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Abstract: The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission employs a micro-pulse
photon-counting LiDAR system for mapping and monitoring the biomass and carbon of terrestrial
ecosystems over large areas. In preparation for ICESat-2 data processing and applications, this paper
aimed to develop and validate an effective algorithm for better estimating ground elevation and
vegetation height from photon-counting LiDAR data. Our new proposed algorithm consists of
three key steps. Firstly, the noise photons were filtered out using a noise removal algorithm based
on localized statistical analysis. Secondly, we classified the signal photons into canopy photons
and ground photons by conducting a series of operations, including elevation frequency histogram
building, empirical mode decomposition (EMD), and progressive densification. At the same time,
we also identified the top of canopy (TOC) photons from canopy photons by percentile statistics
method. Thereafter, the ground and TOC surfaces were generated from ground photons and TOC
photons by cubic spline interpolation, respectively. Finally, the ground elevation and vegetation height
were estimated by retrieved ground and TOC surfaces. The results indicate that the noise removal
algorithm is effective in identifying background noise and preserving signal photons. The retrieved
ground elevation is more accurate than the retrieved vegetation height, and the results of nighttime
data are better than those of the corresponding daytime data. Specifically, the root-mean-square
error (RMSE) values of ground elevation estimates range from 2.25 to 6.45 m for daytime data and
2.03 to 6.03 m for nighttime data. The RMSE values of vegetation height estimates range from 4.63 to
8.92 m for daytime data and 4.55 to 8.65 m for nighttime data. Our algorithm performs better than
the previous algorithms in estimating ground elevation and vegetation height due to lower RMSE
values. Additionally, the results also illuminate that the photon classification algorithm effectively
reduces the negative effects of slope and vegetation coverage. Overall, our paper provides an effective
solution for estimating ground elevation and vegetation height from micro-pulse photon-counting
LiDAR data.

Keywords: ICESat-2; photon-counting LiDAR; noise removal algorithm; photon classification; EMD;
ground elevation; vegetation height

1. Introduction

Ground elevation is a key input of earth surface models and plays a vital role in understanding
earth surface processes. Vegetation height is one of the most basic structural parameters of forests, and it
is of great significance for estimating forest biomass and predicting biodiversity [1–4]. Therefore, it is
necessary to rapidly and accurately detect both the canopy surfaces and the underlying topography [5–8].
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Light detection and ranging (LiDAR) has been demonstrated as a reliable technique for characterizing
the earth’s topography and quantifying vegetation structure [9–12] because it is capable of providing
detailed and precise horizontal and vertical distribution information about the surface targets.
However, both terrestrial and airborne LiDAR data fail to accurately obtain the relevant information
about forest ecosystems at large areas due to the limited spatial coverage and high acquisition
costs [13–15]. In contrast, monitoring forest ecosystems at larger spatial scales can be best achieved by
space laser altimetry [16–18].

The Ice, Cloud and land Elevation Satellite (ICESat) mission, launched by the National Aeronautics
and Space Administration (NASA), employs the Geoscience Laser Altimeter System (GLAS) to detect
ice-elevation changes in Antarctica and Greenland, measures the earth’s vegetation characteristics
and derives land-terrain changes. However, ICESat ceased operation in 2009. Its successor ICESat-2
continues to measure the elevation of ice sheets and vegetation height using the Advanced Topographic
Laser Altimeter System (ATLAS) [19,20]. Unlike GLAS that uses the analog LiDAR, ATLAS employs
a micro-pulse photon-counting laser altimeter system, which can emit laser pulses with low energy,
high measurement sensitivity and repetition rate, resulting in dense along-track sampling with high
measurement accuracy. In fact, ATLAS generates overlapping footprints with a diameter of 14 m,
spaced at 0.7 m intervals along track [21]. While the footprint size and distance of GLAS are 70 m and
170 m respectively. Despite the aforementioned advantages, photon-counting LiDAR also has several
limitations. The primary limitation is the fact that it introduces a significant number of solar noise
photons and system dark current returns. These noise photons are randomly and widely distributed,
which make the identification of ground and canopy photons very challenging. Therefore, an effective
algorithm is critical to differentiate signal photons from noise photons and to extract ground photons
and canopy photons.

