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Abstract: Existing hyperspectral sensors usually produce high-spectral-resolution but
low-spatial-resolution images, and super-resolution has yielded impressive results in improving
the resolution of the hyperspectral images (HSIs). However, most of the super-resolution methods
require multiple observations of the same scene and improve the spatial resolution without fully
considering the spectral information. In this paper, we propose an HSI super-resolution method
inspired by the deep Laplacian pyramid network (LPN). First, the spatial resolution is enhanced by an
LPN, which can exploit the knowledge from natural images without using any auxiliary observations.
The LPN progressively reconstructs the high-spatial-resolution images in a coarse-to-fine fashion by
using multiple pyramid levels. Second, spectral characteristics between the low- and high-resolution
HSIs are studied by the non-negative dictionary learning (NDL), which is proposed to learn the
common dictionary with non-negative constraints. The super-resolution results can finally be
obtained by multiplying the learned dictionary and its corresponding sparse codes. Experimental
results on three hyperspectral datasets demonstrate the feasibility of the proposed method in
enhancing the spatial resolution of the HSI with preserving the spectral information simultaneously.

Keywords: hyperspectral image (HSI); super-resolution; deep Laplacian pyramid network (LPN);
dictionary learning

1. Introduction

Hyperspectral imaging systems sample the electromagnetic spectrum of scene radiance by
hundreds of contiguous spectral bands. The obtained hyperspectral image (HSI) [1–4], which has a
high spectral resolution, is a data cube containing very narrow spectral bands ranging from the visible
to infrared spectrum, enabling the fine representation of different land-covers by spectral signatures.
Therefore, HSIs have recently been successfully applied in various tasks, such as classification [5–7],
unmixing [8–10], de-noising [11,12] and detection [13–15]. However, the high spectral resolution
also comes at a cost, i.e., low-spatial-resolution, that is, the acquired real HSI data usually provides
coarse spatial information, and thus are incapable of capturing the details of different objects. Even
worse, the low-spatial-resolution will seriously deteriorate the effectiveness of the HSI in applications.
This emphasizes the importance of resolution enhancement [16,17].

In addition to developing high-resolution sensors, a natural solution is to perform hyperspectral
super-resolution from the algorithmic perspective (It is important to note that not all of the
hyperspectral data require one to increase the spatial resolution from the algorithmic perspective. Many
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HSIs (e.g., high-resolution unmanned aerial vehicles (UAV)-based hyperspectral data), which have
very high spatial and spectral resolution, are not needed to increase spatial resolution and thus are
not within the scope of this paper.). Existing methods can be roughly divided into three categories.
The first category is to fuse an HSI with auxiliary data sources containing high spatial resolution
but low-spectral-resolution images of the target scene. Widely used auxiliary observations are the
panchromatic (PAN) image and multispectral image (MSI) [18,19]. Many statistics-based fusion
methods have been proposed in the literature. For instance, various Bayesian estimators have
been designed by formulating the fusion of HSI and PAN/MSI within the Bayesian inference
framework [20,21]. Matrix factorization-based methods have also played an important role in
enhancing the spatial resolution of HSI. For instance, a coupled non-negative matrix factorization
(CNMF) [22] has been proposed to alternately unmix both HSI and PAN/MSI into endmember and
abundance matrices. A spatial and spectral fusion model based on sparse matrix factorization [23]
has been proposed to combine the spectral and spatial information from different sensors. Moreover,
sparse representation has gained much popularity in recent years with the rapid development of
compressed sensing. For instance, a super-resolution method termed as GSOMP+ [24] was proposed
by generalizing the simultaneous orthogonal matching pursuit with a non-negativity constraint over
the solution space. A superpixel-based sparse representation method was developed by [25] to exploit
the similarities within superpixels, while hyperspectral super-resolution was achieved by a joint
estimation of dictionary and sparse codes in [26]. Although the fusion-based techniques can improve
the resolution of the HSIs, they require auxiliary high-spatial-resolution images taken over the same
area, which are not always available in practice.

The second category is subpixel mapping (SPM), which divides a mixed pixel into subpixels
and assigns class labels to these subpixels. SPM approaches are composed of two major steps, i.e.,
determining fractional abundances of endmembers in mixed pixels by spectral unmixing or soft
classification, and evaluating the subpixel position of each class within a pixel by taking spatial
dependence into consideration. Much work has been carried out to enhance the spatial resolution
involving the above-mentioned two steps. For instance, a general framework of SPM [27] was proposed
to directly incorporate the spectral information into the spatial mapping procedure. Zhang et al. [28]
proposed an example-based super-resolution mapping model by using the support vector regression to
generate fine resolution maps. An integrated process was performed in [29] to jointly solve the image
fusion and spectral unmixing problems. A subpixel resolution thematic map framework is presented
in [30], while a collaborative representation-based SPM method [31] was proposed to generate
improved classification maps at the subpixel scale. The major limitation of the SPM-based techniques
is that they acquire high-spatial-resolution results only for certain applications (e.g., classification).

The third category is single-image super-resolution, which synthesizes image with high spectral and
spatial resolutions from the low-spatial-resolution HSI data. A fundamental method for single-image
super-resolution is the traditional interpolation, such as bilinear or bicubic interpolation. It is notable
that deep learning [32–35], which can hierarchically learn the high-level abstract representation
in deep architectures, has attracted extensive attention due to its impressive results for several
different applications. Recently, many super-resolution models based on deep learning have been
constructed. For instance, a deep learning-based super-resolution method was proposed in [36] to
learn an end-to-end mapping between the low- and high-resolution images. Convolutional neural
network (CNN) [37,38] was applied to learn a spectral difference mapping from low-resolution HSI
to high-resolution HSI with the spectral information preserved, while Yuan et al. [39] exploited the
knowledge from natural images by transferring the learned CNN model to the HSI domain and
adopting the CNMF to enforce collaborations between the low- and high-resolution HSIs. A significant
benefit of this category is that it does not need the auxiliary PAN or MSI data sources of the same scene.

