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Abstract: Urban trees deliver many ecological services to the urban environment, including reduced
runoff generation in storms. Trees intercept rainfall and store part of the water on leaves and
branches, reducing the volume and velocity of water that reaches the soil. Moreover, trees modify the
spatial distribution of rainwater under the canopy. However, measuring interception parameters is
a complex task because it depends on many factors, including environmental conditions (rainfall
intensity, wind speed, etc.) and tree characteristics (plant surface area, leaf and branch inclination
angle, etc.). In the few last decades, remotely sensed data have been tested for retrieving tree metrics,
but the use of this derived data for predicting interception parameters are still being developed. In this
study, we measured the minimum water storage capacity (Cmin) and throughfall under the canopies
of 12 trees belonging to three different species. All trees had their plant surface metrics calculated:
plant surface area (PSA), plant area index (PAI), and plant area density (PAD). Trees were scanned
with a mobile terrestrial laser scan (TLS) to obtain their individual canopy point clouds. Point clouds
were used to calculate canopy metrics (canopy projected area and volume) and TLS-derived surface
metrics. Measured surface metrics were then correlated to derived TLS metrics, and the relationship
between TLS data and interception parameters was tested. Additionally, TLS data was used in
analyses of throughfall distribution on a sub-canopy scale. The significant correlation between the
directly measured surface area and TLS-derived metrics validates the use of the remotely sensed data
for predicting plant area metrics. Moreover, TLS-derived metrics showed a significant correlation
with a water storage capacity parameter (Cmin). The present study supports the use of TLS data as
a tool for measuring tree metrics and ecosystem services such as Cmin; however, more studies to
understand how to apply remotely sensed data into ecological analyses in the urban environment
must be encouraged.

Keywords: plant surface area; plant area index; plant area density; interception; runoff reduction;
rainfall simulation

1. Introduction

Trees are an important component of the urban environment, as they can cool to moderate
air temperatures [1–3], decrease air pollution [4,5], reduce noise [6], stimulate social connection [7],
and reduce storm runoff effects [8,9], as well as many other benefits. Understanding, quantifying,
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and communicating the benefits of trees is particularly important from an urban planning perspective,
as a raised awareness of a scientific evidence base may help set policies and future management
planning for urban forests.

Quantifying the role of urban trees in the mitigation of water runoff is important, as the frequency
of floods has increased in densely urbanised areas in the last decades. The increase of impervious areas
during urbanisation disrupts the natural cycling of water, reducing the number of naturally vegetated
areas, and consequently, the permeability of the system. Additionally, stormwater infrastructure in
many cities was designed for a less intensely urbanised landscape and is at, or exceeding, designed
runoff capacity, and as a result, large rainfall events can frequently lead to flooding. Many cities in
the world have set targets to increase tree canopy cover as one of the nature-based solutions to help
mitigate the occurrence of floods [10–12].

However, predicting the impact of the urban forest on stormwater management is complex
and so is its planning, primarily because predicting the impact of urban trees is not easy, given the
complexity of trees’ structural elements and the surrounding environment. Therefore, recent research
has attempted to integrate knowledge from different disciplines to better predict tree metrics and
their hydrological impact [13–15]. Part of this integration of knowledge involves reaching a precise
understanding of the relationships between remotely sensed data and the effect of different canopies
upon rainfall interception, storage, and throughfall.

Recently, terrestrial laser scanning (TLS) techniques have gained increased attention as a
method to directly measure the 3D shape of tree canopies and consequently estimate different tree
characteristics [16]. Although TLS data has been tested for retrieving tree metrics [17–22], the use of the
derived TLS data for predicting ecosystem service processes, such as shading, pollution interception,
or rainfall interception parameters, are still yet to be developed and tested.

Understanding how tree canopy characteristics at the whole-tree and leaf level influence canopy
interception, storage, and throughfall redistribution dynamics is fundamental for advancing the use
of trees for stormwater management. Both canopy water storage capacity and throughfall dynamics
are driven by the combination of different tree attributes, as well as by rainfall characteristics and
environmental conditions [23–25]. In the case of water storage capacity, plant surface area, roughness,
and angle of inclination influence the volume of water that can be stored during and after rainfall
ceases. Furthermore, woody parts of the tree intercept rainfall and drops from leaves, providing
additional area for evaporation and drying. Fundamentally, trees with greater plant area, rougher
surfaces, and lower inclination possess greater canopy water storage [26–29].

Similarly, the volume of water passing through the canopy (throughfall) is affected by tree
configuration, which is a function of the arrangement of leaves and branches [30–33]. In addition,
the spatial redistribution of throughfall under a tree canopy is modified and shaped by a variety
of canopy characteristics. These changes have been studied, and importance has been given to the
modification of rain characteristics, such as the kinetic energy of drops, drop size, and velocity [34,35].
Raindrop characteristics are linked to the occurrence of soil erosion and floods, mainly during
high-intensity rainfall events [34]. Moreover, the availability of water and nutrients deposited with
the throughfall flux positively influence soil biodiversity and root development [36–38]. However,
few studies discuss how specific leaf and tree architectural traits, such as the arrangement of leaves
and branches, influence water distribution under tree canopies [32,35,39,40].