Several algorithms have been proposed for filtering out noise photons from raw photons.
Magruder et al. [22] proposed a series of methodologies for noise filtering including modified Canny
edge detection, probability density function (pdf)-based signal extraction, and localized statistical
analysis. Tang et al. [23] presented an alternate voxel-based spatial filtering algorithm to generate a
noise-free dataset. Zhang el al. [24] proposed a modified density-based spatial clustering of applications
with noise (mDBSCAN) method. Wang et al. [25] applied determination of the probability of the kth
nearest neighbor(KNN) and Bayesian decision theory to divide the raw data into signal and noise
photons. Popescu et al. [26] proposed the grid-based statistical (GBS) filtering method to identify
possible signal grid cells and then utilized cluster analysis to remove noise photons. Herzfeld et al. [21]
developed an algorithm for the detection of ground and canopy cover based on spatial statistical
and discrete mathematical concepts. Nie et al. [27] proposed a localized statistics-based algorithm to
filter out noise photons. All of these methods addressed the filtering problems to some degree while
also suffered from deficiencies. The pdf-based method has a limitation in removing noise photons
because some useful information may be lost due to the transformation from photons to rasterized data
product [22]. The voxel-based spatial filtering method is mainly efficient for the single photon LIDAR
dataset with a high signal-to-noise ratio (SNR), which may not be suitable for ICESat-2 data with a
low SNR [23]. Density clustering-based algorithms usually fail to effectively filter out noise photons
in vegetated environments with steep terrain [24–26]. Furthermore, the surface spectral reflectance,
atmospheric conditions, and solar incidence angle spatially vary in the along-track direction, leading
to the inconsistency of photon density, which may also greatly affect the performance of the density
clustering-based algorithms. Therefore, localized statistics-based algorithms have been the most
appropriate algorithm for differentiating signal photons from noise photons over complex forested
areas [21,27]. However, the previous localized statistics-based algorithms have some deficiencies.
They did not consider the influence of terrain slopes which present one of the main challenges for
identifying signal photon events. Therefore, an improved localized statistics-based algorithm is
required for filtering out the noise photons.
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Apart from filtering out noise photons, the separation of ground and canopy photons is an
essential step to retrieve ground and top of canopy (TOC) surfaces and thereafter estimate vegetation
height. Moussavi et al. [28] recovered the ground and TOC surfaces by identifying the lowermost
photons and TOC photons respectively, and utilizing cubic spline interpolation in an iterative manner.
Popescu et al. [26] classified the signal photons into ground and TOC photons using an overlapping
moving window method and cubic spline interpolation. Nie et al. [27] utilized the progressive
triangular irregular network (TIN) densification method to extract ground photons and defined
TOC photons as where the 95th percentile of above-ground photons exists. Gwenzi et al. [29]
proposed a histogram-based filtering algorithm to identify cut-off photons where the cumulative
density of photons from the highest elevation indicates the presence of the canopy top, and likewise,
where such cumulative density from the lowest elevation indicates the mean terrain elevation.
However, these algorithms are significantly affected by the results of noise removal algorithms and
have limitations in retrieving ground and TOC surfaces. Moussavi et al. [28], Nie et al. [27] and
Tang et al. [23] took the lowermost photons as the ground photons directly, which affects the extraction
of real ground photons due to the existence of near-ground noise photons. Popescu et al. [26] utilized an
elevation quantile range to extract the ground surface, but the results obtained over densely vegetated
conditions were not impressive, and TOC photons were directly fitted by cubic spline interpolation,
leading to low accuracy. Gwenzi et al. [29] extracted ground photons and canopy photons in some
resolutions, while continuous ground and TOC surfaces could not be obtained. Therefore, an effective
photon classification algorithm is essential to better separate ground and TOC photons from possible
signal photons, and thereafter retrieve ground elevation and vegetation height.

The overall goal of this paper is to develop a methodological framework to classify raw
photon-counting data into noise, ground, canopy and TOC photons, and then retrieve the ground
elevation and vegetation height. There are three key steps to fulfill this goal. (1) Proposing a localized
statistics-based algorithm to filter out noise photons; (2) proposing a new photon classification method
that includes the ground identification algorithm and the TOC identification algorithm to classify
ground, canopy and TOC photons, and then recover the ground and TOC surfaces; (3) estimating
vegetation height based on ground and TOC surfaces. The innovative aspects of this study consist
of (1) the noise removal algorithm can better filter out the noise photons in case of steep terrain
and dense vegetation, (2) the ground identification algorithm utilizes the lowest peak value rather
than lowest elevation value as the initial ground photon to reduce the influence of noise removal
results. Additionally, it adopts the empirical mode decomposition (EMD) to remove the near ground
and canopy photons which are misclassified as the initial ground photons, and densifies accurate
ground photons to improve the accuracy of subsequent cubic spline interpolation, and (3) the TOC
identification algorithm classifies the filtered data into ground and vegetation cover regions and carries
out cubic spline interpolation for each region to improve the accuracy of the retrieved TOC surfaces.

2. Materials

2.1. MATLAS Data

To evaluate the performance of the photon classification algorithm, the simulated ICESat-2 data
(MATLAS data) were investigated. The MATLAS data were generated from the Multiple Altimeter
Beam Experimental Lidar (MABEL) data [30–34], which is an airborne simulator of ATLAS using a
NASA ER-2 aircraft flying at an altitude of 20 km. At that altitude, the laser footprint diameter is 2 m
compared to the 14 m footprint of ATLAS. At the nominal aircraft speed of 200 m/s and laser repetition
rate of 5000 pulses per second, the spacing between footprints is 4 cm, which is substantially smaller
than the 70 cm spacing planned for ATLAS. To generate MATLAS data, the transformation from
MABEL data to ATLAS-like data was implemented. The process was summarized in the following
five steps according to the ICESat-2 science team [29]: (1) Selecting and simplifying the tracks of
MABEL data to simulate the ATLAS tracks. (2) Reducing the spatial resolution. In the cross-track
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direction, “adjacent” MABEL channels were combined. In the along-track direction, MABEL data were
sampled in 14 m footprint size and 70 cm spacing. (3) Classifying MABEL photons into signal and
noise photons. (4) Subsampling MABEL signal photons to match the expected ATLAS signal photon
density. (5) Generating the noise photons according to the design case (land ice, sea ice and leads,
vegetation, and water) of ATLAS data. If simulated background noise levels exceeded those observed
in the MABEL source data, noise levels were adjusted, while retaining the observed spatial variability
of solar background noise caused by changing surface reflectance along the flight line.

This study collected three MATLAS datasets from the NASA Goddard ICESat-2 website (http:
//icesat.gsfc.nasa.gov/icesat2/). There are three sites of MATLAS data. The first one is acquired
over Virginia, which is a temperate, flat area with an average vegetation cover of 55%. The second
is the East Coast site, which is a temperate, hilly area. The vegetation cover is approximately 90%.
The last is located in a heavily forested, temperate, montane West Coast site with extremely high
vegetation cover of greater than 90%. The datasets in each region include daytime data and nighttime
data. The characteristics of each dataset are shown in Table 1.

Table 1. The characteristics of MATLAS data.