In this paper, we propose a single-image super-resolution framework inspired by a deep Laplacian
pyramid network (LPN) [40,41] to enhance the spatial resolution of the HSIs with the spectral information
preserved. As illustrated in Figure 1, the main steps of the proposed method are twofold, i.e., spatial
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reconstruction by LPN and spectral reconstruction by non-negative dictionary learning (NDL). First,
the LPN is trained by using the low- and high-resolution natural image pairs in an end-to-end fashion
without stage-wise optimization. Composed of the feature extraction and image reconstruction
parts, the LPN can progressively upsample the input low-resolution image to a reconstructed
high-resolution image in a coarse-to-fine manner. The trained LPN can be directly utilized to
improve the spatial resolution of each spectral band of the HSI. Second, the spectral information
is reconstructed by subsequently performing NDL, which is proposed to learn the common dictionary
between the original low-resolution HSI and the high-resolution HSI obtained by the LPN. The
estimated super-resolution results can be finally generated by multiplying the learned dictionary and
its corresponding sparse codes.
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Figure 1. Schematic illustration of the proposed hyperspectral image (HSI) super-resolution method.

To summarize, the main contributions of this work are embodied by the following:

• We present the first attempt, to the best of our knowledge, to introduce the LPN to super-resolution
of HSIs. Instead of requiring auxiliary images taken over the same area of the target HSI,
the LPN learns an end-to-end mapping from easily acquired natural images. Moreover, the LPN
does not need any pre-defined upsampling operators (e.g., bicubic interpolation) to upscale the
low-resolution image to the desired size.

• We propose an NDL method for spectral information reconstruction. It is interesting to note
that the spectral relation of spectral bands can be conveniently formulated within the dictionary
learning framework. Moreover, both sparse codes and the dictionary are constrained to be
non-negative, which conforms to physical reality.

The rest of this paper is organized as follows: in Section 2, we give detailed descriptions of the
proposed method. In Section 3, experimental results on several benchmark datasets are reported to
compare with other methods. Conclusions are drawn in Section 4.
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2. Proposed Method

In this section, we provide detailed descriptions of the proposed method, whose main steps are
spatial reconstruction by the LPN and spectral reconstruction by NDL.

2.1. Spatial Reconstruction by Deep Laplacian Pyramid Network

Letting Xl be the low-resolution image, the general architecture of the LPN is shown in Figure 2,
which shows that the LPN model for spatial reconstruction consists of two parts, i.e., feature extraction
and image reconstruction.

As illustrated in Figure 2, the feature extraction part contains multiple basic blocks that comprise
a feature embedding sub-network, a transposed convolutional layer and a convolutional layer.
The feature embedding sub-network applies multiple convolutional layers for transforming the
high-dimensional nonlinear feature maps, the transposed convolutional layer can upsample the input
features by a scale of 2, and the convolutional layer reconstructs the sub-band residual image. It is
worth noting that an additional convolutional layer is added in the first pyramid level to transform
the input low-resolution image into high-dimensional nonlinear feature maps, while the feature
embedding sub-network in other pyramid levels directly transforms the features from the transposed
convolutional layer of the previous level into feature maps. Compared to other networks that realize
feature extraction and reconstruction at the finest resolution, the LPN can generate feature maps at the
finer resolution with only one transposed convolutional layer.
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Figure 2. General architecture of the deep Laplacian pyramid network (LPN).

In the image reconstruction part, the high-resolution image at the level s can be reconstructed by
combining the upsampled image with the predicted residual image using element-wise summation.
Taking the low-resolution image as input, the residual image can be progressively predicted on the
s = log2 S pyramid level, where S refers to the upsampling scale factor and s represents the pyramid
level, while the upsampled image is obtained by upsampling the input image using a scale of 2 with a



Remote Sens. 2018, 10, 1939 5 of 24

transposed convolutional layer. The high-resolution image at the level s is then taken as the input of
the image reconstruction part at level s + 1, and the entire network is composed of a cascade of feature
extraction and image reconstruction sub-networks with the same structure at each level.

Note that the networks at different pyramid levels share the same structure and task, and we can
thus share the network parameters of the feature embedding sub-network, transposed convolutional
layer, and convolutional layer across all of the levels. In this regard, the parameter number is
independent of the upsampling scale factor S and one single set of parameters is required to construct
the network with multiple pyramid levels. In addition to sharing parameters across different levels,
the parameters can also be shared within each pyramid level. In greater detail, the feature- embedding
sub-network can be constructed by a series of recursive blocks. Figure 3 depicts the structure of a
recursive block, which consists of D distinct convolutional layers. The rectified linear unit (ReLU)
(R(z) = max(0, z)) is a widely used activation function in deep learning. The parameters of those
convolutional layers are shared among recursive blocks, and thus the network depth can be effectively
increased without increasing the parameter size.

Image reconstructionFeature extraction

Conv

Conv

Input of the recursive block

ReL

...

Conv

⊕ 

Conv

Output of the recursive block

U

ReL U

ReL U

Figure 3. Structure of a recursive block in the feature-embedding sub-network.

To optimize the parameters θ in the LPN, we should define an appropriate loss function. The goal
of the LPN is to learn a mapping that can generate a high-resolution image X̂h that is close to the
high-resolution ground truth image Xh. Letting the residual image at level s be R̂(s), the output
high-resolution image X̂(s)

h at level s can be formulated as X̂(s)
h = X(s)

l + R̂(s). The ground truth image

Xh is re-sized to X̂(s)
h at each level by bicubic downsampling, and the loss function is modeled by

L(θ) =
1
I

I

∑
i=1

log2 S

∑
s=1

ρ
(

X(i,s)
h − X̂(i,s)

h

)
=

1
I

I

∑
i=1

log2 S

∑
s=1

ρ
(
(X(i,s)

h − X̂(i,s)
l )− R̂(i,s)

)
, (1)

where I denotes the number of training samples in each batch, ρ(x) =
√

x2 + ε2 represents the
Charbonnier penalty function [42], which is strictly convex and infinitely differentiable. Therefore, it is
a differentiable variant version of the l1-norm. The convex penalty ensures a unique solution of the
optimization problem, and the parameter ε determines how closely the penalty function resembles the
l1-norm. In this paper, ε is set to 1e-3 and the loss function L(θ) is minimized by adopting the stochastic
gradient descent (SGD) solver. Having trained the LPN, the spatial resolution of the low-resolution HSI
can be determined by taking each spectral band of the HSI as input of the LPN. The high-resolution
outputs of the LPN are then stacked into the high-spatial-resolution HSI, whose spectral resolution
can be reconstructed by NDL.