This study proposes a new way to make use of TLS and thereby add value to the work of urban
forestry professionals. It investigates the potential of deriving plant area metrics from TLS data
clouds, so as to avoid expensive and laborious manual methods of leaf area data collection that require
destructive sampling. It combines the use of remote sensing techniques with knowledge of water–tree
interaction dynamics, aiming to validate the use of terrestrial laser scanning-derived data to predict
both interception metrics and throughfall distribution.

In the first part of this study, we investigate the relationships between plant surface metrics and
TLS-derived data. Based on previous works [17,19,20], the first hypothesis is that TLS-derived metrics



Remote Sens. 2018, 10, 1958 3 of 22

are good predictors for plant surface area metrics. Most of the previous approaches have used an
algorithm to extract gap fractions from TLS point clouds, and from this, an approximation of leaf
area index (LAI) [17,20,41,42]. Two approaches commonly applied have been the 3D voxel-based
canopy profiling (VCP) method [41] and a 2D approach which converts “the point cloud data
set from Cartesian coordinates to spherical coordinates in order to be similar to hemispherical
photography” [20]. The present study differs from cited works by investigating whether the number
of scanned points correlates with manually calculated plant area metrics. TLS-derived metrics are
then tested to predict one of the water storage capacity parameters, the minimum storage capacity
(Cmin). The second hypothesis is that TLS-derived metrics are effective in predicting both Cmin and
throughfall redistribution.

In the second part of this paper, the process of spatial redistribution of throughfall is studied in
more detail, aiming to understand how tree structure can affect the total throughfall redistribution.
Therefore, the TLS data will be used in a subcanopy analysis, providing a novel approach [33,39].

The specific objective of this study is to investigate: (a) the efficacy of TLS data to predict urban
tree morphological characteristics by correlating directly measured plant area metrics with TLS-derived
metrics, (b) the use of TLS-derived metrics to predict water storage capacity, and (c) whether the use of
TLS-derived metrics can provide information at the subcanopy scale to understand canopy throughfall
distribution. Results may add to previous knowledge on the use of TLS data for canopy metric
estimation, and may possibly be used in a way to predict interception parameters and throughfall
distribution. Also, the results will improve the understanding of the throughfall process, providing a
theory-based discussion for future research.

2. Methodology

Rainfall was simulated above trees (at 2.7 m height) in pots of three different species in a controlled
indoor environment. Trees were scanned by a TLS to generate the point clouds to measure canopy
projected area and volume and derive the following metrics: number of points (NP), number of
points per canopy projected area (NPA), and number of points per canopy volume (NPV). Trees were
then destructively sampled, and plant surface area (leaf area plus branch area) was measured. Then,
TLS-derived data was correlated to the minimum storage capacity (Cmin) and throughfall collected
under individual tree canopies during simulated rainfall.

2.1. Trees

Canopy water storage and throughfall were measured for 12 trees of three different species:
Ulmus procera, Platanus × acerifolia, and Corymbia maculata. These species were selected for their
distinct canopy characteristics and because they are commonly used in the streetscapes of the City of
Melbourne. The studied trees were grown in 100-litre pots and had comparable basal stem diameters
ranging from 6.2 to 9.7 cm, and initial canopy volumes that ranged from 5.61 m3 to 7.99 m3 (Table 1).
For the remainder of this paper, the individual Corymbia trees are referred to as CM1 to CM4, the Ulmus
trees are referred to as UP1 to UP4, and the Platanus trees are referred to as PA1 to PA4.

2.2. Canopy Surface Area Manipulation and Measurement

The leaf density was manipulated with the purpose of simulating differences in water storage
capacity from a canopy in good to poor health. Leaf surface area was manipulated in stages: after
canopy water storage measurements and TLS scanning was completed on trees with 100% of their
canopy (labelled as ‘Full canopy’), every other leaf on a branch was removed and leaf areas were
directly measured using a leaf area meter (LI-3100 Area Meter, Li-cor, Lincoln, USA). Leaves were
then oven-dried at 60 ◦C for 48 h to determine leaf dry mass, and from this, a ratio of leaf area to
dry leaf mass was established. The remaining tree canopies had a density of approximately 50%
(or ‘Half canopy’). After canopy water storage measurements and TLS scanning, the trees again
had half of their remaining leaves removed, resulting in a canopy density of approximately 25%
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(or ‘Quarter canopy’). These leaves were oven-dried and their surface area estimated from the ratio
of leaf area to dry leaf mass. The canopy water storage measurements and TLS scanning were
then performed on these quarter canopies, and then finally, all remaining leaves were removed and
oven-dried, and then their leaf area was calculated for each canopy density treatment [43]. The final
leaf removal process resulted in a canopy without leaves (or ‘Woody’).

After water storage capacity measurements and TLS scanning, the woody material for each
tree was collected and divided into two groups depending on their diameter class: ≥1 cm or <1 cm.
Each branch group had its length, area, and volume estimated [43].