Site Name Case Type Canopy Closure
Fraction

Virginia
matlas_l2_20120921t222500_010_2_8a_1VEG_02
matlas_l2_20120921t222500_010_2_8a_2VEG_02
matlas_l2_20120921t222500_010_2_8a_3VEG_02

Vegetation temperate flat
averaged cover 0.55

East Coast

matlas_l2_20120920t231600_010_2_8B_1VEG_02
matlas_l2_20120920t231600_010_2_8B_2VEG_02 Temperate hilly

0.9
matlas_l2_20120920t231900_010_2_8B_1VEG_02
matlas_l2_20120920t231900_010_2_8B_2VEG_02

West Coast

matlas_l2_20120927t024900_010_2_8C_1VEG_02
matlas_l2_20120927t024900_010_2_8C_2VEG_02

Temperate montane

0.9

matlas_l2_20120927t025000_010_2_8C_1VEG_02
matlas_l2_20120927t025000_010_2_8C_2VEG_02
matlas_l2_20120927t025200_010_2_8C_1VEG_02
matlas_l2_20120927t025200_010_2_8C_2VEG_02
matlas_l2_20120927t025500_010_2_8C_1VEG_02
matlas_l2_20120927t025500_010_2_8C_2VEG_02

2.2. Airborne LiDAR Data

The airborne LiDAR data were collected with the same flight paths as MATLAS using the
multi-sensor instrument NASA-Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT) [35,36].
G-LiHT is a compilation of existing instrument components of LiDAR, imaging spectroscopy, and
thermal instruments. The airborne LiDAR data were acquired from the VQ-480 (Riegl USA, Orlando,
FL, USA) onboard G-LiHT. The laser wavelength of VQ-480 is 1550 nm. A laser beam produces a 10 cm
diameter footprint at the nominal operating altitude of 335 m. The horizontal and vertical accuracies
of airborne LiDAR data are 0.3 m and 0.1 m, respectively.

The corresponding products, such as the digital terrain model (DTM) and canopy height model
(CHM), have already been generated from airborne LiDAR data by the G-LiHT science team (http:
//gliht.gsfc.nasa.gov/). The DTM and CHM were created in the following three steps. (1) Progressive
morphological filter [37] was used to obtain ground points from airborne LiDAR data. (2) Triangulated
Irregular Network (TIN) of ground points was created by Delaunay triangulation, and the TIN was
used to linearly interpolate DTM elevations on a 1 m raster grid. (3) CHM was created by selecting the
greatest canopy height in every 1 m grid cell and then interpolating canopy heights on a 1 m raster
grid. The DTM and CHM with 1 m resolution are used to validate the accuracies of retrieved ground
elevation and vegetation height, respectively.

3. Methodologies

Our proposed algorithm include three parts for estimating ground elevation and vegetation height
using photon-counting LiDAR data: (1) Removing noise photons with a multistep filtering approach;

http://icesat.gsfc.nasa.gov/icesat2/
http://icesat.gsfc.nasa.gov/icesat2/
http://gliht.gsfc.nasa.gov/
http://gliht.gsfc.nasa.gov/
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(2) classifying the filtered photon-counting data into ground, canopy and TOC photons for extracting
ground elevation and vegetation height; and (3) assessing the performance of our proposed algorithm.

3.1. Noise Photon Removal

In this study, an improved localized statistics-based algorithm was proposed to filter out noise
photons. There are two key steps to implement this algorithm. The first step is to build an elevation
frequency histogram for removing the apparent noise photons. Another step is to establish the density
distribution histogram for eliminating the remaining noise photons. An overview of the major steps is
exhibited in Figure 1.
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Figure 1. The flowchart of the noise removal algorithm.

In the first step, a method based on an elevation frequency histogram was first introduced to
roughly reduce the noise [28]. This method was performed as follows: (1) Grid-division: Dividing
the raw data into partial bins of 200 m in the along-track direction and 20 m in the elevation direction,
(2) building the elevation frequency histogram and then finding the bin at which the maximum
frequency is located. The average elevation value of the bin is the location where the signal is
concentrated, and (3) creating a buffer within 150 m above and below this location to contain all
potential signal photons and remove the obvious noise photons. The parameters for this method were
chosen based on a trial-and-error approach that worked efficiently for all MATLAS datasets.

The second step is intended to further remove the remaining noise photons. This step was
performed as follows.

(1) Calculating the photon density of each photon, which is defined as the number of photons within
its search area. Due to the grid division, there were no photons in the part of the search area
of the photons located at the border region of the bin. Therefore, the densities of the photons
within the border region were much smaller than those of photons located in the non-border
region. To reduce the influence of edge effect, we used the method proposed by [27]. Firstly,
the expanded bin was added in an adjacent area (red dotted frame in Figure 2) to reduce the edge
effect in the along-track direction. The extended width is the semi major axis of the search area.
Secondly, to reduce the edge effect in the elevation direction, the photons located in the upper
and lower expanded bin border region were first detected and selected. Then according to the
Equation (1), these detected photons were mirrored (green dotted frame in Figure 2). Finally, data
filling was conducted using expanded bin and mirrored bin.
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{
xmirror = xp

zmirror = 2 ∗ zborder − zp
. (1)
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(2) Getting the maximum density of each photon. A search ellipse was adopted to calculate the
photon density according to previous studies [25,27,38,39]. As the distribution of photons is
closely related to the terrain slopes, an ellipse relative to the surface slopes can be generated
to achieve better density statistics [5]. However, terrain slopes over the raw photon-counting
LiDAR data are unknown. In this paper, the photon density in each direction was calculated,
and the maximum density value was taken as the final density value of each photon according
to Xie [39]. The distance between two photons p(xp,zp) and q(xq,zq) is defined as Equation (2).
The semi-major axis a and semi-minor axis b were set to 40 m and 4 m, respectively. If dis(p, q, θi)

is less than 1, photon q is inside the search ellipse, else photon q is outside the search ellipse. By
counting the number of photons within the search ellipse formed by photon p, the density of
photon p in the direction θi is calculated. To increase the speed of the algorithm, the direction
interval of the search ellipse is set to 5◦, and the densities of each photon in 36 directions are
calculated. Based on Equation (3), the maximum density was taken as the final density value of
this photon. Figure 3 shows the final direction of the search ellipse formed by photon p, and its
final density value is 8. 

dis(p, q, θi) =
∆x2

a2 + ∆z2

b2

∆x = cos θi · (xp − xq) + sin θi · (zp − zq)

∆z = sin θi · (xp − xq)− cos θi · (zp − zq)

. (2)

{
Densityp= max(Densityp(θi))

