0.76–0.90) MIRA 32,588 11,712 20,876 2.8 r.d.
TM5 SWIR (1.55–1.75) MIRA 111,786 35,198 76,588 3.2 0.69
TM6 TIR (1.75–2.08) MIRA n.a. n.a. n.a. n.a. n.a.
TM7 SWIR (2.08-2.35) MIRA 150,114 42,364 107,750 3.5 0.63

A set of estimated parameters (aj, bj, cj, dj) for the 2D similarity transformation mapping each
image j to the reference datum has been obtained per each spectral band. Since all bands are already
mutually co-registered, the use of a specific band should provide the same parameters as in the case
of others. The computed unknown parameters for all the spectral bands are graphically displayed
in Figure 8, where it can be seen that similar results have been obtained. On one side, parameters
aj and bj that provide information about scale and rotation, have been estimated for all the images
as aj ∼= 1 and bj ∼= 0. These values demonstrate that all the images have neither scale variation nor
rotation. On the other side, results for shift parameters (cj, dj) have been different for individual images,
as obvious, but consistent values have been obtained from different spectral bands. Indeed, the root
mean square (RMS) of their variations have resulted approximately 0.05 pixels in both directions. This
result shows that for the ‘Multan’ dataset all Landsat-5/TM spectral bands may be potentially used for
image alignment, exception made for Bands TM4 and TM6.



Remote Sens. 2018, 10, 1969 16 of 25

Remote Sens. 2018, 11, x FOR PEER REVIEW  15 of 24 

 

 

Figure 7 Overlap between unregistered (on the left column) and registered (on the right column) images 
of the ‘Multan’ dataset as obtained by applying MIRA procedure. Yellow arrows refer to the position of 
some corresponding features. 

Figure 7. Overlap between unregistered (on the left column) and registered (on the right column)
images of the ‘Multan’ dataset as obtained by applying MIRA procedure. Yellow arrows refer to the
position of some corresponding features.



Remote Sens. 2018, 10, 1969 17 of 25

Remote Sens. 2018, 11, x FOR PEER REVIEW  16 of 24 

 

 

 

 

 
Figure 8. Comparison between the estimated parameters for all the images of ‘Multan’ dataset as 
obtained from different spectral bands (see legends on the right side of each graph). For parameters 
a and b the values obtained from three different experiments are displayed, while for parameters c 
and d (shifts) the differences with respect to the average estimated values are shown. 

3.2. Validation 

A first evaluation of the results described in the previous section has been based on the estimated 
theoretical accuracy and the consistency of the outcomes achieved in different spectral bands (see 

Figure 8. Comparison between the estimated parameters for all the images of ‘Multan’ dataset as
obtained from different spectral bands (see legends on the right side of each graph). For parameters a
and b the values obtained from three different experiments are displayed, while for parameters c and d
(shifts) the differences with respect to the average estimated values are shown.
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3.2. Validation

A first evaluation of the results described in the previous section has been based on the
estimated theoretical accuracy and the consistency of the outcomes achieved in different spectral
bands (see Section 3.1). On the other hand, a further assessment has been accomplished by comparing
these results with the ones obtained from different methods applied to the same dataset:

1. A standard ‘slave-to-master’ registration approach based on automatic measurements; and
2. A multi-image approach based on BBA but using TPs that have been manually measured by a

human operator.

3.2.1. Comparison between MIRA and ‘Slave-To-Master’ Registration

The goal of this experiment has been to compare the traditional ‘slave-to-master’ approach for
image registration and MIRA. To this purpose, all the images have been directly aligned to the same
‘master’ (ID8) selected within MIRA application. The pairwise corresponding points obtained from
FBM have been considered for computing the registration parameters of 2D similarity transformations
between each ‘slave’ and the ‘master’. In this case, the registration of each individual image is
completely independent from the others. Some statistics on the results are shown in Table 6.