2.3. Rainfall Simulation

This study uses an indoor rainfall simulator (Figure 1). Full details for this method and for
keeping constant precipitation rates, uniformity, and raindrop size are available in Refs. [43,44].
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Figure 1. Top view of simulator spray zone with vials grid (a); Rainfall simulator cross-section view (b);
small plastic roof attached to the tree and plastic sheets to prevent water from dripping into the pot (c).

Rainfall intensity was set at 2.5 mm/h. A rainfall rate of 2.5 mm/h for 15 min is classified as being
very frequent in Melbourne, according to the Intensity-Frequency-Duration design tool [45].

All trees were top-trimmed to ensure they did not exceed a height of 2.7 m, so that rainfall
distribution was uniform once it intercepted the top of a tree canopy. Many street trees in Melbourne
and other cities that retain overhead power lines are commonly lopped to maintain a clearance zone
between the top of the tree and the power lines. Our experimental setup, therefore, replicates real-world
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conditions. Full details on how the rainfall simulator was constructed, trialled, and operated with trees
beneath are presented in Ref. [43].

2.4. Canopy Water Storage Measurements

Each tree was placed on a balance (150 kg capacity, 20 g resolution, EM-150KAL, A&D Weighing,
Thebarton, Australia) to continuously measure the change in mass before, during, and after a 15-min
simulated rainfall event (0.6 mm). From this, the maximum and minimum canopy water storage were
calculated from the changes in mass balance (i) during the 15 min of rainfall (Cmax) and (ii) from the end
point of the rainfall event followed by 15 min of excess water dripping from the canopy (Cmin). All trees
had the canopy water storage measured for the different canopy density treatments: Full canopy, Half,
Quarter, and Woody. Full details on these calculations and the experimental approach used to collect
the data are presented in Ref. [43].

2.5. Throughfall Distribution

During measurements of water storage capacity for trees in their full (100%) canopy, total
throughfall was measured using small graduated plastic vials (50 mL, opening diameter 2.8 cm,
model PP, Sarstedt Inc., Germany). Vials were evenly distributed under the canopy in an 11-cm spaced
grid of 18 × 17, with 9 vials being excluded to fit the tree stem (n = 297). These vials were held in place
by plastic trays attached to tables to ensure they were truly vertical in orientation and in exactly the
same position under each rainfall simulation (Figure 2). Vials were labelled according to their position
in the grid and remained in position during the 15 min of rainfall simulation followed by 15 min of
post-rainfall dripping. After these 30 min, vials were weighed on a 2-decimal place balance (3100 g
capacity, 0.01 g resolution, GF3000, A&D Weighing, Thebarton, Australia). Any water on the outside
surface of a vial was wiped away before weighing. The average mass of a plastic vial was subtracted
from the total mass and the remaining mass converted to water volume (mL), assuming the density of
water as 1.0 g/mL. Each water volume was then converted to water throughfall (mm) by dividing the
mass by the area of the opening of the vial (6.16 cm2). The vials covered about 5% of the total area
under each tree canopy.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 24 

 

world conditions. Full details on how the rainfall simulator was constructed, trialled, and operated 
with trees beneath are presented in Ref. [43]. 

2.4. Canopy Water Storage Measurements 

Each tree was placed on a balance (150 kg capacity, 20 g resolution, EM-150KAL, A&D Weighing, 
Thebarton, Australia) to continuously measure the change in mass before, during, and after a 15-min 
simulated rainfall event (0.6 mm). From this, the maximum and minimum canopy water storage were 
calculated from the changes in mass balance (i) during the 15 min of rainfall (Cmax) and (ii) from the 
end point of the rainfall event followed by 15 min of excess water dripping from the canopy (Cmin). 
All trees had the canopy water storage measured for the different canopy density treatments: Full 
canopy, Half, Quarter, and Woody. Full details on these calculations and the experimental approach 
used to collect the data are presented in Ref. [43]. 

2.5. Throughfall Distribution 

During measurements of water storage capacity for trees in their full (100%) canopy, total 
throughfall was measured using small graduated plastic vials (50 mL, opening diameter 2.8 cm, 
model PP, Sarstedt Inc., Germany). Vials were evenly distributed under the canopy in an 11-cm 
spaced grid of 18 × 17, with 9 vials being excluded to fit the tree stem (n = 297). These vials were held 
in place by plastic trays attached to tables to ensure they were truly vertical in orientation and in 
exactly the same position under each rainfall simulation (Figure 2). Vials were labelled according to 
their position in the grid and remained in position during the 15 min of rainfall simulation followed 
by 15 min of post-rainfall dripping. After these 30 min, vials were weighed on a 2-decimal place 
balance (3100 g capacity, 0.01 g resolution, GF3000, A&D Weighing, Thebarton, Australia). Any water 
on the outside surface of a vial was wiped away before weighing. The average mass of a plastic vial 
was subtracted from the total mass and the remaining mass converted to water volume (mL), 
assuming the density of water as 1.0 g/mL. Each water volume was then converted to water 
throughfall (mm) by dividing the mass by the area of the opening of the vial (6.16 cm2). The vials 
covered about 5% of the total area under each tree canopy. 

  
Figure 2. The arrangement of vials under the canopy: plan view (left) and photo (right). 