θi = i · 5◦, i = 0, 1, · · · , 35
. (3)

(3) Generating local photon density distribution histogram. It is well known that the density of a
signal photon is much higher than that of a noise photon, and photons with low density can be
regarded as noise photons. In this case, a photon density threshold must first be set to separate
the signal photons from the noise photons. There are four key steps for threshold determination
according to Land/VEG Science Definition Team (SDT) Team Members and ICESat-2 Project
Science Office [40]. Firstly, all potential peaks of the histogram were detected by local maximum.
The leftmost peak can be regarded as the noise peak because noise photons have lower photon
density. Secondly, a Gaussian curve (red line in Figure 4) was fitted to the noise peak which was
subsequently removed from the histogram via subtraction. Thirdly, the other Gaussian curve
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(green line in Figure 4) was fitted to the remaining histogram which is regarded as the signal
Gaussian curve. Finally, the intersection of the two Gaussians determines the density threshold.
Photons with final density value less than the threshold were classified into noise photons and
subsequently removed from the raw photon-counting LiDAR data. The final possible signal
photons (green) after the noise removal algorithm are shown in Figure 5.
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3.2. Classification of Filtered Photon-Counting Data

According to previous studies, the filtered photons must be classified into ground and TOC
photons to recover the ground and TOC surfaces and thereafter estimate the vegetation height. In this
study, two algorithms are proposed to effectively identify ground and TOC photons.

3.2.1. Ground Photon Identification

Identifying all potential ground photons is a necessary prerequisite for estimating ground
elevation and vegetation height. In this study, an effective ground photon identification algorithm is
proposed to extract ground photons and generate ground surfaces. The new algorithm consists of four
steps: Extract initial ground photons by building an elevation frequency histogram, extract accurate
ground photons using EMD, add the number of ground photons based on progressive densification,
and generate ground surfaces utilizing cubic spline interpolation. An overview of the major steps is
exhibited in Figure 6.
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Initial Ground Photons Extraction

In previous studies, the initial ground photons were selected based on the assumption that the
photon with the lowest elevation in each window belongs to the true ground surfaces. However,
there are several noise photons around the ground that cannot be eliminated by the noise removal
algorithm. In this case, the previous methods are not suitable for accurately extracting the initial
ground photons. In this study, a new method for initial ground photons extraction was proposed
and performed as follows: (1) Window division. The filtered photons were divided into windows in
the along-track direction, and the window size was set to 15 m. (2) Building an elevation frequency
histogram for each window. Photons of each window were layered according to the elevation value,
and the layer thickness was set to 1 m. The photon frequency of each layer was calculated to build
an elevation frequency histogram and then all the peaks are found in the histogram. (3) Extracting
the initial ground photon based on the lowest peak value (LPV) of the elevation frequency histogram.
While the LPV may not locate on the ground, it may be in the canopy or under the ground. In order
to identify this kind of LPV, we compared the difference between the LPV and elevation value of
the lowest photon. If the difference was less than the distance threshold 5 m, the LPV was defined
as the ground peak, and the photon with the highest density in this layer was selected as the initial
ground photon. Otherwise, the LPV is not corresponding to the ground surface. The lowest photon
that satisfies the density threshold calculated by photon density distribution histogram in Section 3.1
was determined as the initial ground photon. The two parameters of the distance threshold and the
density threshold are dependent on the experience judgment. The results of the initial ground photons
extraction (red dots) are shown in Figure 7.
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Accurate Ground Photons Extraction

The canopy photons or noise photons around the ground may be misclassified as the initial ground
photons in the above step. These misclassified initial ground photons, denoted as pseudo-ground
photons, must be eliminated because they may affect the identification of true ground photons.
To reduce the effect of pseudo-ground photons, EMD was used to extract accurate ground photons.

EMD is a local, self-adaptive analysis and fully data-driven approach that is suitable to analyze
nonlinear and nonstationary signals. It is widely used to remove noise points or mutation points from
signals. By the EMD method, any signal can be adaptively decomposed into a series of intrinsic mode
functions (IMFs) based on the local characteristic of the signal [41–43]. The IMFs are required to satisfy
two conditions: (1) The number of extrema and the number of zero-crossings must either be equal or
differ by no more than one; (2) the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima must be zero. The original signal is decomposed into a number
of IMFs and a residual, as follows:

z(x) =
n

∑
i=1

im fi(x) + rn(x), (4)

where im fi(x) stands for the decomposed IMF, n is the number of extracted IMFs, and rn(x) represents
the final residual.

The decomposed IMFs consist of IMFs that primarily contain useful information and IMFs that
carry noise. As shown in Figure 8b,c, the low-order IMF components obtained by the decomposition
are high-frequency parts that usually contain noise and sharp parts of the data. The high-order IMF
components are low-frequency parts, which are relatively less affected by noise and can be regarded
as the useful signals (Figure 8e,f). Thus, there is a certain demarcation point k, which makes noise
dominant in the first k IMFs and useful signals dominant in the subsequent IMFs. The demarcation
point k is found by the method of Otsu. We assume that the first k IMFs and the final residual constitute
the “foreground” class, and the subsequent IMFs and the final residual constitute the “background”
class. According to Otsu, when the variance between the “foreground” class and the “background”
class is the largest, the misclassification probability of the two classes is the smallest, and the k at this
time is the optimal demarcation point. Then, the threshold is determined and applied to the first k
IMFs according to Equations (5) and (6). All the IMFs are reconstructed, and the reconstructed result is
shown in Equation (7). Finally, the elevation difference between the raw data and reconstructed data
is calculated. If the difference is within the threshold of 1 m, it is a real ground photon; otherwise,
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it is a pseudo-ground photon. Through the above steps, accurate ground photons were obtained.
The accurate ground photons and the erroneous ground photons are illustrated in Figure 9.
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im fi
′(j) =

{
im fi(j) im fi(j) ≥ thi
0 im fi(j) < thi

(5)

thi = σi
√

2 ln N =
median(abs(im fi))

0.6745
∗
√

2 ln N (6)

z′(x) =
k

∑
i=1

im fi
′(x) +

n

∑
i=k+1

im fi(x)+rn(x) (7)
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Progressive Densification of Ground Photons

As few accurate ground photons are obtained in the aforementioned steps, a progressive
densification method was proposed to increase the number of ground photons and improve the
accuracy of the subsequent cubic spline interpolation. In this method, two parameters of the target
classification photon (filtered photon which is unclassified) were calculated. The first parameter is
the Ddistance, which is the distance from the target classification photon to the corresponding ground
segment line. The second parameter is the Aangle which represents the angle between the ground
segment line and the segment line comprised by the target classification photon and the closest accurate
ground photon. The two parameters are shown in Figure 10.
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Figure 10. Ddistance and Aangle parameters of the target classification photon.