As it can be seen, the estimates of shift parameters have shown an average variation in the order
of 0.15 pixels in x direction and 0.08 pixels in y direction, with maximum absolute differences of
0.39 pixels and 0.17 pixels in the case of Images ID1 and ID2, respectively. No relevant differences of
scale and rotation have been found between both methods. It is interesting to notice that the largest
variations have been found in the case of Images ID1 and ID2. This outcome might be motivated by
the longer elapsed time between the ‘master’ (recorded on October) and these two images (recorded
on February and March of the same year, respectively), which have resulted in large changes in the
image content due to the different seasons.

Table 6. Comparison between results obtained with the ‘slave-to-master’ and the MIRA approach for
image registration on ‘Multan’ dataset (ppm: part-per-million). In both cases automatically-extracted
TPs have been used.

Parameters RMS of Variations
on All the Images

Max Absolute
Variations

Images Corresponding
to Max Variations

Scale 16 ppm 33 ppm ID2
Rotation angle 2.3 × 10−3 gon 1.2 × 10−3 gon ID2

Shift x 0.15 pixels 0.39 pixels ID1
Shift y 0.08 pixels 0.17 pixels ID2

3.2.2. Comparison between MIRA and Manual Registration

The main difference between automated (MIRA) and manual measurements is the number of
extracted corresponding features. The automatic MIRA method has found 75,073 corresponding
features in the images after pairwise FBM (see Table 3), corresponding to 37,275 different TPs after
re-ordering. Manual measurements have provided only a few tens TPs, as shown in Table 4. Here,
the number is limited by the operator’s skill and time. This means that the ratio equations/unknowns
and therefore the size of the design and normal matrix are very different in both cases. Table 5 shows
the ‘manual’ results obtained with band TM3. This band has been chosen for manual processing
because of the highest number of extracted features when using MIRA method.

Table 4 shows a comparison between the ‘visibility’ of the corresponding features in two or
more images of the time series for both MIRA and manual measurements. The human operator only
identified 210 corresponding features (in one working day), corresponding to only 33 multiple features,
since they have been measured in several images.
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Another critical difference is the size of the normal matrix N. In the case of manual measurements,
a higher fraction of manifold TPs connecting the ‘master’ image with multiple ‘slaves’ has been
measured. The number of ‘slave-to-slave’ TPs is lower. This gives to the N matrix a more compact
form around the main diagonal, which may help reduce the computational cost. With the automatic
MIRA method, the matrix N is instead very sparse as there are many more TPs also connecting ‘slaves’
images among them. This means that more off-diagonal non-zero elements are present.

Table 7 summarizes the average accuracy of the MIRA method compared to manual measurements.
The departure between the average differences of shift vectors is 0.12 pixel in both x and y
directions, whereas it is evident there is neither rotation nor scale variation for all the images of
the dataset. The theoretical standard deviations achieved with the automated measurements is
better (RMS = 0.06 pixels for shifts) than the one obtained with the manual method (RMS = 0.12
pixels for shifts), notwithstanding results are at subpixel level in both cases. The larger number of
observations obtained with the MIRA method may be addressed as the main reason for the better
theoretical accuracy.

Table 7. Comparison between results obtained with manual and automatic (MIRA) processing of
‘Multan’ dataset.

Parameters Average Discrepancies between Estimated Parameters
(Manual vs. MIRA)

RMS of Estimated Theoretical Accuracy

Manual MIRA

Scale 2.0 × 10−5 ± 2.7 × 10−5 6.1 × 10−5 2.1 × 10−5

Rotation angle 1.1 × 10−5 ± 1.2 × 10−3 gon 3.8 × 10−3 gon 1.3 × 10−3 gon
Shift x 0.02 ± 0.15 pixels 0.12 0.06
Shift y 0.07 ± 0.09 pixels 0.12 0.06

4. Discussion

The quality of image registration obtained from the MIRA method may be evaluated by
considering three different aspects: the estimated value of the variance of unit weight observations (σ̂2

0),
the comparison against results obtained from ‘slave-to-master’ registration based on automatically
extracted TPs, and the results obtained using manual measurements of TPs, but within a BBA solution.