2.6. TLS Data Collection and Processing 

A three-dimensional image of each tree canopy was captured using a hand-held laser scanner 
(ZEB1, GeoSLAM Ltd., Nottingham, UK). All trees were scanned for each one of the canopy density 
treatments: Full canopy, half, quarter, and woody, resulting in a total of 12 point clouds for each 

Figure 2. The arrangement of vials under the canopy: plan view (left) and photo (right).



Remote Sens. 2018, 10, 1958 6 of 22

2.6. TLS Data Collection and Processing

A three-dimensional image of each tree canopy was captured using a hand-held laser scanner
(ZEB1, GeoSLAM Ltd., Nottingham, UK). All trees were scanned for each one of the canopy density
treatments: Full canopy, half, quarter, and woody, resulting in a total of 12 point clouds for each species
(three replicate trees were each measured four times at 100%, 50%, 25%, and 0% canopy density).
Each tree was scanned by walking around them three times at a distance of 1–2 m from the tree with
the ZEB1 laser scanner held out in front to maximise point cloud accuracy and density. Studies using
TLS data to retrieve tree metrics have recommended the use of multiple scans to reduce the occlusion
of objects [13,46]. To standardise the point clouds, duplicated points should be removed from the
dataset. Therefore, the random downsampling method was applied, and the two or more points that
were within 2 mm of another one would be retained, and the others removed. This process detected
1% of points as being duplicated points. Then, a statistical denoising algorithm was applied to remove
outlier points, also called dongle points, from the laser point cloud. Based on a 3-sigma test, points
with a confidence level of 99.7% were considered as inliers. To apply this method, the mean and
standard deviation of 10 neighbour points were calculated, and points which did not pass the 3-sigma
test were detected as noise points. In other words, points with a weak connection to sample points
were detected as noise points and were removed from the point cloud. In this research work, less than
2% of points were detected as outliers.

Point clouds data were processed using CloudCompare 2.6.2 software. A concave hull method
was then used to calculate tree canopy metrics, such as canopy project area and canopy volume,
from the point cloud. A 2D graph of point density distribution was created in Cloud Compare from the
processed point cloud. Firstly, the 3D point cloud was converted to two-dimensional data by ignoring
z-axis information. Then, the density of points was calculated based on the number of neighbours
in a 10-cm pixel. The point density map was created and converted to a matrix, where the values of
point density were scaled up to a grid composed of 11 × 11-cm pixels. For throughfall analyses, the 3D
point cloud was converted into a grid-based 2D graph according to the density of points from the top
view of the whole tree and then scaled to the same resolution as the throughfall grid data collection.
Point cloud density was classified into 5 different percentiles: low, low to medium, medium, medium
to high, and high density. These classes of density were correlated with throughfall categories for
each pixel.

2.7. Data Presentation and Statistical Analysis

Metrics derived from TLS data were presented as the number of points (NP); the number of points
per area (NPA), which represents NP divided by the calculated canopy projected area; and the number
of points per volume (NPV), which represents NP divided by the estimated concave canopy volume.
TLS-derived metrics were correlated with the directly measured plant area: linear regressions analyses
were performed between plant surface area (PSA) and number of points (NP); plant area index (PAI)
and number of points per area (NPA); and plant area volume (PAV) and number of points per volume
(NPV). Analyses of covariance (ANCOVA) were performed to identify differences between species,
with plant surface metrics (PSA, PAI, and PAD) held as the dependent variable and TLS-derived
metrics (NP, NPA, and NPV) as the covariates. These analyses are intended to test the hypothesis that
TLS-derived metrics are good predictors for plant surface metrics.

In the second part of analyses, TLS-derived metrics were correlated to the interception parameter,
Cmin. Analyses of covariance (ANCOVA) were performed to identify differences between species,
with Cmin held as the dependent variable and TLS metrics (NP, NPA, and NPV) as the covariates.
These analyses intended to answer if TLS-derived metrics are effective in predicting Cmin.

For the throughfall redistribution analyses, the average throughfall (mm), the coefficient of
variation, and the standard deviation were calculated for every simulation. The average of throughfall
for each tree was calculated based on the volume of water collected in vials that were covered by the
canopy. For this reason, the point density matrix and data of throughfall volume collected in the vials
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which overlapped and were outside (beyond) the canopy cover area were excluded for this calculation.
During this experiment, two trees needed to be replaced, UP2 and UP3. In this process, UP3 was not
scanned for the full (100%) canopy condition; therefore, throughfall calculations for this tree were
based on the total incident area. A Kendall correlation test was performed to analyse the correlation
between the throughfall volume and density of points.

To analyse throughfall distribution, each point of collection was categorised according to the
interception rate calculated. To do so, the interception for each point was calculated by subtracting
the collected throughfall values from the average incident rainfall, obtained from 4 control treatments
without trees. Then, each point was categorised: negative results for throughfall were considered as
“concentration” zones, and positive results were considered as “reduction” zones. This information
was correlated with the 5 different classes of density derived from the TLS point clouds. Maps of
throughfall distribution, throughfall categories, and class of canopy density were created on ArcGIS,
and statistical analyses were performed on RStudio.