All the photons whose Ddistance was less than the Dthreshold (1 m, determined by trial-and-error
approach) was found, and the photon with the smallest Aangle was selected as the densified ground
photon. Then, loop progressive densification was performed until no unclassified photon satisfies the
condition. After four iterations, the number of densified ground photons was no longer increasing,
and the final results are shown in Figure 11.
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Establishment of Ground Surfaces

To establish the continuous ground surfaces, cubic spline interpolation was utilized to fit the
ground photons. As the ground photons obtained in the previous steps are based on the filtered data,
considering that some ground photons may be filtered as noise photons, we extracted the final ground
photons from the raw photon-counting LiDAR data by received ground surfaces. If the distance
between the raw photon and the ground surfaces is within the threshold of 1 m, it was classified as a
ground photon. Finally, all ground photons were extracted from the raw photons. The ground surfaces
and the final ground photons are shown in Figure 12.
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3.2.2. TOC Identification

It is well known that the TOC surfaces are not smooth. Thus, the algorithm for extracting
ground photons is not suitable for TOC identification. An effective TOC identification algorithm was
proposed to extract TOC photons and recover TOC surfaces. The new algorithm consists of two steps.
The first step is to extract the TOC photons in each window and classify the windows into ground
and vegetation by mean tree height (Hmean). The second step is to grow regions for vegetation and
ground windows and generate local TOC surfaces utilizing cubic spline interpolation for each region.
The final TOC surfaces are the local ground surfaces of the ground regions and the local TOC surfaces
of the vegetation regions. An overview of the major steps is exhibited in Figure 13.
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TOC Photons Extraction and Classification

The TOC photons were extracted by the method proposed by Popescu et al. [26], and the method
consists of two essential steps. (1) Removing erroneous canopy photons. For each window, the photons
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within a specified elevation quantile range [0.96, 1] for the daytime data and [0.99, 1] for the nighttime
data were assumed to be the possible noise photons and were removed. The erroneous canopy photons
are shown in Figure 14a. (2) Obtaining the possible TOC photons within the quantile range [0.95, 0.99]
using the remaining photons. To generate TOC surfaces, Popescu et al. [26] utilized cubic spline
interpolation to fit the possible TOC photons directly. However, the results were inaccurate because
of the large elevation difference between the TOC photons and the ground photons. To solve this
problem, we divided the data into vegetation areas and ground areas before cubic spline interpolation.
The process was performed as follows. (1) Window division. The possible TOC photons were divided
into 20 m windows in the along-track direction. (2) Calculating the Hmean of each window by the
obtained ground surfaces and possible TOC photons. (3) Classifying the windows into vegetation and
ground by Hmean. We found that the canopy height was always greater than 2 m in the vegetation area
by analyzing the characteristic of all MATLAS datasets, thus the vegetation area and the ground area
can be classified by the HThreshold of 2 m. If the Hmean of a window is greater than the HThreshold, it is
classified into the vegetation window. Otherwise, it is classified into the ground window.
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Establishment of TOC Surfaces

Windows have been classified into ground windows and vegetation windows in the above step.
The next step is to generate TOC surfaces. For vegetation windows, a region growing algorithm was
first used to join adjacent windows into a region, then the cubic spline interpolation was utilized to
generate continuous TOC surfaces by fitting the possible TOC photons for each region and all TOC
photons were finally extracted from the raw photon-counting LiDAR data. For the ground windows,
the obtained ground surfaces were used as pseudo TOC surfaces. We extracted all the TOC photons
and built TOC surfaces by local TOC surfaces and ground surfaces. The final TOC surfaces are shown
in Figure 14b.

3.2.3. Vegetation Height Retrieval

Once the ground surfaces and canopy surfaces are recovered, vegetation height is the elevation
difference of the two and can be obtained at any position in the along-track direction. In this paper,
vegetation height was calculated in each 20 m window in the along-track direction.

3.3. Accuracy Assessment

In this study, the DTM and CHM derived from airborne LiDAR data were used to assess the
accuracies of ground elevation and vegetation height, respectively. The geolocation precision of 2014
MABEL was 30 m root-mean-square error (RMSE) described by [44], but this figure was derived
after significant engineering improvements had been made to MABEL and errors for our 2012 data
were likely to be larger. To minimize the geolocation error of MABEL data, effective methods have
been proposed and verified by Popescu et al. [26] and Gwenzi et al. [29]. As MATLAS data was
generated from MABEL data, these methods can be used for MATLAS data. These methods consist
of two essential steps. Firstly, shifting the ground photons classified from MATLAS data in the x
and y direction and then determining the best shift that resulted in the lowest RMSE error between
ground photons and the corresponding reference DTM data. Secondly, further adjusting the elevation
of MATLAS data by adding the elevation difference between the two with the highest frequency.
Subsequently, the mean difference (MD), the standard deviation (SD) and RMSE between the estimated
data (the ground elevation and vegetation height) and the corresponding reference data were calculated
to quantify the performances of our algorithm. Additionally, to further verify the applicability of our
algorithm, this study conducted a comparison between our algorithm (Algorithm 1) and a commonly
used algorithm (Algorithm 2) proposed by [28].