The estimated σ̂2
0 after BBA based on observation extracted with MIRA has resulted in the order

of approximately half pixel size, with small variations depending on the adopted spectral band
(see Table 5). The achieved subpixel value has confirmed the good fit with the adopted geometric
model implemented for image registration (2D similarity) as well as the precision of automatically
extracted TPs remained after data snooping. In Figures 9 and 10 the results achieved with all three
applied registration methods are graphically compared. No significant variations may be noticed
about rotations and scales, which can be derived from parameters aj and bj. This is due to the imaging
scheme of Landsat: fixed nadir-looking. Thus, images of the same site, but collected at different
times, will have tiny variations in image scale and very small rotations. However, when processing
time series imaged with different viewing angles, image rotations and scale variations could not be
neglected. That is the typical case of high-resolution satellite images, but also that of multi-sensor
datasets, including the data processing of radar images, which are usually collected with different
incidence viewing angles and/or different orbits [45,46]. On the other hand, subpixel discrepancies
have been found for shifts (parameters cj and dj,) in the Landsat time-series. The consistency between
all these outputs confirms the correctness of MIRA approach.
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(band TM3) obtained by using MIRA and other methods: ‘slave-to-master’ (see Section 3.2.1) and
‘Manual BBA’ (see Section 3.2.2). For parameters c and d (shifts) the pairwise differences are shown.

Inner and outer reliabilities have been computed for all three processing methods based on MIRA
and manual observations. Values are reported in Table 8, where the results based on automatically
extracted TPs have been also recomputed using the same precision of ‘manual’ measurements, which
is supposed to be ±1 pixel. This solution has allowed to normalize the results and to make them
comparable, since the TP precision had a linear scaling effect. In fact, the theoretical accuracy of
MIRA observations has been estimated in the order of 0.5 pixels, which is consistent with the expected
precision of FBM [33]. The analysis of inner reliability clearly highlights that the minimum size of
detectable errors during data snooping significantly decreases when moving from ‘slave-to-master’ to
BBA approach. In the former case, the inner reliability of twofold TPs (i.e., the ones visible on two
images) is in the order of 6.1 pixels, while it improves up to 4.1 pixels when considering multiple
TPs that can be obtained from BBA. As can be seen in Table 8, the inner reliabilities do not depend
only on the multiplicity and the precision of the considered TP, but also on the fact that this is shared
with the ‘master’ image or not (see the second column). These discrepancies are in the order of a few
tenths pixels and are motivated by the fact that the observation equations implemented in BBA are
always referred to the ‘master’. When looking at the outer reliability, a first comment should concern
the evident advantage of using the large number of TPs extracted by the automatic MIRA procedure.
Indeed, the negative effect of a maximum undetected error, which is indicated by the inner reliability
value, is mitigated by the redundancy of the observations. Consequently, similar values for the inner
reliability for manual and automatic measurements (in the range between 4–6 pixels), when they
are processed within the BBA, may result in errors on the final shift estimates up to approximately
1.5 pixels in the former case and 0.04 pixels in in the latter case, respectively. The differences of scaling
and rotation parameters are less influenced.
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Table 8. Inner and outer reliabilities computed for the ‘Multan’ dataset. In the second column, the
subset of TPs adopted for evaluating the inner/outer reliabilities are described using the following
symbols: ‘MS’ is the subset of TPs shared between the ‘master’ and one or more ‘slaves’; ‘SS’ is the
subset of TPs shared between two or more ‘slaves’; ‘All’ is the subset including all types of TPs.

Case
TP

Subset
σim (pix)

Inner Reliability Outer Reliability

Max-Min
Range (pix)

Average
(pix)

Shifts
(pix)

Scale
(‰)

Rotation
(10−3 gon)

‘Slave-to-master’ MS 0.5 3.0–3.1 3.0 0.033 0.006 0.31

MIRA
MS 0.5 2.0–2.1 2.0 0.022 0.004 0.21
SS 0.5 2.1–3.1 2.8 0.020 0.004 0.23
All 0.5 2.0–3.1 2.4 - - -

‘Slave-to-master’ MS 1 6.1–6.2 6.1 0.067 0.011 0.63

Manual BBA
MS 1 4.1–4.8 4.2 1.56 0.26 15.0
SS 1 4.5–6.0 4.9 1.49 0.25 14.6
All 1 4.1–6.0 4.4 - - -