3. Results

3.1. Correlations between TLS Data and Tree Metrics

Firstly, the number of points for each tree was assessed and derived tree metrics were calculated
from the scanned data (Table 1). TLS metrics were correlated to directly measured metrics to validate
the effectiveness of TLS data in predicting plant surface metrics (Figure 3).

Table 1. Values of plant surface metrics and laser scanner metrics and interception parameters collected
for each studied tree.

PSA
(m2)

PAI
(m2/m2)

PAD
(m2/m3)

NP
(points)

NPA
(points/m2)

NPV
(points/m3)

Cmax
(mm)

Cmin
(mm)

Throughfall
(mm)

CM 1 4.9 2.1 1.0 68,365 29,468 13,856 0.25 0.09 4.53
CM 2 3.9 1.6 0.8 60,732 24,293 12,014 0.18 ** 4.67
CM 3 5.6 2.0 0.8 91,938 32,718 13,182 0.19 0.08 5.19
CM 4 5.4 1.9 1.0 75,053 26,427 13,667 0.18 0.08 4.18
PA 1 9.5 3.7 1.3 91,518 35,472 12,159 0.52 0.31 3.49
PA 2 9.2 3.1 1.0 80,686 26,895 9004 0.40 0.23 4.08
PA 3 11.4 4.0 1.6 81,179 28,787 11,523 0.57 0.32 3.85
PA 4 10.0 3.2 1.2 96,613 30,477 11,475 0.44 0.29 3.95
UP 1 8.2 5.1 1.1 55,945 34,966 7409 0.71 0.31 4.48
UP 2 8.6 5.8 1.3 51,684 34,687 7868 0.83 0.39 4.53
UP 3 7.9 5.3 1.2 41,920 27,947 6431 0.77 0.41 4.50 *
UP 4 6.8 4.5 1.1 37216 24811 5864 0.67 0.39 4.27

* Including total incident area; ** Value excluded due to measurements error; PSA: Plant surface area; PAI: Plant
area index; PAD: Plant area density; NP: Number of points; NPA: Number of points per canopy area; NPV: Number
of points per canopy colume; Cmax: maximum storage capacity; Cmin: minimum storage capacity.

Linear regressions between TLS and manually measured metrics showed a significant relationship
for all species (R2 > 0.7). The variance between the variable related to scanned points and those related
to tree measurements were not significantly different for any of the regressions performed, as validated
by the F-test (Table 2). All regressions for U. procera presented higher values for coefficient b, showing
steeper slope compared to the other two species (Figure 3).

ANCOVA tests for NP and PSA, and NPV and PAD showed a significant difference between the
studied species (p-value < 0.05). On the other hand, the relationship between the NPA and PAI showed
no significant difference between species (p-value > 0.05).
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Table 2. Summary of linear regressions parameters and significance tests for correlations between
scanning-derived and plant surface metrics.

Species x y a b R2 F-Test

U. procera NP PSA −5.677 3 × 10−4 0.826 8.3 × 10−50

P. acerifolia NP PSA −0.182 1 × 10−4 0.792 1.0 × 10−54

C. maculata NP PSA −1.006 1 × 10−4 0.942 4.0 × 10−58

U. procera NPA PAI −3.944 3 × 10−4 0.823 9.9 × 10−50

P. acerifolia NPA PAI −0.156 1 × 10−4 0.802 8.9 × 10−55

C. maculata NPA PAI −0.540 8 × 10−5 0.927 4.4 × 10−58

U. procera NPV PAD −0.900 3 × 10−4 0.811 1.2 × 10−49

P. acerifolia NPV PAD −0.077 1 × 10−4 0.813 1.2 × 10−54

C. maculata NPV PAD −0.267 8 × 10−5 0.927 5.9 × 10−58

Notes: x: independent variable; y: dependent variable; a: intercept; b: slope; R2: coefficient of determination; F-test
at 99% of significance.

3.2. Correlation between TLS Data and Rainfall Interception Parameters

Regression tests were then performed to assess the effectiveness of using TLS-derived metrics in
the prediction of water storage capacity of the studied tree species. Correlations between measured
and TLS metrics were significant for all correlations, except for NPA × Cmin.

The ANCOVA analyses returned several significant correlations between the scanned metrics and
Cmin. ANCOVA tests demonstrated that all interactions were significantly different between species
and number of points (p < 0.05). Therefore, linear models were separately performed for each species
(Table 3, Figure 4).

For all linear regressions, U. procera is the species showing greater water storage capacity when
compared to P. acerifolia and C. maculata, even if the number of points scanned is lower than for the
other two species. However, U. procera presented the lowest coefficient of determination (R2 < 0.6)
compared to the other two species, highlighting that this relationship was more subject to random
effects than the other trees.

Table 3. Summary of linear regressions parameters for correlations between scanning-derived metrics
and Cmin.