As indicated in Section 3.2.1, our ground photon identification algorithm consists of four steps.
The last step of establishing ground surfaces utilizing cubic spline interpolation is indispensable.
To verify the influence of the first three steps on the ground identification algorithm, three algorithms
referred to as Algorithm 3, Algorithms 4 and 5, were established. Algorithm 3 took the photon with
the lowest elevation as the initial ground photon in the first step to test the influence of LPV. Algorithm
4 did not use the EMD method in the second step. Algorithm 5 skipped the progressive densification
method in the third step. The MD, SD and RMSE between the estimated data (the ground elevation)
and the DTM were calculated to verify the performances of the first three steps of ground photon
identification algorithm.

4. Results and Discussion

4.1. Noise Removal

The profile of signal photons is reliably extracted from raw photons by our noise removal
algorithm shown in Figure 15. The red dots represent signal photons, and the black dots represent noise
photons. The black box displays the local enlargement part of each profile. Additionally, Figure 15a,b
shows the results of hilly areas in daytime and nighttime, respectively. Figure 15c,d reveals the results
of the mountain area in the daytime and nighttime, respectively. By comparing Figure 15a–d, we found
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that most of the noise photons were removed by our algorithm, and nighttime data achieved better
performance results than daytime data because of the high signal-to-noise ratio (SNR). By considering
the directionality of the photons, the possible signal photons can be well preserved, especially in the
areas with steep terrain as shown in Figure 15c,d. Both ground photons and vegetation photons are
retained completely regardless of the terrain slopes. However, there are some photons around the
ground, which are difficult to remove, as shown in Figure 15a,b. These photons will be removed by
our photon classification algorithm.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 24 
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Figure 15. The final results of noise removal algorithm in different conditions: (a) Hilly area in daytime;
(b) hilly area in nighttime; (c) mountain area in daytime; (d) mountain area in nighttime.

4.2. Photon Classification

A qualitative analysis was conducted by comparing the received ground surfaces and reference
DTM surfaces. Figure 16a,b demonstrates an example of retrieved ground surfaces with corresponding
descriptive statistics in the East Coast with hills and West Coast with mountains, respectively.
The retrieved ground surfaces in the hilly area are potentially close to the reference DTM surfaces in
either the vegetation or bare land areas. While in the West Coast with mountains, there are several
places where the ground surfaces are far from the reference DTM surfaces. For example, in the area
between 5400 and 5700 m, there are no ground photons, so the extracted initial ground photons
are actually canopy photons. Since there are no ground photons at a long distance, these canopy
photons cannot be removed by EMD, resulting in errors. However, as long as there are ground
photons, the results of ground photons extraction are very satisfactory. For example, in the area
between 3050 and 3500 m, although there are few ground photons under dense vegetation, most of
the extracted initial ground photons are real ground photons. Then, the canopy photons and the
near-ground photons are removed by EMD. Finally, the ground surfaces are very close to the reference
data. This observation is further confirmed by a smaller RMSE value of the retrieved ground in the
hilly area (1.42 m) than in the mountain area (6.13 m). Other MATLAS datasets were also investigated,
and the validation results are summarized in Table 2.
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A quantitative ground elevation accuracy assessment of Algorithms 1 and 2 is summarized in
Table 2. We did not provide results for Virginia because there are few available DTM data that could
be used for validation. Table 2 indicates that both algorithms perform better on the East Coast than on
the West Coast. By analyzing the characteristics of the MATLAS data, we found that the vegetation
coverage and terrain slope in the West Coast are larger than that in the East Coast, which leads to
the data quality of the West Coast being worse than that of the East Coast. There are daytime and
nighttime data for the same area of the MATLAS data. According to Table 2, the RMSE values of both
algorithms are lower in the daytime than in the nighttime for all datasets. However, there is little
difference between the RMSE values of the two. This means that the difference of the signal photons
separated by the noise removal algorithm between the daytime and nighttime MATLAS data is very
small, which indirectly proves that the noise removal algorithm is effective.

From Table 2, we can see that the RMSE values of Algorithm 1 are lower than those of Algorithm 2
for all datasets. This may be explained by the two following reasons. (1) Algorithm 2 selects the lowest
photon in each 10 m-diameter footprint as the initial ground photons, without considering the noise
photons around the ground that cannot be eliminated by the noise removal algorithm. In contrast, our
algorithm effectively reduces the influence of noise photons around the ground by utilizing the LPV of
the elevation frequency histogram. (2) Cubic spline interpolation in an iterative manner is applied
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directly to the initial ground photons in Algorithm 2. To improve the accuracy of the cubic spline
interpolation, our algorithm adopts EMD to remove the misclassified photons in the initial ground
photons and increases the number of ground photons using the progressive densification method.

Our algorithm proved to achieve a better performance compared to Algorithm 2. To further
verify the influence of the first three steps on the ground identification algorithm, the MD, SD and
RMSE values of Algorithms 3–5 were calculated. Considering that the difference of RMSE values
between the daytime and nighttime data is small, only the daytime data was used here. The results are
summarized in Table 3 and Figure 17. As expected, Algorithm 1 outperformed Algorithms 3–5 from
the perspective of the SD and RMSE values. Among the three algorithms, Algorithm 4 is prone to
getting the largest SD and RMSE values for all datasets, which indicates that the EMD has the greatest
impact on our algorithm. Better performance results are observed using Algorithm 3 compared with
Algorithm 5, which indicates that the progressive densification method has a greater impact on our
algorithm than LPV.

Vegetation coverage and surface slopes present the main challenges for identifying ground and
TOC photons. To further explore the effect of vegetation coverage and surface slopes on ground
surfaces extraction, the vegetation coverage and surface slope values of all the MATLAS data were
graded, and the corresponding MD, SD and RMSE values of Algorithms 1 and 2 of each grade were
calculated. The statistical results shown in Table 4 and Figure 18 indicate that the SD and RMSE values
increase as vegetation coverage and slope levels increase. The results of Algorithm 1 are better than
those of Algorithm 2 for all vegetation coverage levels, especially in 0–0.2 and 0.8–1. This may be
because there are some noise photons around the ground in the vegetation coverage of 0–0.2, and the
LPV method reduces the influence of these photons effectively. Some initial ground photons are canopy
photons in the vegetation coverage of 0.8–1, and these photons can be removed by EMD to obtain
accurate ground photons. Additionally, as the slope increases, the SD and RMSE value differences
between the two algorithms increase obviously which indicate Algorithm 1 reduces the influence of
the surface slopes effectively compared to Algorithm 2.