Remote Sens. 2018, 10, 1939 6 of 24

2.2. Spectral Reconstruction by Non-Negative Dictionary Learning

Let the matrix Sh ∈ Rb×MN denote the high-spatial-resolution HSI by concatenating the pixels of
the HSI Sh,3D ∈ RM×N×b generated by the LPN, i.e., Sh,3D ∈ RM×N×b → Sh ∈ Rb×MN , where M, N
refer to the spatial dimensions and b represents the number of spectral bands. By assuming that the
spectral signatures of pixels belonging to the same class approximately lie in the same low-dimensional
subspace [43], the matrix Sh can be expressed as

Sh = DVh,

s.t.


||Vh||0 ≤ Ch0,

dk ≥ 0, k = 1, 2, . . . , K,

vhj ≥ 0, j = 1, 2, . . . , MN,

(2)

where D = [d1, d2, . . . , dK] ∈ Rb×K is the dictionary whose columns {dk}k=1,2,...,K are the atoms
containing the spectral signature of all of the classes, and Vh denotes the unknown sparse codes.
Both D and Vh are constrained to be non-negative, which coincides with the physical reality.

Similarly, the original low-spatial-resolution HSI can also be reshaped as Sl ∈ Rb×mn by
concatenating the pixels in the original input HSI Sl,3D ∈ Rm×n×b, where m, n denote the spatial
dimensions and b is the number of spectral bands. Analogously to Sh, we can also reformulate Sl as

Sl = DVl ,

s.t.


||Vl ||0 ≤ Cl0,

dk ≥ 0, k = 1, 2, . . . , K,

vl j ≥ 0, j = 1, 2, . . . , mn.

(3)

Note that both low- and high-resolution HSIs capture the same scene, and the underlying materials
of those data are the same. As such, we share the same dictionary D in Equations (2) and (3). In addition,
the dictionaries D and Vl are constrained to be non-negative to grasp the physical nature of the data.
The l0 optimization problems in Equations (2) and (3) can be approximately replaced by l1-based
problems. Combining the two l1-based problems, we have

arg min
D,Vh ,Vl

1
2
||Sl − DVl ||2F +

β

2
||Sh − DVh||2F + λ ||Vl ||1 + βλ ||Vh||1 ,

s.t.


dk ≥ 0, k = 1, 2, . . . , K,

vhj ≥ 0, j = 1, 2, . . . , MN,

vl j ≥ 0, j = 1, 2, . . . , mn,

(4)

where λ, β (λ ≥ 0, β ≥ 0) are the regularization parameters.
Letting S = [Sl , βSh] and V = [Vl , βVh] , Equation (4) yields

arg min
D,V

1
2
||S− DV ||2F + λ ||V ||1 ,

s.t.

{
dk ≥ 0, k = 1, 2, . . . , K,

vj ≥ 0, j = 1, 2, . . . , MN + mn.
(5)

Up until now, the spectral reconstruction problem has been transformed to a dictionary learning
problem displayed in Equation (5), which can be solved by alternatively optimizing a certain variable
with other variables fixed. In greater detail, for a fixed dictionary D, the sub-problem with respect to V
can be written as
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arg min
V

1
2
||S− DV ||2F + λ ||V ||1 ,

s.t. vj ≥ 0, j = 1, 2, . . . , MN + mn. (6)

The above-mentioned problem in Equation (6) can be effectively solved by the alternating direction
method of multipliers (ADMM) [44]. Reformulating Equation (6), we have

arg min
V

1
2
||S− DW ||2F + λ||V ||1,

s.t. V = W , vj ≥ 0, j = 1, 2, . . . , MN + mn, (7)

whose augmented Lagrangian function yields

Lµ(V , W , T) =
1
2
||S− DW ||2F + λ ||V ||1 + < T , W − V > +µ ||W − V ||2F

s.t.vj ≥ 0, j = 1, 2, . . . , MN + mn

=
1
2
||S− DW ||2F + λ ||V ||1 + µ

∣∣∣∣∣∣∣∣W − V +
T
2µ

∣∣∣∣∣∣∣∣2
F

s.t.vj ≥ 0, j = 1, 2, . . . , MN + mn, (8)

where µ > 0 is the penalty parameter and T denotes the Lagrangian multiplier.
Without loss of generality, the matrices W and V in the (p + 1)th iteration can be determined,

respectively, by

W (p+1) = arg min
W
Lµ(V (p), W , T(p))

= (DTD + 2µE)−1

[
DTS + 2µ

(
V (p) − T(p)

2µ

)]
(9)

and

V (p+1) = arg min
V
Lµ(V , W (p+1), T(p)), s.t.vj ≥ 0

=

[
S λ

2µ

(
W (p+1) +

T(p)

2µ

)]
+

, (10)

where E is the identity matrix, [·]+ = max{·, 0} and S λ
2µ

is the shrinkage operator given by

S λ
2µ
(·) = sign(·)max

(
0, | · | − λ

2µ

)
. (11)

Based on W (p+1) and V (p+1), the Lagrangian multiplier T(p+1) can be updated by

T(p+1) = T(p) + µ
(

W (p+1) − V (p+1)
)

. (12)

Moreover, we update D by fixing V

arg min
D
||S− DV ||2F ,

s.t. dk ≥ 0, k = 1, 2, . . . , K. (13)

Letting D(q) represent the dictionary learned in the qth iteration, and d(q+1)
k = d(q)

k + ∆dk,
the problem in Equation (13) can be solved by the block coordinate descent method [45], that is,
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only one column of D(q) is updated in each iteration while keeping other columns fixed, and ∆dk can
be determined by

∆dk = arg min
∆dk

∣∣∣∣∣∣S− [d(q)
1 , d(q)

2 , . . . , d(q)
k−1, d(q)

k + ∆dk, . . . , d(q)
K

]
V
∣∣∣∣∣∣2

F

s.t.d(q+1)
k = d(q)

k + ∆dk ≥ 0, k = 1, 2, . . . , K

= arg min
∆dk

∣∣∣∣∣∣S− D(q)V − ∆dkvk

∣∣∣∣∣∣2
F

s.t.d(q+1)
k = d(q)

k + ∆dk ≥ 0, k = 1, 2, . . . , K

= arg min
∆dk

b

∑
i=1

MN+mn

∑
j=1

(
δ
(q)
i,j − ∆di,kvk,j

)2

s.t.d(q+1)
k = d(q)

k + ∆dk ≥ 0, k = 1, 2, . . . , K

= arg min
∆dk

∣∣∣∣∣∣
∣∣∣∣∣∣∆dk −

(
S− D(q)V

)
vT

k

∑MN+mn
j=1 v2

k,j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

s.t.d(q+1)
k = d(q)

k + ∆dk ≥ 0, k = 1, 2, . . . , K, (14)

where vk comes from the kth row of the matrix V , vk,j denotes the element of V located at the kth row

and jth column, and δ
(q)
i,j denotes the element of S− D(q)V located at the ith row and jth column.