Species x y a b R2

U. procera NP Cmin 1 × 10−5 −0.161 0.512
P. acerifolia NP Cmin 4 × 10−6 −0.063 0.929
C. maculata NP Cmin 8 × 10−7 0.019 0.667
U. procera NPA Cmin 2 × 10−5 −0.018 0.544
P. acerifolia NPA Cmin 1 × 10−5 −0.062 0.951
C. maculata NPA Cmin 2 × 10−5 −0.130 0.634
U. procera NPV Cmin 7 × 10−5 −0.194 0.580
P. acerifolia NPV Cmin 3 × 10−5 −0.060 0.943
C. maculata NPV Cmin 5 × 10−6 0.016 0.700

Notes: x: independent variable; y: dependent variable; a: intercept; b: slope; R2: coefficient of determination.
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3.3. Throughfall and Spatial Redistribution

An average rainfall of 0.9 mm was calculated from four controlled treatments (no trees), with a
standard deviation of 0.3 and a coefficient of variation of 28% (Table 4). The average values of
throughfall per species were 1 mm, 0.8 mm, and 0.9 mm for C. maculata, P. acerifolia, and U. procera,
respectively (Table 4).
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Table 4. Average rainfall (control treatment) and throughfall in mm (Avg), standard deviation (Std),
and coefficient of variation (CV) for studied trees.

Control C. maculata P. acerifolia U. procera

ID Avg Std CV Avg Std CV Avg Std CV Avg Std CV
1 1.0 0.3 30% 0.9 0.3 38% 0.8 0.8 107% 0.9 0.5 54%
2 0.9 0.2 28% 1.0 0.5 49% 0.8 0.9 112% 0.9 0.5 48%
3 0.8 0.3 27% 1.0 0.7 68% 0.8 0.8 100% 0.9 0.4 42%
4 0.8 0.3 28% 0.9 0.4 49% 0.8 0.7 84% 0.9 0.5 55%

In the subcanopy analysis, a slight similarity of the canopy contour may be noticed in the
throughfall distribution map when overlain by the canopy density map, showing the greater value
of throughfall in areas around the canopy’s dripping edge (Figures 5–7). During this experiment,
two trees needed to be replaced (UP2 and UP3), and unfortunately, UP3 was not scanned and not
counted in this throughfall analysis.

Kendall’s correlation presented a p-value = 3.793 × 10−8 and coefficient tau = −0.0769, indicating
a significant negative correlation between canopy density—represented by the density of points—and
throughfall, but a weak coefficient of correlation.

For this reason, density was grouped into five different classes and throughfall data was
categorised according to the interception calculation for each point where throughfall was collected
(Figure 8). Points categorised as concentration indicate a throughfall volume higher than the incident
precipitation (negative interception), whereas reduction points indicate a throughfall volume lower
than the incident precipitation (positive interception).

For all species, the majority of canopies were classified as low-density zones. High-density zones
were visually identified in the scanned data as predominantly woody (Table 5). According to the
categorical classification for the throughfall collection points, C. maculata and P. acerifolia presented
more reduction zones than concentration ones; on the other hand, U. procera presented a slightly higher
number of concentration zones than reduction ones.

Table 5. Distribution of reduction and concentration of throughfall zones according to class of
point density.

U. procera (n = 3) P. acerifolia (n = 4) C. maculata (n = 4)

Density Classes Percentile C * R ** C R C R

Low <20% 162 98 214 403 276 340
Low to medium 21–40% 41 57 69 170 81 100

Medium 41–60% 22 34 17 38 29 36
Medium to high 61–80% 9 26 1 15 6 11

High >80% 3 6 2 3 1 1
Subtotal 237 221 303 629 393 488

Total 458 932 881

* Concentration; ** Reduction.

Despite the weak correlation between throughfall volume and point density, Mann–Whitney
U-test analysis showed a significant association between density and throughfall categories for
P. acerifolia (p = 0.009, p < 0.05) and U. procera (p = 0.000, p < 0.05), whilst the difference was not
significant for C. maculata (p = 0.302, p > 0.05) (Figure 9). As can be expected, the denser the canopy,
as measured by the TLS, the more the canopy acts as a shelter.
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4. Discussion

4.1. Correlation TLS Data and Tree Metrics

For all combinations tested, linear regressions showed a strong correlation between the measured
and scanned metrics (Table 2, R2 > 0.70; p-value < 0.01). Likewise, studies retrieving LAI from
TLS data have shown a significant correlation between plant surface metrics and remotely sensed
data [17,20,22,46]. This study confirms the strong correlation between surface area metrics and the
number of scanned points, and therefore provides encouragement for the use of TLS data for tree
metrics’ estimation, although the results show that there is variation in this between species.

Significant differences between the species in ANCOVA analysis indicate that differences in plant
structure, such as leaf size and angle, have an influence on a different number of points per canopy.
Because each point in the laser scanning data corresponds to laser beams that reached any canopy
surface (branch or leaf), we expected that the number of scanned points would correlate with actual
values and not suffer any species influence if the plant structures were in the same level of scanning.
For example, U. procera presented a greater slope in all regression analyses when compared to the other
two species. In this case, the greater slope is an indicator that the results for plant surface metrics were
greater in comparison with the scanned metrics. However, U. procera presented the lowest coefficient
of determination, indicating a weaker correlation between plant surface metrics and scanned metrics.
On the other hand, C. maculata presented smaller results for plant surface metrics in relation to scanned
metrics and a higher coefficient of determination compared to U. procera. Therefore, this suggests that
the number of points may be underrepresented for U. procera. Because the accuracy of the laser scanner
is about 0.02 m, smaller leaves are harder to capture with the device [19]. In this case, U. procera leaf
size may be affecting results, as smaller leaves tend to return a less accurate representation of leaf
surface area. On the other hand, the size of leaves may favour the retrieving of the leaf surface area for
C. maculata and P. acerifolia.