Table 2. Validation results of retrieved ground surfaces of two algorithms using MATLAS data.

Site Data Type
Algorithm 1 (m) Algorithm 2 (m)

MD SD RMSE MD SD RMSE

East Coast
1600

Day 0.73 2.41 2.42 −0.49 2.92 2.92
Night 0.63 2.02 2.03 −0.20 2.88 2.88

1900
Day 0.02 2.25 2.25 −1.80 2.71 2.71

Night 0.08 2.12 2.13 −1.24 2.36 2.37

West Coast

4900
Day 1.66 4.20 4.20 1.02 4.92 4.93

Night 1.32 4.07 4.08 0.58 4.84 4.86

5000
Day 1.71 4.42 4.43 1.61 4.56 4.57

Night 1.63 4.32 4.34 1.64 4.35 4.37

5200
Day 1.09 5.75 5.76 −1.12 6.78 6.81

Night 0.79 5.19 5.20 0.19 6.23 6.25

5500
Day 2.35 6.43 6.45 3.11 7.45 7.47

Night 2.22 6.03 6.03 2.99 7.40 7.43

Table 3. Validation results of retrieved ground surfaces of three algorithms using MATLAS data.

Site Data
Algorithm 3 (m) Algorithm 4 (m) Algorithm 5 (m)

MD SD RMSE MD SD RMSE MD SD RMSE

East Coast
1600 −1.70 3.53 3.54 2.03 3.93 3.94 1.91 3.81 3.82
1900 −0.16 3.26 3.27 −3.40 3.64 3.65 −0.31 3.32 3.33

West Coast

4900 −0.67 5.32 5.32 2.08 5.57 5.58 2.12 5.63 5.64
5000 −0.80 4.87 4.87 1.44 5.44 5.45 1.48 5.00 5.01
5200 −2.01 6.17 6.18 0.31 6.81 6.81 0.63 6.59 6.60
5500 0.97 7.43 7.44 3.78 7.82 7.83 3.02 7.46 7.46



Remote Sens. 2018, 10, 1962 18 of 23

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 24 

 

West Coast 

4900 −0.67 5.32 5.32 2.08 5.57 5.58 2.12 5.63 5.64 
5000 −0.80 4.87 4.87 1.44 5.44 5.45 1.48 5.00 5.01 
5200 −2.01 6.17 6.18 0.31 6.81 6.81 0.63 6.59 6.60 
5500 0.97 7.43 7.44 3.78 7.82 7.83 3.02 7.46 7.46 

 
Figure 17. Root-mean-square error (RMSE) values of MATLAS data with Algorithm 1, Algorithm 3, 
Algorithm 4 and Algorithm 5. 

 

Table 4. Influence of vegetation coverage and slope on ground surface extraction. 

Parameter Range 
Algorithm 1 (m) Algorithm 2 (m) 

MD SD RMSE MD SD RMSE 

Vegetation coverage 

0–0.2 −0.38 1.65 1.66 −0.42 2.62 2.64 
0.2–0.4 −0.53 2.22 2.22 −1.30 2.88 2.90 
0.4–0.6 0.51 3.38 3.39 −1.65 4.17 4.18 
0.6–0.8 −0.09 4.58 4.58 −1.85 4.84 4.85 
0.8–1 1.18 4.97 4.99 1.21 5.94 5.95 

Slope 

0–10 0.97 4.08 4.09 −0.46 4.40 4.40 
10–20 1.38 4.66 4.68 2.14 6.03 6.05 
20–30 1.49 5.14 5.16 0.46 6.96 6.96 

>30 1.73 5.45 5.46 2.01 9.21 9.23 

 

2.42 2.25

4.20 4.43

5.76

6.45

3.54
3.27

5.32
4.87

6.18

7.44

3.94
3.65

5.58 5.45

6.81

7.83

3.82
3.33

5.64

5.01

6.60

7.46

0

1

2

3

4

5

6

7

8

9

1600 1900 4900 5000 5200 5500

RM
SE

(m
)

MATLAS Data

Algorithm1 Algorithm3 Algorithm4 Algorithm5

Figure 17. Root-mean-square error (RMSE) values of MATLAS data with Algorithm 1, Algorithm 3,
Algorithm 4 and Algorithm 5.

Table 4. Influence of vegetation coverage and slope on ground surface extraction.

Parameter Range
Algorithm 1 (m) Algorithm 2 (m)

MD SD RMSE MD SD RMSE

Vegetation coverage

0–0.2 −0.38 1.65 1.66 −0.42 2.62 2.64
0.2–0.4 −0.53 2.22 2.22 −1.30 2.88 2.90
0.4–0.6 0.51 3.38 3.39 −1.65 4.17 4.18
0.6–0.8 −0.09 4.58 4.58 −1.85 4.84 4.85
0.8–1 1.18 4.97 4.99 1.21 5.94 5.95

Slope

0–10 0.97 4.08 4.09 −0.46 4.40 4.40
10–20 1.38 4.66 4.68 2.14 6.03 6.05
20–30 1.49 5.14 5.16 0.46 6.96 6.96
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4.3. Vegetation Height Estimation

A quantitative vegetation height estimation accuracy assessment of Algorithms 1 and 2 is
summarized in Table 5. As expected, the SD and RMSE values of vegetation height are larger than
those of the ground surfaces because the vegetation height estimation is affected not only by ground
surfaces but also by TOC surfaces. To better compare the accuracy of TOC surfaces extracted by
Algorithms 1 and 2, the vegetation height in Algorithm 2 was calculated using the ground surfaces
retrieved by Algorithm 1. Table 5 shows that the SD and RMSE values of vegetation height retrieved
by Algorithm 1 are lower than that retrieved by Algorithm 2 for all datasets, which means that the
accuracy of the TOC surfaces retrieved by Algorithm 1 is higher than that retrieved by Algorithm 2.
The main reason may be that Algorithm 1 improves the accuracy of cubic spline interpolation by
classifying data into vegetation and ground regions. Table 6 and Figure 19 provide a summary of the
MD, SD and RMSE values of the retrieved vegetation height in different vegetation coverage levels
and surface slope levels. From Table 6 and Figure 19a, we can see that the RMSE values of Algorithm 1
are reduced in all vegetation coverage levels, especially between 0.2 and 0.4. We can also see that the
RMSE value differences increase with increasing slopes, as shown in Figure 19b, which means that
Algorithm 1 also reduces the influence of the surface slopes on TOC surfaces.