According to Equation (14), d(q+1)
k can be written in the form

d(q+1)
k =

[
d(q)

k +
(S− D(q)V)vT

k

∑MN+mn
j=1 v2

k,j

]
+

. (15)

The above-mentioned steps for updating V and D are the main steps required to solve the
dictionary learning problem in Equation (5) and the complete algorithm is summarized in Algorithm 1.

Algorithm 1: Solving Problem in Equation (5).

Input: S, λ, µ, $ = 1.1, µmax = 106

Output: D and V
Initialize: D is initialized by randomly selecting the columns of S;
for q=1 to Q do

for p=1 to P do
Update W (p+1) by Equation (9);
Update V (p+1) by Equation (10);
Update T(p+1) by Equation (12);
Update µ by µ = min(µmax, $µ);
Output V (p+1) if p = P.

end
for k=1 to K do

Update d(q+1)
k by Equation (15);

Output D(q+1) if k = K.
end
Output D(q+1) if q = Q.

end
return D and V .
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3. Experiments and Analysis

3.1. Datasets

To evaluate the performance of the proposed method, experiments were conducted on three HSIs
(i.e., CAVE [46], Indian Pines [47], and Pavia Center [1]). The following gives a brief description of the
HSI datasets:

1. CAVE: the CAVE dataset [48] contains 32 HSIs of objects with 512× 512 spatial pixels and 31 spectral
bands ranging from 400 to 700 nm at an interval of 10 nm wide. The high-resolution Red Green Blue
(RGB) images of the eight test data used in the experiments are plotted in Figure 4.

2. Indian Pines: the Indian Pines dataset [49] is captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the agricultural Indian Pine test site in northwest Indiana.
The original dataset consists of 224 spectral bands, 200 bands are used for experiments by
removing the zero and noisy bands. The spatial resolution is 20 m and a spatial size of 256 × 256
is cropped in the experiments. Figure 5a depicts the high-resolution RGB image of the Indian
Pines dataset, which has abundant spatial structures.

3. Pavia Center: the Pavia Center dataset [50] is acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS-03) optical sensor over an urban area at the Center of Pavia,
Italy. The original scene contains 1096 × 715 pixels and 115 spectral bands. The spatial resolution
is 1.3 m and a part of spatial size 128 × 128 including rich detailed information is selected from
the original dataset. After removing 13 non-informational channels, 102 bands remained for
experiments. The high-resolution RGB image is shown in Figure 5b.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The high-resolution Red Green Blue (RGB) images of the eight test data from the CAVE dataset.
(a) balloons; (b) egyptian_statue; (c) face; (d) fake_and_real_lemon_slices; (e) fake_and_real_strawberries;
(f) oil_painting; (g) photo_and_face and (h) pompoms.
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(a) (b)

Figure 5. The high-resolution RGB images of (a) Indian Pines dataset and (b) Pavia Center dataset.

3.2. Experimental Settings

We compared the proposed method with several well-known methods, i.e., bicubic, the sparse
coding-based method proposed by [51] (termed as Zeyde), anchored neighborhood regression
(ANR) [52], neighbor embedding with least squares (NE + LS), neighbor embedding with non-negative
least squares (NE + NNLS) [53], neighbor embedding with locally linear embedding (NE + LLE) [54],
A+ [55], super-resolution CNN (SRCNN) [36], CNMF [22], guided filter principal component
analysis (GFPCA) [56], Gram–Schmidt spectral sharpening (GS) [57], adaptive GS (GSA) [58],
and the hyperspectral super-resolution method proposed by [59] (termed as HySure). Our LPN
and NDL-based method is abbreviated as LPN-NDL for notational convenience. The bicubic method is
a polynomial-based interpolation method. Zeyde is an efficient method based on sparse representation
and dictionary learning. ANR uses ridge regression to learn exemplar neighborhoods, which can
be used to compute the mapping between low- and high-resolution patches. NE + LS, NE + NNLS
and NE + LLE are neighbor embedding methods with different constraints. A+, which combines
the best qualities of ANR and simple functions, is an improved version of ANR. SRCNN learns an
end-to-end mapping between the low- and high-resolution images by applying deep CNN. CNMF
obtains the high-spatial resolution HSI by alternately unmixing the low-spatial resolution HSI and the
corresponding high-spatial resolution auxiliary data. GFPCA is a hybrid hyperspectral pan-sharpening
method realized by combing a guided filter and PCA. GS reconstructs the high-spatial resolution image
by performing Gram–Schmidt transformation on different low-spatial resolution bands, and GSA is an
adaptive variant of GA. HySure formulates the super-resolution problem as a convex program, which is
solved by the split augmented Lagrangian shrinkage algorithm (SALSA). Moreover, the bicubic, Zeyde,
ANR, NE + LS, NE + NNLS, NE + LLE, A+, SRCNN and LPN-NDL methods are single image methods
that perform super-resolution by using the low-resolution HSI, while the CNMF, GFPCA, GS, GSA
and HySure methods are auxiliary-based methods that require auxiliary PAN or MSI data sources
of the same scene. Note that the real PAN is unavailable in practice, and thus we generate the PAN
from the true high-resolution HSI as an alternative to the real one. In greater detail, the average of the
visible spectral bands is used as the PAN of the hyperspectral data [16].