The angle of leaves has also an influence in the accuracy of data acquired [18,47]. Smaller leaf
angles tend to lead to an underestimation in leaf area estimates, whilst greater leaf angles tend to do
the contrary and lead to an overestimation [47]. In our study, this may have occurred, particularly for
our C. maculata results. Although C. maculata did not present the highest value for plant area metrics,
the number of TLS points was greater than for the other two tree species, which may be explained due
to C. maculata having pendulous leaves with greater angles of repose.

Additionally, the occlusion effect may play a role in the misrepresentation of the 3D canopy.
The high density of plant surfaces may have hindered the retrieval of information from deeper layers
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of the canopy. Issues with occlusion are described in studies using TLS data [18,21,46], and the
possibility of occlusion occurrence may be reduced with the capturing of multiple scans, which is
possible using a mobile terrestrial laser scanner. Even so, occlusion can still happen when collecting
data with mobile devices, because internal features cannot be captured from an inside view unless the
scanner device is introduced into the canopy, which is still not a parameterised method.

Moreover, ground-based surveys tend not to capture the top part of a tree well, depending on
their height. In previous studies, the attenuation of the laser beam and its reflectance has posed a
limitation to the use of TLS data [20,42]. In our study, trees were not higher than 2.7 m, which did not
limit the representation of the highest region of the canopy. However, the occlusion and attenuation
effect may affect the assessment of larger trees, particularly in an outdoor urban environment.

As a limitation, this study did not measure secondary factors that may be causing the difference
among species’ signatures (e.g., leaf angle). Additionally, using juvenile trees may have underestimated
the role of woody parts in laser detection, as larger branches (when older) may be captured more
easily by the process. This fact should be considered when scanning mature trees in an urban context,
because mature trees tend to present denser canopies, which may intensify the occlusion effect by
hindering the laser scanner from penetrating deeper into the canopy [19]. However, as a matter of
comparison, the PAI for mature trees in an urban streetscape in Melbourne ranges from 0.6 to 5.2
for Platanus × acerifolia, 2.1 to 7.6 for Ulmus procera, and 1.3 to 3.1 for Eucalypts scoparia [48], which is
comparable with the measured PAI for the trees in our study (Table 1).

4.2. Correlation TLS Data and Rainfall Interception Parameters

U. procera presented a greater slope in all regression tests, showing greater water storage capacity
when compared to P. acerifolia and C. maculata, even if the number of scanned points was lower than
for the others. This fact indicates that parameters other than plant area must be affecting Cmin, as the
number of scanned points is dependent on the presence of a surface to reflect the laser beam with.
Higher values of Cmin are explained by characteristics that promote the canopy water storage capacity,
such as greater plant surface area [27], but also leaf and bark hydrophobicity [26,28] and branch and
leaf inclination [49], which were not measured during this study.

The significant interaction between species and parameters studied indicates that specific canopy
arrangements may explain differences in water storage capacity. In this study, for example, C. maculata
leaves presented an angle close to 90◦ in relation to the ground, which may be more easily captured
by the terrestrial laser scanning, explaining why C. maculata presented the higher values of points
per area and volume. The higher inclination angles of leaves and branches create gaps inside the
canopy, which allow the penetration of the laser beam from a ground-level scanner. On the other hand,
this characteristic also prevents water from sticking to the tree [29] and reduces the water storage in
this species.

Additionally, TLS-derived metrics do not take into account other important microscale
characteristics of the leaves or bark, such as hairs, waxy cuticles, serrated laminar, and coarse and
papery bark layers. Those aspects are important because Cmin is affected by them, and they were not
measured in this study [28,50] and cannot be measured by TLS data of this type.

Branches play an important role in water storage capacity [27]. From the scanned data,
the calculated proportion of the number of points shows that 34% of the scanned surface is associated
to woody parts for C. maculata trees, 28% for P. acerifolia, and 55% for U. procera. Branch surfaces may
store part of the incident rainfall, being responsible for storing up to 40.8% of the intercepted rainfall
for C. maculata, 11.7% for P. acerifolia, and 12.8% for U. procera [43]. Branches can also be responsible for
draining water out of the plant system via stemflow, which is not counted as intercepted water. Studies
have shown that stemflow is an important component of the interception process for some species [51],
redirecting up to 10% of incident rainfall to the ground, depending on the rainfall characteristics [49].
However, stemflow was not measured, as this study has focused on water storage capacity and
throughfall analyses.
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4.3. Spatial Redistribution of Throughfall

Under natural rainfall conditions, canopy throughfall redistribution will be influenced by changes
in rainfall volume, such that spatial heterogeneity or coefficients of variation decrease as rain volume
increases [39,52]. Other abiotic factors that may increase throughfall volume under a tree canopy are
extended rainfall duration and higher rainfall intensity [53–55]. However, in the rainfall simulations
of this study, these factors were kept constant; therefore, the differences in the spatial distribution of
throughfall may be more confidently attributed to specific differences in the canopy characteristics
among the tree species.