Table 5 also reveals that the estimated vegetation height over the East Coast has lower SD and
RMSE values than those of the West Coast. One reason is that the accuracy of the retrieved ground
surfaces over the East Coast is higher than that of the West Coast. The second reason is the accuracy
of the retrieved TOC surfaces. Better performance results of TOC surfaces are expected when the
vegetation is distributed densely, and the terrain is mostly flat. The vegetation on the West Coast
is distributed densely, and the terrain is steep. In contrast, many vegetation areas of the East Coast
are distributed sparsely, and the terrain is flat. Therefore, the accuracy of the retrieved TOC surfaces
between the West Coast and the East Coast is uncertain. The RMSE value differences of the TOC
surfaces extraction by Algorithms 1 and 2 between the West Coast and the East Coast are small as
shown in Table 5. Therefore, the SD and RMSE value differences of the vegetation height between the
West Coast and the East Coast are mainly caused by the retrieved ground surfaces.Remote Sens. 2018, 10, x FOR PEER REVIEW  21 of 24 
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Figure 19. The effect of (a) vegetation coverage and (b) surface slopes on the estimation of
vegetation height.
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Table 5. Validation results of retrieved vegetation height of two algorithms using MATLAS data.

Site Data Type
Algorithm 1 (m) Algorithm 2 (m)

MD SD RMSE MD SD RMSE

East Coast
1600

Day −0.55 4.62 4.63 0.26 5.13 5.14
Night −0.41 4.54 4.55 0.24 5.10 5.11

1900
Day −0.18 5.55 5.56 0.96 5.88 5.89

Night −0.72 5.32 5.33 0.85 5.79 5.80

West Coast

4900
Day −0.99 7.23 7.24 −0.57 8.75 8.76

Night −0.52 7.01 7.02 −0.54 8.45 8.46

5000
Day −1.04 8.66 8.67 −0.11 9.12 9.13

Night −0.95 8.56 8.57 −0.14 9.04 9.05

5200
Day −1.56 8.91 8.92 −1.91 9.75 9.76

Night −1.03 8.52 8.53 −1.63 9.61 9.62

5500
Day −1.30 8.87 8.88 −1.51 9.72 9.72

Night −0.85 8.64 8.65 −1.34 9.58 9.59

Table 6. Influence of vegetation coverage and surface slopes on vegetation height estimation.

Parameter Range
Algorithm 1 (m) Algorithm 2 (m)

MD SD RMSE MD SD RMSE

Vegetation coverage

0–0.2 0.66 4.43 4.43 0.80 5.88 5.90
0.2–0.4 1.03 8.64 8.66 1.93 13.03 13.05
0.4–0.6 −0.23 6.91 6.91 1.39 9.56 9.58
0.6–0.8 −0.49 8.52 8.52 1.85 10.32 10.33
0.8–1 −1.79 8.22 8.24 −2.46 9.66 9.68

Slope

0–10 −1.73 5.12 5.13 0.52 6.00 6.00
10–20 −1.71 6.78 6.80 −1.79 9.14 9.15
20–30 −2.51 7.58 7.60 −2.34 10.11 10.13
>30 −1.49 10.00 10.01 −1.56 13.62 13.63

5. Conclusions

ICESat-2 will acquire synoptic measurements of vegetation canopy height, density, the vertical
distribution of photosynthetically active material, leading to improved estimates of forest biomass,
carbon, and volume in a wide area. In this paper, an automatic algorithm was proposed to accurately
retrieve ground elevation and vegetation height from photon-counting LiDAR data. This automatic
algorithm introduces a localized statistics-based noise removal algorithm and proposes a new photon
classification algorithm. Based on the validation results of the ground elevation and vegetation height,
we come to the following conclusions. (1) The noise removal algorithm reduces the influence of edge
effect and photon directionality, and therefore, removes the noise photons and maintains the signal
photons effectively; (2) the new ground identification algorithm is effective for extracting ground
photons and retrieving ground elevation by carrying out a series of operations, including LPV, EMD,
progressive densification and cubic spline interpolation; (3) the TOC identification algorithm is effective
for extracting TOC photons by utilizing percentile statistics method and retrieving TOC surfaces by
classifying TOC photons into vegetation areas and ground areas, and then utilizing cubic spline
interpolation respectively; (4) our algorithm performs better than previous algorithms in retrieving
ground elevation and vegetation height because it effectively reduces the negative impacts of surface
slopes and vegetation coverage.

To summarize, our new proposed algorithm can provide a valuable basis for estimating ground
elevation and vegetation height using photon-counting LiDAR data. However, in areas with dense
vegetation, the emitted pulses may not penetrate the vegetation canopy and reach the ground surfaces,
which make noise removal and photon classification challenging and subsequently limit the estimation
accuracy of ground elevation and vegetation height. Therefore, our next study should focus on the
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development of a more effective noise removal algorithm and photon classification algorithm that can
be applied even in areas with dense vegetation. Additionally, we can incorporate ICESat-2 data with
other data, such as optical images, airborne LiDAR, radar and upcoming GEDI data, to expand their
potential applications and increase the accuracy of the estimated parameters.
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