The low-resolution HSIs are simulated by blurring the original HSIs with a Gaussian kernel
whose standard deviation is set to 1 and then down-sampling the blurred HSIs with the scale factor
S = 2, 4, or 8. The parameters in the competing methods are chosen as described in their corresponding
references. Details of the LPN-NDL are as follows. In the spatial reconstruction step, we train the LPN
in an end-to-end fashion by using multiple low- and high-resolution natural image pairs. The training
data are composed of the 91 images from [60] and 200 images from the Berkeley segmentation
dataset [61]. Rather than inputting an upscaled image obtained by pre-processing, the LPN directly
takes a low-resolution image and progressively reconstructs the high-resolution images at different
pyramid levels. The LPN consists of s = log2 S sub-networks to super-resolve a low-resolution



Remote Sens. 2018, 10, 1939 11 of 24

image at the scale factor S. For instance, in case S = 4, the LPN has s = 2 sub-networks. We can
empirically set the parameters of the methods to achieve acceptable performance. The filter size
of convolutional/transposed convolutional filters can be set in the range of 3 to 9, the number of
convolutional layers in a block and the recursive blocks can be set higher than 2 and 4, respectively.
The initial learning rate can be set lower than 0.001 and higher than 10−6. Specifically, in this paper, each
convolutional layer of the LPN contains 64 filters with a size of 3× 3, while the size of the transposed
convolutional filters is 4× 4. The nonlinear activation functions are the leaky rectified linear units
(LReLUs) with a negative slope 0.2, and all of the convolutional and transposed convolutional layers
are followed by the LReLUs. The batch size and training epochs are set to 64 and 1000, respectively.
The numbers of convolutional layers in a block and of recursive blocks are set to 5 and 8, respectively.
The SGD solver is adopted to train the network and the learning rate is initialized to 5× 10−6 and
decreased by a factor of 2 for every 100 epochs. In the spectral reconstruction step, the parameters λ, β

and µ in the NDL are chosen as 0.001, 5, and 0.005, respectively.
Moreover, the experiments are performed using MATLAB 2018a on an Intel(R) Xeon(R) CPU E5-2620

V4 platform (2.10 GHz) with 64 GB RAM running the Microsoft Windows 7 operating system. The
respective execution times of the LPN-NDL on three HSI datasets are approximately 290 s, 280 s, and 40 s.

3.3. Evaluation Indices

Six evaluation indices are adopted for quantitative assessment of the competing methods: (1) root
mean square error (RMSE) [62]; (2) peak signal-to-noise ratio (PSNR) [63]; (3) structure similarity index
(SSIM) [64]; (4) erreur relative globale adimensionnelle de synthèse (ERGAS) [63,65]; (5) spectral angle
mapper (SAM) [66] and (6) anisotropic quality index (AQI) [67].

Letting Y ∈ Rb×MN denote the reference high-resolution image with b bands and MN pixels,
Y = [y1,·, y2,·, . . . , yb,·]

T = [y·,1, y·,2, . . . , y·,MN ], where yi,· ∈ RMN×1 is from the ith (i = 1, 2, . . . , b) band
and y·,j ∈ Rb×1 is the feature vector of the jth (j = 1, 2, . . . , MN) pixel. Supposing that Ŷ ∈ Rb×MN

gives the estimated high-resolution image, details of each index are given below.

3.3.1. RMSE

RMSE [62] is a measure of the spread of the reference Y about the predicted Ŷ value, and it is
obtained by the following square root of the mean squared error

RMSE(Y , Ŷ) =

√
||Y − Ŷ ||2F
b×MN

. (16)

A smaller RMSE demonstrates that the estimated Ŷ is much closer to the reference data.

3.3.2. PSNR

PSNR [63] is the ratio between the maximum power of a signal and the power of the residual
errors. The PSNR of the ith band is modeled by

PSNR(yi,·, ŷi,·) = 10 log10

(
(max(yi,·))

2

||yi,· − ŷi,·||22/MN

)
. (17)

A larger PSNR value indicates a higher quality of super-resolution. Since b > 1 for the HSI,
the average PSNR over all of the bands is used to represent the quality index of the entire image.

3.3.3. SSIM

SSIM [64] is based on the human visual perception, which is sensitive to the structural consistency
of the reference data. The SSIM of the ith band is defined as

SSIM(yi,·, ŷi,·) =
(2µ̃yi,· µ̃ŷi,· + c1)(2σyi,· ŷi,· + c2)

(µ̃2
yi,· + µ̃2

ŷi,·
+ c1)(σ2

yi,· + σ2
ŷi,·

+ c2)
, (18)
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where µ̃yi,· and µ̃ŷi,· represent the mean values of yi,· and ŷi,·, respectively, σ2
yi,· , σ2

ŷi,·
and σyi,· ŷi,· are the

variances of yi,·, ŷi,· and the covariance of yi,· and ŷi,·, and c1 and c2 are two constants used to stabilize
the division with a weak denominator. When SSIM is larger, the estimated image Ŷ is closer to the
reference data. Since there are hundreds of bands in the HSI, the average SSIM over all of the bands is
used to represent the quality index of the entire image.

3.3.4. ERGAS

ERGAS [63,65] is a global statistical measure of the super-resolution quality with the best value
at 0. The ERGAS of Y and Ŷ is calculated by

ERGAS(Y , Ŷ) = 100
√

mn
MN

√√√√1
b

b

∑
i=1

||yi,· − ŷi,·||22
µ̃2

yi,·

, (19)

where µ̃yi has the same meaning as in Equation (18).

3.3.5. SAM

SAM [66] evaluates the spectral information preservation at each pixel. The SAM at the jth pixel
is determined by

SAM(y·,j, ŷ·,j) = arccos

(
yT
·,jŷ·,j

||y·,j||2||ŷ·,j||2

)
. (20)

A smaller SAM means that the estimated HSI is closer to the reference one, and the best value of
SAM is 0. The average SAM over all of the MN pixels is used as a quality index of the entire image.

3.3.6. AQI

AQI [67] is a no-reference quality metric that does not require any ground-truth image to
determine the quality of images. This index is based on measuring the anisotropy of the images
upon a set of predefined directions. The AQI of the ith band can be modeled by

AQI(yi,·) =

√
∑R

r=1(µi − H(i, θr))2

R
, (21)

where θr represents the rth (r = 1, 2, . . . , R) orientation taken to measure the entropy, H(i, θr) is the
expected value of entropy for the ith band and µi denotes the mean of H(i, θr). The smaller AQI
indicates the higher quality of the image. The average AQI over all of the bands is used to represent
the quality index of the entire image.