MIRA
MS 1 4.0–4.1 4.0 0.044 0.008 0.42
SS 1 4.2–6.1 5.6 0.040 0.008 0.46
All 1 4.0–6.1 4.8 - - -

These results conclude that the high data redundancy and the improved inner/outer reliability
that may be obtained when using MIRA are two fundamental properties supporting the use of such
an automatic procedure. The high redundancy allows to mitigate the degrading effect of residual
measurement errors. The low values for the inner reliability may support the chance to limit the size
of undetected errors. Of course, this second advantage depends on the fact that a small number of
residual outliers are input in the BBA observation dataset. This chance is supported by the preliminary
application of multiple scrutinizing technique to detect outliers during the FBM stage, which is
supposed to leave a small number of outliers.

It should be also recalled that the other important advantage of the MIRA procedure is given by
the chance to register possible images that are not directly connected to the ‘master’ because they do not
individually share enough TPs with it. If these images may be linked to other images in the block that
are connected to the ‘master’, the BBA solution allows to compute the registration of the whole dataset.
This alternative solution is not possible using traditional ‘slave-to-master’ registration approach.

5. Conclusions

This paper presented some important developments of an automatic method (multi-image robust
alignment—MIRA) for the registration of remotely sensed time series, where multiple images are
simultaneously registered in a bundle block adjustment fashion after the extraction of corresponding
features using feature-based matching (FBM).

This approach has two main advantages if compared to standard ‘slave-to-master’ registration
methods. The first consists in the chance to align also those images without direct connection with the
‘master’, which in the MIRA procedure is only adopted for setting up the spatial datum. The second is
the higher reliability of the solution since the redundancy of the observations is fully exploited. While
in a previous paper [27] the basic concept of this approach was presented, here the focus is given to
the automation of the whole procedure, which requires a high-degree of robustness against blunders,
the availability of objective parameters and criteria to support decisions within the process, a rigorous
stochastic formulation for the observation equations in least-squares adjustment, and the presence of
intermediate quality checks (e.g., after pairwise FBM).

A set of 2D polynomial transformations is available to better fit different datasets and images
from diverse sensors. Consequently, MIRA may be successfully applied to medium-resolution satellite
data (GSD between 10 m and 30 m), while its implementation with high- and very high-resolution
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imagery still needs additional development to integrate more suitable geometric models, e.g., rational
polynomial functions or physical sensor models [47]. Anyway, it should be mentioned that with more
involved geometric models that require a larger number of parameters, the reliability analysis that has
been proposed here may be less meaningful. On the other hand, 2D polynomial transformations are
sufficient for the registration of medium-resolution satellite images, such as the ones derived from
NASA Landsat, ESA Sentinel-2 platform, and the British Disaster Monitoring Constellation. These
datasets and other similar ones, which may be expected in the future, are highly prone to be exploited
for hyper-temporal remote sensing with very short revisit time (a few days between observations).
The MIRA procedure may play a vital role in the automatic subpixel alignment of such datasets.

In the perspective of processing huge datasets as well, the large size may create some problems
in the inversion of the normal matrix N, due to the high computational cost of this operation. This
would prevent the computation of the covariance matrix of the solution, and then the evaluation of the
theoretical accuracy of estimated parameters as well as the redundancy matrix that is necessary for the
reliability analysis [48]. To overcome this shortcoming, an ad hoc procedure for the decimation of the
corresponding features based on their image multiplicity will be implemented in future developments.

At the moment, the selection of the spectral band to be used for the image alignment is left to the
user. In the considered case study, similar results regarding the achievable precision have been obtained
from different wavelengths, with the exception of near and thermal infrared. On the other hand,
combining the point correspondences obtained in different bands may also be an opportunity to extend
the use of the MIRA procedure, especially when different types of images should be registered together.
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