At a forest scale, a previous study [56] found a significant correlation between throughfall and
Light Detection and Ranging derived (LiDAR) metrics in broad-leaved, coniferous, and mixed forests
in Denmark. However, the variance in throughfall was best explained by the LiDAR density matrix for
annual precipitation rates. The explanatory power of LiDAR-derived data increases as the temporal
resolution decreases from monthly to seasonal and annual rainfall. This indicates that for a single
rainfall event, the link between point cloud data such as TLS-derived metrics and rainfall will be
obfuscated by noise. However, over many events in a season or a year, TLS-derived metrics could
provide a prediction of throughfall.

Previous studies have demonstrated a level of uncertainty in regards to throughfall spatial
distribution results and correlation with forest attributes because of the high variation of collected
data [57,58]. However, as suggested in Ref. [59], an increase in the number of sampling points may
improve the quality of collected data, as it may overcome high variation over a small area. In this study,
the plot size is 1.87 × 1.98 m and the distance between cups equals 11 cm. Therefore, the total area
covered by the vials (6.2 cm2) represents about 5% of the total area, which is greater than in previous
works [40].

Statistical analyses have shown a significant correlation between throughfall reduction zones
and denser canopy for U. procera and P. acerifolia. A higher density coincides with areas of lower
throughfall because it corresponds to a larger plant surface to store water [60]. However, some trees
present hotspots with high values of throughfall under an area of high point density in the middle of
the canopy projection area. As can be seen by overlapping the throughfall redistribution with the point
density map, the canopy structure may be influencing the redistribution process, as the arrangement of
leaves and branches in this region conducts the water that has dropped from other layers to the bottom.

Patterns of distribution are different from one species to another. Visually, maps of throughfall
distribution show a varied pattern. Statistically, throughfall maps for P. acerifolia trees present higher
values for the coefficient of variation compared to the other two species. The significant difference may
be influenced by the size of leaves and distribution of branches and leaves in the space. More open
canopies, such as is the case with C. maculata trees, presented more concentration spots when compared
to P. acerifolia. However, the volume of water collected on concentration spots under P. acerifolia canopy
is much higher than the values measured under C. maculata canopy. Water seems to be concentrating
in the layers over the bottom line, and rainwater has been redirected to these spots. This effect may be
explained by taking the approach suggested in Ref. [61]: A tree canopy can be divided into different
horizontal layers. Rainfall that has reached a given layer could have either passed through the gap
in the canopy or been intercepted by plant surfaces in the next layer. In the case of P. acerifolia, with
the largest and flattest leaves amongst the three species, the leaves are favouring the interception and
formation of a big drop, because all water that drips on the leaf surface takes longer to accumulate
before dripping to the next layer. At the same time, these characteristics help with the shelter effect in
other areas of the redistribution map.

Previous studies have correlated the spatial redistribution of throughfall underneath tree canopies
to the erosive potential of drips reaching the ground surface [35,62]. In natural forests, most of the
splash-induced erosion caused by throughfall is hindered by understory vegetation and litter cover [63].
However, in the urban forest, surface litter may not be present and understory vegetation limited to
turfgrass only. So, for urban trees planted above either bare soil or sparse understorey vegetation,
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especially if the land is sloping, trees that greatly redistribute throughfall may lead to greater erosion
and green space damage. Furthermore, increasing the complexity of understorey vegetation beneath
green space trees has been demonstrated to increase the infiltration of throughfall and thereby decrease
the occurrence of surface water runoff [64].

5. Conclusions

Retrieving plant area metrics from TLS data has shown a significant correlation between directly
measured and remotely sensed data. However, the regressions shown in this paper displayed
important differences in the slope and level of association between TLS data and plant area metrics.
In other words, practitioners should exercise caution in making assumptions based on TLS data
without considering the species. For example, for a given number of TLS points, a very different plant
area metric or Cmin would be predicted for each of the three tree species in our study.

In addition, the estimate of plant surface metrics may be underrepresented for species with
smaller leaves, such as U. procera. Yet, the strong relationship between surface area metrics and the
number of TLS points confirms the connection between those parameters, encouraging the use of TLS
data for these estimated and future studies.

The use of point cloud density as a parameter to estimate tree metrics simplifies the use of TLS
data in practical analyses. However, the use of TLS to predict interception parameters may be limited
by leaf characteristics, such as leaf angle and size. Leaf size and angle are crucial features to evaluate
the quality of TLS to predict interception, because it affects the chance of the leaf to be reached by the
laser beam. Other metrics derived from TLS data may be applied and additional studies may help to
understand how to apply laser scanning technologies in the context of urban forestry.

Despite throughfall rates and plant density showing a weak correlation for regressions,
the reduction of throughfall was associated with the presence of a denser canopy zone. Understanding
the patterns of throughfall distribution may help to guide the selection of species, the use of understory
vegetation, and type of ground cover used under urban trees. Considering trees’ specificities in the
selection of species is a key factor that should be considered to achieve a potential rate of rainfall
interception when planning to use trees for stormwater management.
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