3.4. Experimental Results

3.4.1. Comparison to the State-of-the-Art Methods

Qualitative and quantitative results of the above-mentioned methods are shown in Figures 6–10
and Tables 1–3, respectively. Table 1 is obtained by the average results of the eight test data, and
the standard deviation of each evaluation index on the eight test data is displayed in brackets.
Tables 2 and 3 compare the evaluation indices of the Indian Pines data and Pavia Center data,
respectively, and the standard deviations of those indices that are calculated by being averaged
(i.e., PSNR, SSIM, SAM and AQI) are shown in brackets. Without loss of generality, we set the
scale factor S = 4 for all of the HSI datasets. From the experimental results, a few observations
are noteworthy. It can first be seen that the bicubic, SRCNN and LPN-NDL methods yield superior
performance compared with other single image methods, while CNMF achieves better or comparable
results compared with other auxiliary-based methods. For instance, it is observed from Tables 1–3 that
the bicubic, SRCNN and LPN-NDL methods always provide lower RMSEs and higher PSNRs than the
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Zeyde, ANR, NE + LS, NE + NNLS, NE + LLE, and A+ methods. The SSIM, ERGAS, SAM and AQI
indices also provide similar properties. Moreover, as displayed in Table 1, the RMSE, ERGAS, and
SAM of the CNMF are much less than those of GFPCA, GS, GSA, and Hysure, while the PSNR, SSIM
and AQI of the CNMF are higher than those of other auxiliary-based methods. The aforementioned
phenomena demonstrate the effectiveness of the bicubic, CNMF and deep learning-based methods for
HSI super-resolution.
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Figure 6. Reconstructed image of the oil_painting from the CAVE dataset. (a) original image;
(b) the low-resolution image; (c) bicubic; (d) Zeyde; (e) anchored neighborhood regression (ANR),
(f) neighbor embedding with least squares (NE + LS), (g) neighbor embedding with non-negative least
squares (NE + NNLS), (h) neighbor embedding with locally linear embedding (NE + LLE), (i) A+,
(j) super-resolution convolutional neural network (SRCNN); (k) deep Laplacian pyramid network and
non-negative dictionary learning (LPN-NDL); (l) coupled non-negative matrix factorization (CNMF);
(m) guided filter principal component analysis (GFPCA); (n) Gram-Schmidt spectral sharpening (GS);
(o) adaptive GS (GSA) and (p) HySure.
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Second, the proposed LPN-NDL method achieves the best performance among all the comparison
methods in most cases, without requiring auxiliary PAN or MSI of the same scene. As shown in
Table 1, the RMSE of the LPN-NDL leads to a maximum decline of 25, while the improvement in
PSNR is at most 12 dB. The SSIM, SAM and AQI are also better than other methods. The ERGAS of
the LPN-NDL is better than that of the single image methods, but is comparable or slightly inferior
to that of the auxiliary-based methods. It is also clearly visible from Figure 6 that the LPN-NDL
provides the best visual quality of in all of the comparison methods. Specifically, the “flowers” image
generated by the LPN-NDL is much clearer than those obtained by other methods. The reconstructed
results of the Indian Pines dataset and Pavia Center dataset also yield similar properties. This implies
that the LPN-based spatial reconstruction and NDL-based spectral reconstruction can improve the
performance of HSI super-resolution.
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Figure 7. Reconstructed image of the Indian Pines dataset. (a) original image; (b) the low-resolution
image; (c) bicubic; (d) Zeyde; (e) ANR; (f) NE + LS; (g) NE + NNLS; (h) NE + LLE; (i) A+; (j) SRCNN;
(k) LPN-NDL; (l) CNMF; (m) GFPCA; (n) GS; (o) GSA and (p) HySure.
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Figure 8. Reconstructed image of the Pavia Center dataset. (a) original image; (b) the low-resolution
image; (c) bicubic; (d) Zeyde; (e) ANR; (f) NE + LS; (g) NE + NNLS; (h) NE + LLE; (i) A+; (j) SRCNN;
(k) LPN-NDL; (l) CNMF; (m) GFPCA; (n) GS; (o) GSA and (p) HySure.
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Third, the LPN-NDL provides better or comparable spectral fidelity compared with the competing
methods. It is notable from Table 1 that the SAM of the LPN-NDL is lower than that of other methods.
To gain further understanding, Figure 9 plots the spectral signatures of the pixels located at (10,10) in
the CAVE (oil_painting image and photo_and_face), Indian Pines and Pavia Center datasets. As shown
in Figure 9, the spectral profiles obtained by the LPN-NDL is close to their corresponding ground-truths,
demonstrating that the LPN-NDL can effectively preserve useful spectral information of the original
HSI. Furthermore, it can be clearly seen that the results of LPN-NDL in Figure 9d are slightly inferior to
those in Figure 9a–c. This is due to the fact that the spatial size of the Pavia Center is much smaller than
that of the other two datasets and the low-resolution image of the Pavia Center dataset is much blurrier
compared to that of the other two datasets. Figure 10 depicts the PSNRs of different bands. It can
be seen that the performance of the LPN-NDL becomes relatively stable on the CAVE data when the
spectral band number is larger than 5, while the PSNR of LPN-NDL varies with the spectral reflectance
on the other two datasets. For instance, it is shown in Figure 10c that the bands with higher intensity
gain a higher margin of error than those with lower intensity. In short, the experimental results validate
the effectiveness of the proposed LPN-NDL method in super-resolution of hyperspectral data.
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Figure 9. Spectral signatures of pixels located at (10,10) in (a) CAVE (oil_painting image); (b) CAVE
(photo_and_face); (c) Indian Pines; and (d) Pavia Center datasets.
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Figure 10. Peak signal-to-noise ratios (PSNRs) of different bands in (a) CAVE (oil_painting image);
(b) CAVE (photo_and_face); (c) Indian Pines; and (d) Pavia Center datasets.

Table 1. Quantitative comparison of different methods on the CAVE dataset.

Algorithm RMSE PSNR SSIM ERGAS SAM AQI

bicubic 16.2617 (6.9104) 24.7415 (3.9182) 0.6583 (0.1791) 11.5155 (4.9575) 14.4158 (6.5527) 0.0010 (0.0004)
Zeyde 25.6433 (7.7123) 20.3471 (2.6909) 0.5036 (0.1701) 13.6834 (3.9773) 18.7524 (5.6886) 0.0009 (0.0003)
ANR 28.0809 (7.8412) 19.5274 (2.6135) 0.4796 (0.1715) 14.1597 (4.0041) 19.2058 (5.9445) 0.0009 (0.0004)
NE + LS 26.2436 (7.9464) 20.1360 (2.6232) 0.4978 (0.1675) 13.7970 (3.8589) 18.8660 (5.4842) 0.0009 (0.0002)
NE + NNLS 27.2190 (7.4602) 19.7608 (2.4044) 0.4900 (0.1672) 13.9889 (3.8712) 19.0091 (5.6199) 0.0009 (0.0003)
NE + LLE 26.3038 (8.4137) 20.1902 (2.9474) 0.4957 (0.1702) 13.7495 (4.1082) 18.7846 (5.9943) 0.0010 (0.0004)
A+ 26.9494 (9.4960) 20.0146 (2.9845) 0.4819 (0.1711) 13.9501 (3.6548) 19.3264 (5.6030) 0.0009 (0.0003)
SRCNN 18.3050 (5.1162) 23.2536 (2.6072) 0.5729 (0.1705) 12.0486 (4.1624) 17.1743 (6.6662) 0.0012 (0.0006)
LPN-NDL 8.9729 (2.0154) 29.5445 (1.8301) 0.8583 (0.0781) 11.1880 (4.7270) 8.0880 (3.7622) 0.0063 (0.0020)
CNMF 10.6937 (4.2194) 28.6562 (3.5636) 0.8111 (0.0846) 8.7747 (5.6016) 12.2739 (9.5584) 0.0029 (0.0007)
GFPCA 16.5987 (6.5389) 24.3999 (3.4423) 0.6935 (0.1163) 9.8779 (5.8404) 15.0239 (5.6206) 0.0008 (0.0003)
GS 40.1008 (21.7988) 16.9870 (3.9229) 0.4625 (0.1341) 14.0282 (5.9394) 21.6988 (4.3676) 0.0009 (0.0007)
GSA 34.4267 (12.2822) 17.9985 (3.5545) 0.4844 (0.1822) 12.9471 (6.4385) 20.3644 (5.6092) 0.0008 (0.0003)
HySure 21.7811 (9.3211) 22.1443 (3.8435) 0.5417 (0.1799) 10.7701 (6.0094) 17.0623 (6.1674) 0.0012 (0.0008)

The abbreviations used in the Table are defined as follows. RMSE denotes root mean square error; PSNR
denotes peak signal-to-noise ratio; SSIM dentoes structure similarity index; ERGAS denotes erreur relative globale
adimensionnelle de synthèse; SAM denotes spectral angle mapper; AQI denotes anisotropic quality index; ANR
denotes anchored neighborhood regression; NE + LS denotes neighbor embedding with least squares; NE + NNLS
denotes neighbor embedding with non-negative least squares; NE + LLE denotes neighbor embedding with
locally linear embedding; SRCNN denotes super-resolution convolutional neural network; LPN-NDL denotes
deep Laplacian pyramid network and non-negative dictionary learning; CNMF denotes coupled non-negative
matrix factorization; GFPCA denotes guided filter principal component analysis; GS denotes Gram-Schmidt
spectral sharpening; and GSA denotes adaptive GS.
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Table 2. Quantitative comparison of different methods on the Indian Pines dataset.

Algorithm RMSE PSNR SSIM ERGAS SAM AQI

bicubic 20.1895 25.9933 (11.8486) 0.3863 (0.0995) 7.1492 3.5584 (3.1670) 0.0010 (0.0016)
Zeyde 26.3839 19.1688 (3.0614) 0.3285 (0.0820) 14.0343 10.8720 (8.4887) 0.0032 (0.0023)
ANR 31.4398 17.2309 (1.7527) 0.3273 (0.0826) 15.1803 14.0663 (7.6825) 0.0023 (0.0019)
NE+LS 27.9910 18.5960 (2.8850) 0.3285 (0.0876) 14.3647 11.3788 (8.3564) 0.0031 (0.0023)
NE+NNLS 27.5631 18.5665 (2.5145) 0.3242 (0.0876) 14.4262 11.9668 (8.2064) 0.0028 (0.0022)
NE+LLE 26.9086 18.9146 (2.8645) 0.3152 (0.0954) 14.2027 11.2950 (8.3868) 0.0031 (0.0023)
A+ 23.9240 19.5867 (2.0736) 0.3380 (0.0753) 14.0213 12.3590 (8.1410) 0.0029 (0.0022)
SRCNN 9.4155 28.6519 (4.8637) 0.4393 (0.1215) 8.2902 4.6025 (3.3220) 0.0008 (0.0005)
LPN-NDL 8.3230 32.0453 (9.3215) 0.4112 (0.0980) 5.2417 4.0816 (3.7600) 0.0022 (0.0023)
CNMF 24.0303 24.4887 (11.7217) 0.3748 (0.1080) 7.9650 3.5799 (3.1105) 0.0012 (0.0012)
GFPCA 27.3877 23.8238 (12.5117) 0.3351 (0.0794) 24.6552 4.5508 (3.2558) 0.0004 (0.0005)
GS 31.0304 17.5348 (2.5210) 0.2852 (0.0738) 14.7545 9.7163 (1.9271) 0.0007 (0.0006)
GSA 32.3785 18.6860 (4.1015) 0.3039 (0.0974) 15.4634 24.4949 (2.3554) 0.0009 (0.0012)
HySure 68.2837 11.5669 (2.4189) 0.3608 (0.1038) 17.7729 31.4507 (2.6552) 0.0003 (0.0003)

Table 3. Quantitative comparison of different methods on the Pavia Center dataset.

Algorithm RMSE PSNR SSIM ERGAS SAM AQI

bicubic 35.8434 18.9919 (4.1699) 0.3987 (0.0497) 14.1387 8.1693 (6.5010) 0.0065 (0.0047)
Zeyde 37.8151 17.5210 (2.7566) 0.3277 (0.0440) 15.5638 13.5502 (10.5956) 0.0096 (0.0032)
ANR 40.4038 16.5907 (2.1367) 0.3034 (0.0410) 15.7239 15.1720 (10.5638) 0.0075 (0.0031)
NE+LS 43.2766 16.0692 (2.2779) 0.3133 (0.0423) 16.0802 14.8489 (10.5080) 0.0074 (0.0030)
NE+NNLS 41.7584 16.3390 (2.2029) 0.3092 (0.0434) 15.8709 15.0183 (10.4963) 0.0072 (0.0030)
NE+LLE 37.2699 17.4990 (2.5140) 0.3102 (0.0358) 15.4073 14.1549 (10.5719) 0.0088 (0.0031)
A+ 37.0723 17.2909 (2.0431) 0.2981 (0.0418) 15.3159 15.4448 (10.6292) 0.0076 (0.0032)
SRCNN 26.5608 20.7023 (3.0191) 0.4200 (0.0771) 13.2108 10.1650 (6.6635) 0.0068 (0.0022)
LPN-NDL 21.1344 22.9876 (3.5793) 0.4106 (0.0659) 14.1480 9.5343 (7.1432) 0.0152 (0.0034)
CNMF 35.2914 19.2605 (4.3758) 0.4108 (0.0706) 14.1335 8.5089 (7.0773) 0.0074 (0.0023)
GFPCA 39.9966 18.1526 (4.2496) 0.3715 (0.1103) 13.9289 10.1075 (6.3694) 0.0007 (0.0003)
GS 36.5739 16.9113 (0.2953) 0.3293 (0.0752) 14.8410 18.3873 (9.0020) 0.0012 (0.0005)
GSA 25.6838 20.0919 (1.0633) 0.4085 (0.1032) 13.1153 19.5675 (9.4218) 0.0020 (0.0008)
HySure 35.3827 17.2160 (0.4941) 0.3673 (0.0804) 14.5165 20.2360 (10.0198) 0.0031 (0.0018)

3.4.2. Statistical Significance Analysis

We used the Kruskal–Wallis test to further study the statistical significance of the proposed method
by comparing its results with those from the single image methods and auxiliary-based methods
over the RMSE results of the aforementioned datasets. The Kruskal–Wallis test is a non-parametric
approach that compares multiple super-resolution methods on multiple datasets. The aforementioned
14 super-resolution methods and three HSI datasets (i.e., the eight test data in the CAVE, the Indian
Pines, and the Pavia Center data) are considered in the Kruskal–Wallis test. All of the competitors are
ranked for each dataset, the method with the best performance has rank 1, and the second best one
gains rank 2, and so on. In case the methods have the same performance on a certain dataset, all of
those methods get their average rank. The null hypothesis of the Kruskal–Wallis test is that all of the
methods are equivalent.

In this paper, the p-value equals 2.35× 10−7; therefore, we reject the null hypothesis in terms
of the significance level α = 0.05. To evaluate the difference among the methods, we subsequently
performed multiple comparisons to determine which levels distinguish a method from other methods.
Figure 11 plots the results of the Kruskal–Wallis test to compare the proposed method with both single
image methods and auxiliary-based methods. It can be observed from Figure 11a that the median
and inter-quartile ranges of the LPN-NDL are much smaller than those of the competing methods,
validating the superiority of the proposed LPN-NDL. Moreover, the graphical presentation of the rank
difference between any two methods is depicted in Figure 11b, which demonstrates that there are
remarkable differences between the LPN-NDL and almost all of the other methods (p < 0.05). Based
on the above analysis, the proposed LPN-NDL method is significantly better than other methods.
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Figure 11. Results of the Kruskal–Wallis test to compare the proposed method with both single image
methods and auxiliary-based methods. (a) box-plot of the Kruskal–Wallis test and (b) graphical
presentation of the rank difference between any two methods.

3.4.3. Sensitivity Analysis of the Parameters

The sensitivity of key parameters (i.e., the up-sampling scale factor S, the number of training
epochs, and the regularization parameters λ and β) are evaluated here. Figure 12 shows the impact of
the scale factor S on the RMSE for the Indian Pines and Pavia Center datasets. One can see that the
RMSE increases with an increasing S. This is due to the fact that super-resolution with a larger scale
factor is much more challenging than with a smaller one. However, this does not necessarily mean
that the optimum scale factor is simply chosen as 2. The optimum scale factor should be determined
by both reconstruction errors and actual requirements in practical applications.

The impact of the number of training epochs is plotted in Figure 13, from which it can be observed
that the RMSE increases at the first couple of epochs and then rapidly decreases with increasing number
of epochs, and again slowly decreases and finally trends to a certain stable value with increasing
number of epochs. As shown in Figure 13, it is suggested that the LPN is trained with more than
400 epochs to achieve stable and effective performance.

Finally, Figure 14 plots the effect of the regularization parameters λ and β. λ is selected from
{10−5, 5× 10−5, 10−4, 5× 10−4, 0.001, 0.005, 0.01}, while β is chosen from {0.01, 0.1, 1, 5, 10}. It can
be seen from Figure 14 that, although the super-resolution performance fluctuates with the change
of parameters, the variation is of small amplitude. Moreover, noting that the RMSE obtained with
λ ∈ {10−5, 5× 10−5, 10−4, 5× 10−4} and β ∈ {0.01, 10} is more volatile than that obtained with other
ranges, it is better to set the value of λ in the range of 0.001 to 0.01, and the value of β in the range
of 0.1 to 5.
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Figure 12. Impact of the up-sampling scale factor S on the RMSE for (a) Indian Pines and (b) Pavia
Center datasets.
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Figure 13. Impact of the training epochs on the RMSE for (a) Indian Pines and (b) Pavia Center datasets.
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Figure 14. Impact of the parameters λ and β on the RMSE for (a) Indian Pines and (b) Pavia Center datasets.

4. Conclusions

In this paper, we have proposed a deep-learning-based hyperspectral super-resolution method
to reconstruct a high-resolution HSI from a low-resolution HSI. The proposed LPN-NDL method
designs an LPN model to enhance the spatial resolution followed by a NDL method to preserve the
spectral information. Compared to most existing super-resolution methods, a notable advantage of
the proposed LPN-NDL is that it does not require any auxiliary images (e.g., PAN or MSI) of the same
scene. Moreover, by embedding multiple transposed convolutional layers, the LPN-NDL does not
need any pre-processing (e.g., bicubic interpolation) to upscale the low-resolution image to the desired
size, and the non-negative constraint is added to the spectral reconstruction step to obey the physical
reality. Experimental results on three hyperspectral datasets show that the LPN-NDL can provide
smaller errors than the competing methods in most cases. A probable future research direction is to
improve the proposed method by further avoiding overfitting. How to extend the proposed method to
other application areas (e.g., hyperspectral unmixing and classification) is also a future research topic.
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